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Abstract: Increasing wind power generation has been introduced into power systems to meet the
renewable energy targets in power generation. The output efficiency and output power stability are
of great importance for wind turbines to be integrated into power systems. The wake effect influences
the power generation efficiency and stability of wind turbines. However, few studies consider
comprehensive corrections in an aerodynamic model and a turbulence model, which challenges
the calculation accuracy of the velocity field and turbulence field in the wind turbine wake model,
thus affecting wind power integration into power systems. To tackle this challenge, this paper
proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine wake model to
simulate the wake effects. Our main aim is to add correction modules in a 3D aerodynamic model and
a shear-stress transport (SST) k-ω turbulence model, which are converted into a volume source term
and a Reynolds stress term for the MRANS-based wake model, respectively. A correction module
including blade tip loss, hub loss, and attack angle deviation is considered in the 3D aerodynamic
model, which is established by blade element momentum aerodynamic theory and an improved
Cauchy fuzzy distribution. Meanwhile, another correction module, including a hold source term,
regulating parameters and reducing the dissipation term, is added into the SST k-ω turbulence
model. Furthermore, a structured hexahedron mesh with variable size is developed to significantly
improve computational efficiency and make results smoother. Simulation results of the velocity field
and turbulent field with the proposed approach are consistent with the data of real wind turbines,
which verifies the effectiveness of the proposed approach. The variation law of the expansion effect
and the double-hump effect are also given.

Keywords: Reynolds-averaged Navier–Stokes method; wind turbine wake model; 3D aerodynamic
model; turbulence model; correction modules

1. Introduction

In the wake region of a wind turbine, the energy absorption rate of the wind turbine is decreased
and the fatigue load is increased due to the decreasing wind speed and increasing intensity of
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turbulence [1–3]. The wind turbine wake model can provide a basic theory for micro-location, power
prediction and the assessment of wind turbine performance in wind energy engineering [4]. However,
in the existing wake model, corrections are not comprehensively considered in the aerodynamic model
and turbulence model, which challenges its calculation accuracy [5,6].

The study of wind turbine wakes focuses on the velocity distribution, the wake zone width,
and the details of the development and change of flow structure at different locations of the wake region.
Figure 1 shows the ideal region division of wind turbine wakes, which is recognized as a hypothetical
model in wake research. The area with a 3–5-time diameter behind the wind turbine is called the near
wake region, and that with a 5-time diameter is called the far wake region [7,8].
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Figure 1. Ideal hypothesis and regional distribution of wind turbine wakes.

The existing wake models are divided into three categories: semi-empirical engineering
models [9,10], vortex method models [11,12] and computational fluid dynamics (CFD) models [13].
The state-of-the-art CFD models can be divided into two classes: Reynolds-averaged Navier–Stokes
(RANS) [14] and large-eddy simulation (LES) [15,16]. As the semi-empirical engineering model
is one-dimensional, the computation is small, and the velocity distribution of the wake region
can be located quickly. This model is often used in the software of engineering design, such as
Windsim and Windfarmer. However, the calculation results are far from the measured data of wind
farms [16]. The vortex method uses a lift line or lift face blade to simulate for the steady wind flow
and simple unsteady conditions, especially for the aerodynamic characteristics and wake tip vortex
of the wind turbine in the random wind velocity field with the wind shear effect [11]. The CFD
method is a general method, which describes the flow field by using hydrodynamic control equations,
and it obtains the numerical results of the flow field by using computer program design. The results
are affected by the design of RANS and LES models in the CFD method, which needs to improve
the accuracy of turbulence models. Moreover, computational cost is also an index to assess the CFD
method [17–19]. The advantages and disadvantages of research on wind turbine wake models are
shown in Table 1 [20–23].

Table 1. The advantages and disadvantages of research on wind turbine wake models.

Category Models Advantages Disadvantages

Semi-empirical
model

Jensen [20] Widely used in industry Suitable for the far wake region

Fuga [21] Widely used in industry
with medium accuracy Only uses for offshore wind farms

Simulation model
DNS [22] Direct numerical simulation

with high accuracy
Requires a lot of computing

resources and simulation time

LES [23] Widely used in research with
high accuracy

Appropriate assumptions
are necessary

DNS (direct numerical simulation), LES (large-eddy simulation).
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Concerning LES, a full-scale 3D wind turbine model by using sliding tetrahedron mesh is
established to calculate the wakes in the rotor diameter range of 20 times [24]. The authors of [23]
designs a non-full-scale model combined with the model of the wind turbine, and they discuss the
function of each sub-grid model under the LES method. Concerning the RANS, a shear-stress transport
(SST) k-ω turbulence model, a 2D high-precision computational grid, is used to calculate the wakes [15].
A tree crown model is applied in the turbulence model [13]. Its effect on the wind turbine in regard
to incoming airflow is similar to that of tree crown on airflow. Based on the tree crown model, a
modified calculation of the turbulence model is proposed by adding a source term [25]. Its calculation
results are compared with the measured data of the Danish Nibe B wind turbine. The results show
that the modified model is feasible in the near wake region. However, the wake velocity deficit in
the far wake region is underestimated. Furthermore, Shen et al. obtain the surface pressure and
friction of airfoil by X foil software, and distribute them into the 2D actuator surface model as volume
force [26]. The blade surface lift force is calculated by utilizing the vortex method in [27]. In [28] and [29],
the scholars develop an aeroelastic fatigue, aerodynamics, structures, and turbulence (FAST) model of
a wind turbine and offshore wind farm application (OWFA) model combined with an actuation model
considering the influence of blade deformation on wind turbine wakes. An improved k-ε turbulence
model is presented for the numerical simulation of wind turbine wakes. However, in the vertical
direction, the simulation results do not have good agreement with the experimental results [30].

In summary, the above approaches lack the consideration of comprehensive corrections in the
aerodynamic model and turbulence model. Motivated by the above discussion, the velocity field and
turbulence field of wind turbines are simulated by a modified RANS (MRANS) method in this paper.
The main contributions of this paper are summarized as follows:

• This paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine
wake model to simulate the wake effects. Based on the correction module, the proposed blade
element momentum (BEM) -fuzzy aerodynamic model can amend the inconsistent condition
between the wake simulation and the experiment test. For the turbulence model, the turbulence
attenuation is effectively avoided by adding the hold source term. The accuracy of the turbulence
intensity distribution is improved by correcting the closure constant and the dissipation term.

• Simulation results of the velocity field and turbulent field with the proposed approach are
consistent with the data of real wind turbines, which verifies the effectiveness of the proposed
approach. Furthermore, the computation efficiency is significantly improved by the developed
mesh partition method.

The rest of this paper is organized as follows: Section 2 describes the overall proposed wind turbine
wake model. The modified wind turbine 3D model with BEM and fuzzy theory is studied in Section 3.
The SST k-ω turbulence model is presented in Section 4. The variable size hexahedron mesh partition
method is developed in Section 5. Numerical simulations are given in Section 6. Finally, conclusions
are drawn in Section 7.

2. Overall Wind Turbine Wake Model

In this paper, the RANS model is adopted in the wind turbine wake model. Wind turbine wakes
can be regarded as an incompressible flow field, and energy equations are not considered in this
paper in accordance with the Reynolds-averaged equations [5]. The continuity equation is given by
Equation (1).

∂ui
∂xi

= 0, (1)

where ui is the average velocity component in direction xi, i = 1, 2, 3 . . .
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The momentum equations are given by Equation (2).

∂
(
ρuiu j

)
∂x j

=
∂p
∂xi

+
∂(2µSi j − ρu′i u

′

j)

∂x j

+ fi, (2)

where ρ is the air density, ui is the i-th velocity component, p is positive stress, µ is the dynamic viscosity

coefficient, Si j =
1
2

(
∂u j
∂xi

+ ∂ui
∂x j

)
is the average strain tensor, u′i is the pulsation velocity component in

direction xi, and fi is the volume source term.
In the process of Reynolds time averaging, an unknown tensor additional term ρu′i u

′

j is derived,
which is called the Reynolds stress tensor and represents energy transfer caused by turbulence pulsation.
Due to this unknown additional term, the Reynolds time-averaged Equations (1) and (2) cannot be
closed. The turbulence model can calculate the Reynolds stress tensor by the vorticity viscosity
hypothesis. The Boussinesq equation is shown in Equation (3) [5].

ρu′i u
′

j = 2µtSi j −
2
3
ρkδi j, (3)

where the turbulent kinetic energy k = 0.5u′i u
′

j, δi j =

{
i = j 1
i , j 0

, and µt is the eddy viscosity coefficient

determined by the turbulence model.
To enhance the accuracy of the abovementioned Reynolds stress tensor and eddy viscosity

coefficient, we develop a correction module for an SST k-ω turbulence model. Meanwhile, to further
comprehensively complete the volume source term of the RANS model, another correction module is
also introduced to the BEM-fuzzy 3D aerodynamic model. By combining the turbulence model and
the aerodynamic model, we propose an M-RANS wake model; the overall modeling framework is
shown in Figure 2.
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Energies 2020, 13, 4430 5 of 19

3. BEM-Fuzzy 3D Aerodynamic Model

As shown in Figure 2, the BEM-fuzzy model is established to obtain the volume source term.
When compared to the traditional 2D BEM model of the actuator hypothesis, this model is modified by
three corrections to the 2D model and by Cauchy fuzzy distribution of the 3D model.

Figure 3 illustrates the principle of the BEM theory calculation, which can effectively obtain the
lift and resistance of wind turbines [31]. According to BEM theory, the element of local velocity is
calculated by Equation (4).

Vr =

√
[V∞(1− a)]2 + [Ω r(1 + b)]2, (4)

where Ω is the angular velocity of wind wheel rotation, r is the span position of the blade element
airfoil section, V∞ is the axial atmospheric free flow velocity, and a and b are the axial induction factor
and tangential induction factor, which are determined by iterative methods [32].
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The inflow angle φ is calculated by Equation (5).

φ = tan−1
[

V∞(1− a)
Ω γ(1 + b)

]
, (5)

where α = φ− γ is the attack angle, and γ is the local pitch angle.
The force vector of the blade element at the span position in the 2D plane is obtained by Equation (6).

F2D(r) =
[

FL(r)
FD(r)

]
=

1
2

nbρV2
r c

[
CLeL

CDeD

]
, (6)

where nb is the number of blades, CL = CL(a, Re) and CD = CD(a, Re) (determined by the airfoil
aerodynamic characteristic curve) are the lift coefficient and drag coefficient, Re is the Reynolds number
of the local chord length c, and eL and eD are the unit vectors for the directions of lift and drag,
respectively. Due to the poor precision of the traditional 2D model, it is necessary to add corrections to
improve accuracy. The traditional 2D model is modified from the following three aspects.

3.1. Tip Loss Correction

Due to the pressure difference between the lift surface and the pressure surface of the blade, the
airflow at the tip and root of the blade will flow twice along the blade radial direction. The moment
that acting on the blade is reduced, the blade element force at the tip has a great influence on the
aerodynamic performance of the whole blade. Therefore, the tip loss correction is considered. The tip
loss coefficient is defined by Equation (7) [33].

η1 =
2
π

cos−1
[
exp

(
−g

nb(D/2− r)
2r sinφ

)]
, (7)
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where the parameter g is obtained by Equation (8).

g = exp[−c1(nbΩD/2V∞ − c2)] + c3. (8)

The recommended values of the empirical parameters c1, c2, c3 are 0.125, 21, and 0.1, respectively.

3.2. Hub Loss Correction

The hub aerodynamic performance is affected by the separation of airflow to the root of the
blade. Similar to the blade tip loss, the hub loss is considered. The hub loss coefficient is defined by
Equation (9) [32].

η2 =
2
π

cos−1
[
exp

(
−g

nb(r−Rhub)

2Rhub sinφ

)]
, (9)

where Rhub is the hub radius, and the correction factor η is η = η1.η2.

3.3. Attack Angle Correction

The blade has a certain thickness and width, especially at the root of the blade, which makes the
direction of the airflow change greatly. In the front and rear edge of the airfoil, the circumferential
velocity of the airflow increases. At the same time, the cross-section area of airflow decreases, and the
axial velocity of airflow increases due to the thickness of airfoil. The thickness and width of the blade
affect the attack angle. Attack angle changes are given by Equation (10) [34].

∆α1 = 1
4

[
tan−1

(
V∞(1−a)
Ωr(1+2b)

)
− tan−1

(
V∞(1−a)

Ωr

)]
∆α2 = 16

15

V∞gc
ΩD2

( 2V∞
D )+( 2r

D )
tmax

c

, (10)

where tmax is the maximum thickness of blade element airfoil, ∆α1 is the attack angle change caused
by the influence of blade width on the direction of airflow, and ∆α2 is the attack angle change caused
by the influence of blade thickness on airflow direction.

The attack angle is revised by Equation (11).

α = φ− β− ∆α1 − ∆α2 (11)

The modified blade element aerodynamic force in the 2D plane is expressed by Equation (12).

F2D(r) =
[

FL(r)
FD(r)

]
= η

1
2

nbρV2
r c

[
CL
′eL

CD
′eD

]
. (12)

Here, we have obtained the 2D model, and it is necessary to establish the 3D model via the
improved Cauchy fuzzy distribution.

The thickness of wind turbine volume force distribution in the axis is uncertain. To ensure the
stability of numerical simulation and increase the convergence rate of calculation, it is necessary to
smooth the volume force to both sides of the neutral layer. Take an observation point of blade airfoil as
an example; the volume force of wind turbine firstly remains unchanged in a small range of the axial
direction. Subsequently, both ends of the axis are rapidly attenuated to zero. This is essentially a fuzzy
problem, as shown in Figure 4. Therefore, the mapping can be obtained by Equation (13).{

A : U→ (0, 1], A ∈ F(U)

l→ A(l)
, (13)

where the domain U is the volume force at a distance l from the origin, the fuzzy rule A is the stable
condition of the domain element, and A(l) is the membership function of domain U.
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The membership function A(l) can be determined by the improved Cauchy fuzzy distribution
as follows.

A(l) =


1

1+α(∆L−l)β
i f l ≤ −∆L

1 i f − ∆L < l ≤ ∆L
1

1+α(l−∆L)β
i f l > ∆L

, (14)

where ∆L =

∫ D
2

0 c(r)dr
D sinφ is the interval element as shown in Figure 4b; the parameters α and β are

1.5 and 3.
The cut set Aλ =

{
l
∣∣∣l ∈ U, A(l) ≥ λ

}
under the accuracy λ level determines the calculation area.

The axial distribution is treated as square intervals ∆L in Figure 4 to reduce the computation time.
The calculated thickness L under accuracy λ is expressed by Equation (15).{

L = 2N∆L
N = [max(Aλ(l))/∆L]

, (15)

where [ ] is the downward rounding operation.
The attenuation coefficient at any location l within the calculated thickness is obtained by

Equation (16).
An(l) =

{
A(n∆L)

∣∣∣n = [l/∆L], l ∈ R
}
. (16)

According to the theory of actuator hypothesis [35], the average lift and drag distribution of the
wind turbine in the 2D plane is calculated by Equation (17).

f2D(r) =
[

fL(r)
fD(r)

]
= nbρV2

r c/(4πr)
[

CLeL

CDeD

]
. (17)

The volume force of the discrete fuzzy distribution along the normal direction of the wind turbine
in 3D space is obtained by Equation (18).

f3D(r, l) =
[

fL(r, l)
fD(r, l)

]
= ηnbρV2

r cAn(l)/(4πr∆L)
[

CL
′eL

CD
′eD

]
. (18)

The volume forces at three different dimensions are calculated by Equation (19).

f3D(x, y, z) =


fx
fy

fz

 = X2X1 f3D(r, l), (19)

where the original point of the right angle coordinate system is the model center, x-direction is the

axial direction, z-direction is the height direction, X2 =

[
cosφ sinφ
sinφ − cosφ

]
is the transformation matrix
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for a direct coordinate system, X1 =


1 0
0 cosψ
0 sinψ

 is the transformation matrix for the normal force as

well as tangential force, and Ψ is the polar angle in a polar coordinate system.

4. SST k-ω Turbulence Model

As shown in Figure 2, the modified SST k-ωmodel is established to obtain the Reynold stress term
of the global RANS model.

The SST k-ω model includes a k-ω model in the outer layer (near the wall) and a k-ε model in the
inner layer (the outer edge of the boundary layer, the free shear layer and the fully developed region of
turbulence) [36]. This method combines the k-ω model and the k-ε model by the mixed function of
weighted average. The k-εmodel has less dependence on the far field condition, and the k-ωmodel has
a high accuracy in the near wall simulation. To improve the simulation accuracy in the strong adverse
pressure gradient and separation flow, a modified vortex viscosity coefficient is proposed. The SST k-ω
two-equation model is expressed by Equation (20).



∂(ρk)
∂t +

∂(ρuik)
∂xi

= min
(
µt
∂ui
∂x j

(
∂ui
∂x j

+
∂u j

∂xi

)
, 10β∗ρkω

)
︸                                      ︷︷                                      ︸
turbulent kinetic energy generation term

− β∗ρkω︸︷︷︸
dissipative term

+
∂
∂xi

[
(µ+ σkµt)

∂k
∂xi

]
︸                   ︷︷                   ︸

diffusion term

∂(ρω)
∂t +

∂(ρuiω)
∂xi

= α′ρS2︸︷︷︸
turbulent kinetic energy generation term

− β′ρω2︸︷︷︸
dissipative term

+
∂
∂xi

[
(µ+ σωµt)

∂ω
∂xi

]
︸                   ︷︷                   ︸

diffusion term

+ 2(1− F1)ρσω2
1
ω
∂k
∂xi

∂ω
∂xi︸                        ︷︷                        ︸

cross diffusion term

, (20)

where

µt =
a1ρk

max
(
a1ω,

√
2Si jSi jtanh

[(
max

(
2
√

k
β∗ωy , 500µ

ρωy2

))2
]) ,

ξ = F1ξ1 + (1− F1)ξ2 (ξ =
{
α′, β′, σk, σω

}
), (21)

F1 = tanh(min (max

 √k
β∗ωy

,
500µ
ρωy2

,
4ρσω2k

max
(
2σω2ρ

1
ω
∂k
∂x j

∂ω
∂x j

, 10−20
) ))4,

where y is the distance from the nearest wall to the calculation point, and the closed constants are set as:

β∗ = 0.09, a1 = 0.31
α′1 = 5/9, β′1 = 3/40, σk1 = 0.085, σω1 = 0.5 in layer
α′2 = 0.44, β′2 = 0.0828, σk2 = 1, σω2 = 0.856 out layer

If the two-equation model is used to simulate the free stream, the initial value of the inlet boundary
will gradually decrease with the downstream flow. When the fluid approaches to the wind turbine,
the local turbulent variable value is no longer the initial value of the inlet boundary, which may cause
turbulence attenuation.

The turbulent kinetic energy generation term of the equations is zero due to no velocity gradient
in the inlet free flow. The diffusion term and cross diffusion term can be ignored due to no gradient of
turbulence variables. Solving Equation (20), we can obtain the result in the X direction as follows:

ω = ωI

(
1 +

ωIβ′x
u

)−1

, k = kI

(
1 +

ωIβ′x
u

)− β∗β′
(22)

where the index I is the initial inlet boundary, x is the downstream distance, and u is local wind velocity.



Energies 2020, 13, 4430 9 of 19

4.1. Hold Source Term

It can be seen from Equation (22) that the turbulent kinetic energy and the specific dissipation rate
will be attenuated from the initial stage of the inlet boundary to the outlet of the computational domain.
Therefore, the turbulence attenuation effect must be corrected in the wake calculation. To reduce the
turbulence attenuation, the dissipative term caused by turbulence attenuation can be offset by adding
the hold source term in the turbulence model. The turbulent equations of the inlet free flow can be
obtained by Equation (23). 

∂(ρk)
∂t +

∂(ρuik)
∂xi

= −β∗ρkω+ β∗ρkRωR
∂(ρω)
∂t +

∂(ρuiω)
∂xi

= −β′ρω2 + β′ρωR
2

, (23)

where kR and ωR are the atmospheric real environmental turbulence values calculated by Equation (24). kR = 3
2 (U0.I0)

2

ωR =
ρkR
µ

(µt
µ

)−1 , (24)

where U0 is the average velocity of incoming flow, I0 is the atmospheric turbulence intensity, and µt
µ is

the vortex–viscosity ratio.
The new source term is smaller than the dissipative term of the original equation for the wind

turbine wakes region due to the introduced turbulence attenuation. The addition of the hold source
term has little effect on the original SST k-ω model. Meanwhile, to avoid the numerical oscillation
caused by the addition and switch of the hold source term in the free flow region and the non-free flow
region, the hold source term is adopted in the whole computational domain.

The overestimation of the turbulent dissipation rate will result in the slow recovery rate of
the wakes predicted by the RANS model [35]. The higher turbulent kinetic energy can promote the
convection–diffusion between the wake region and the surrounding free fluid, and accelerate the
recovery of wake velocity, which can be obtained by reducing the dissipation term. We reduce the
turbulent dissipation by closure constant correction and correction factor addition, as discussed in the
following subsection.

4.2. Closure Constant Correction

Based on the equilibrium flow theory, the surface friction velocity u* is introduced. The turbulent
kinetic energy k is calculated by Equation (25).

k =
u∗2√
β∗

, (25)

where u∗2/k belongs to [0.17, 0.18], and the turbulent attenuation ratio β∗/β′ is 1.2 [37]. The constant
values of the modified closure are obtained by Equation (26).{

β∗ = 0.033→ 0.090
β′1 = 0.025→ 0.075

, (26)

4.3. Correction Factor Addition

The purpose of the dissipative correction is to modify the dissipation in the near wake region,
but the previously modified equation is not universal in the whole. In this paper, a dissipative correction
adaptive factor with the full computational domain is proposed. This method can highlight the effect
of the correction term in the near wakes and reduce the correction in other regions. Dissipative item
revision for the k-ω equation is expressed by Equation (27).
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−

(
1 + η3.

ωI

ω

)
β′ρω2, (27)

where η3 = 1 + exp
(
−

(
1− u

u0

)−1
)
.

5. Mesh Partition Method

The Semi-implicit method for pressure-linked equations (SIMPLE) solution is used under Fluent
6.0 solver considering two initial conditions. One is the neutral atmospheric condition, the other is
the wind shear effect. The source term and turbulence are set by the user-defined function. The shear
effect is represented by the logarithmic function.

U(z) =
u∗

K
ln

(
z
z0

)
(28)

where u∗ =
√
τω/ρ is the surface friction velocity, τω is the shear stress, K is the Karman constant and

the value is 0.41, z is the altitude from the ground, and z0 is the surface roughness.
The 3D wind turbine model of the computational domain is completed by SolidWorks. The model

is imported to the Ansys ICEM program to achieve mesh partition as shown in Figure 5. With the
variable size regular hexahedron method, three different mesh average sizes (1/3D, 1/10D and 1/40D)
are applied. The cartesian coordinate system is used, the center of the wind turbine is the coordinate
origin, and the number of meshes is about 0.5 million. Compared with the general hexahedron sweep
method, the developed method saves three-quarters of the mesh number.
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Figure 6 shows the calculation domain dimension design. The computational domain is extended 

25D in the streamwise direction (x-direction), 6D in the lateral direction (y-direction) and 6D in the 

vertical direction (z-direction). The wind turbine (mesh size is 1/40D) is located at 0D in the x-

direction. The inner layer encryption region (mesh size is 1/10D) is close to the wind turbine. In the 

front view, the inlet of airflow direction is on the left end, and the exit is on the right. 

Figure 5. Mesh design scheme.

Figure 6 shows the calculation domain dimension design. The computational domain is extended
25D in the streamwise direction (x-direction), 6D in the lateral direction (y-direction) and 6D in the
vertical direction (z-direction). The wind turbine (mesh size is 1/40D) is located at 0D in the x-direction.
The inner layer encryption region (mesh size is 1/10D) is close to the wind turbine. In the front view,
the inlet of airflow direction is on the left end, and the exit is on the right.Energies 2020, 13, x FOR PEER REVIEW 11 of 19 
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6. Simulation Results

6.1. Simulation Setup

To verify the effectiveness of the proposed method, experimental data are acquired from two wind
turbines at Nibe, in Northern Denmark. The experiment data are tested by the actual measurement of
the wind farm [38]. As shown in Figure 7, four meteorological masts (MMs) are placed in a line at
downstream distances, 2.5D, 4D, 6D and 7.5D, concerning the Nibe B wind turbine. The data consist of
average values every 1 min for two years. The specific operating parameters of the wind turbines are
shown in Table 2. The neutral atmospheric condition with wind shear effect is used as the boundary
condition in this paper.
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Table 2. Parameters of the wind turbines.

Parameters Nibe Measurement

Wind turbine model Nibe B
Wind speed (U∞) 8.5 m/s

Turbulence intensity (I∞) 10.1%
Boundary condition Uniform

The wind turbine rotor diameter (D) 40 m
The wind turbine rotor rotating speed (Ω) 34 rpm

The coefficient of axial thrust (CT) 0.89
The wind turbine hub height (ZH) 45 m

Six modified items in two correction modules are proposed to improve the accuracy of the wake
calculation, which are tip loss correction (Equation (7)), hub loss correction (Equation (9)), attack angle
correction (Equation (10)), turbulence attenuation correction (Equation (23)), closure constant correction
(Equation (26)) and dissipative item correction (Equation (27)). Thus, six models are designed and
compared as shown in Table 3.

Table 3. Six models for comparison.

Correction Item Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Tip loss correction
√

× ×
√ √ √

Hub loss correction
√

× ×
√ √ √

Attack angle correction
√ √

×
√ √ √

Turbulence attenuation correction
√ √ √

×
√ √

Closure constant correction
√ √ √

× ×
√

Dissipative item correction
√ √ √

× × ×
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6.2. Velocity Field under the Uniform Inflow Condition

6.2.1. Comparison and Analysis of Velocity Field Results at the Center Axis

Figure 8 shows the influence of each correction item on the change in wake velocity. The comparison
between model 1 and exe1 (measured at Nibe) data shows that all the six correction items can ensure
the agreement between the calculated results and the experimental values. The overall velocity changes
to the lowest value of 0.48 at the position of 2.5D behind the wind turbine, increases rapidly in the
near wake region, and reaches 0.64 and 0.75 at 4D and 6D, respectively. The overall velocity slowly
increases in the far wake region and reaches 0.85 and 0.97 at 7.5D and 20D, respectively.
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Figure 8. Velocity field at the center axis.

The comparison between models 2 and 3 and model 1 shows the influence of three correction
items on the position and amount of wake velocity valley. Models 2 and 3 overestimate the wake drop
velocity at the valley by 0.41 and 0.38, respectively. The results show that the correction of tip loss and
hub loss reduces the overestimated volume source term by a large margin. The correction of the attack
angle can also adjust the valley value.

The comparison between models 4–6 and models 1–3 shows the effects of the modified turbulence
equation on the wake velocity recovery, especially in the far wake region. At 20D, the velocity recovery
of models 4–6 is slower than that of model 1 in the far wake region with 0.79, 0.81, 0.87, respectively,
while models 2 and 3 can still show a faster recovery velocity in the far wake region with 0.88, 0.89,
respectively, which indicates that the three turbulence correction terms could affect the far wakes. The
recovery of far wakes is significantly higher in model 1 than models 5 and 6. This shows that increasing
the sealing parameter and reducing the dissipative term affect the increase in velocity recovery.

6.2.2. Correction Velocity Results at the Different Cross-Sections of Axial Direction

Figure 9a shows that the correction of the wind turbine model wake field is obvious in the near
wake region. The comparison between model 2 and model 3 shows that the modification of tip loss and
hub loss can effectively narrow the profile velocity change curve and reduce the expansion range of the
wake flow field. At the same time, the velocity valley value is increased from 0.38 to 0.42 due to the
decreasing of the volume source term by the blade tip and hub modification. Meanwhile, the valley
difference between model 1 and model 4 is only 2%. The whole curvature is nearly closed to model 1,
which indicates that the correction of the turbulence equation in the near wakes has less effect.

Figure 9b indicates that the effect of turbulence correction increases gradually with the increase in
horizontal distance, while the effect of wind turbine correction gradually decreases. The comparison
between model 1 and model 4 indicates that the wake velocity recovery without turbulence correction
is not satisfactory, as the velocity changes from higher than 2% at 2.5D to lower than 5% at 4D.

Figure 9c shows that the correction of the turbulence equation in the far wakes of the wind turbine
is obvious. Compared with models 4 and 5, the correction effect of the decreasing dissipation term in
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model 6 is obvious in the range of −1.5D to 1.5D in the y-direction, which causes the wind velocity
curve to reach to the maximum. On the whole, comparing the 7.5D section with the 2.5D section,
the velocity from the 0.5D to 1D in the y-direction gradually decreases in the axial direction.
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6.2.3. Velocity at Different Altitudes

Figure 10 demonstrates that the valley position moves forward slightly from 2.5D to the horizontal
distance with the increasing height. There is no significant change in the near and far wake regions.
The wake drop slows down after 0.3D and increases from 3% to 10–20% per 0.1D in the direction of height.

Figure 11 indicates that the expansion effect is obvious in the 10D range behind the wake,
and shows a nonlinear boundary curve. The expansion range decreases gradually, and the nonlinearity
of the expansion boundary curve decreases with the increasing elevation. When compared with
Figure 11a,b, the velocity valley decreases from 0.48 at 0D to 0.58 at 0.3D, and the velocity gradient
decreases gradually. The range of wake expansion at 0D is a reference for the wake velocity model,
which is used in the microscopic site selection of a flat surface.
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6.3. Turbulence Field Result under the Uniform Inflow Condition

It can be seen from Figure 12 that the initial turbulence intensity of models 1, 5 and 6 is maintained
in the free flow region. The result of model 4 shows that the turbulence attenuation is not corrected.
In the near wake region of the wind turbine, the turbulence intensity simulated by models 1, 5 and 6 is
higher than that of model 4. Notably, the result of model 5 is about 30% higher than that of model 4.
With the increasing position, the wake effect starts to weaken, and the turbulence intensity decreases
correspondingly. The performance of model 1 is the best, as the result of the modified model is also
extremely close to the experimental value with 16% at the peak. As the dissipative term of model
1 is about twice that of the original one, the specific dissipation rate is lower, and the turbulence
intensity is larger.
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As shown in Figure 13, the result of the 2.5D position shows that the standard SST k-ω model
underestimates the magnitude of turbulence intensity qualitatively, but the model can well predict the
“double peak” effect of turbulence intensity. The “double peak” effect of turbulent intensity weakens
gradually with the development and fragmentation of the tip vortex convection–diffusion of wakes,
and the shear mixing layer continues to expand, which can be seen from the distribution of turbulence
intensity at 4D. Through the comparison of models 1 and 3–6, it can be seen that the modified wind
turbine model has no obvious effect on the turbulence field. At the same time, the effect of each
turbulence correction term is obvious. The proposed model is more effective than model 5.

The turbulence intensity above the Z = 0D plane is shown in Figure 14. The maximum turbulence
intensity is 21.8%. The whole variation of the “double peak” effect can be seen. In the y-direction,
the turbulent peak occurs mainly at ±0.5D (the blade tip), and the diffusion range is from −1D to 1D.
In the x-direction, a rapid decay state that approaches the inlet turbulence value after 2.5 D is observed.
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6.4. Computation Evaluation

Table 4 shows the computational cost of different schemes.

Table 4. Mesh number for three items.

Average Size Proposed Scheme
(Thousand)

Scheme A [32]
(Thousand)

Scheme B [22]
(Thousand)

1/3D 30 20 150
1/10D 500 400 900
1/40D 2000 1500 3800

Compared with Denmark’s 2D mesh scheme (Scheme A) [25], the mesh amount of our scheme is
slightly larger than scheme A. However, it should be noted that scheme A sacrifices the third dimension
of mesh modeling. Compared with Xu’s half-axis hypothesis 3D scheme (Scheme B) [34], the mesh
amount of our scheme is substantially less than scheme B under the same average size, although
scheme B uses axisymmetric assumptions to build only a half 3D model.
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7. Conclusions

This paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine
wake model to simulate wake effects. Based on the correction module, the proposed BEM-fuzzy
aerodynamic model can amend the inconsistent condition between wake simulation and experiment
tests, which affects the simulation of the near wake. For the turbulence model, the turbulence
attenuation is effectively avoided by adding the hold source term to ensure the global correctness of
boundary conditions. The accuracy of the turbulence intensity distribution is improved by correcting
the closure constant and the dissipation term. The turbulence model affects the whole wakes, especially
the far wakes.

The simulation results of the velocity field and turbulent field with the proposed approach
are consistent with the data of real wind turbines, which verifies the effectiveness of the proposed
approach. Furthermore, the computation efficiency is significantly improved by the developed mesh
partition method.
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