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Abstract: In many developing countries, electricity outages occur frequently with consequences for
sustainable development. Moreover, within a country, region or city, the distribution of outages and
their resultant impacts often vary from one locality to another. However, due to data constraints,
local-scale variations in outage experiences have seldom been examined in African countries. In this
study, a spatial approach is used to estimate and compare exposure to electricity load shedding
outages across communities in the city of Accra, Ghana. Geographic Information System and statistics
from the 2015 rolling blackouts are used to quantify neighborhood-level load shedding experiences
and examine for spatial patterns. The results show that annual load shedding exposure varied greatly,
ranging from 1117 to 3244 h. The exposure values exhibit statistically significant spatial clustering
(Moran’s I = 0.3329, p < 0.01). Several neighborhoods classified as load shedding hot or cold spots,
clusters and outliers are also identified. Using a spatial approach to quantify load shedding exposure
was helpful for overcoming the limitations of lack of fine-grained, micro-level outage data that is
often necessary for such an analysis. This approach can therefore be used in other data-constrained
cities and regions. The significant global spatial autocorrelation of load-shedding exposure values
also suggests influence by underlying spatial processes in shaping the distribution of load shedding
experiences. The resultant exposure maps provide vital information on spatial disparities in load
shedding implementation, which can be used to influence decisions and policies towards all-inclusive
and sustainable electrification.

Keywords: electricity outage; spatial analysis; neighborhoods; load shedding; Ghana

1. Introduction

Power outages in electricity supply systems occur both in developed and developing countries.
The threat of electricity blackouts and brownouts has increased in recent times, with components of the
electricity system—generation, transmission and distribution—being increasingly vulnerable to both
natural and manmade phenomena. Several studies have documented the occurrence of outages in
developed nations, often caused by extreme weather events or other natural hazards [1–4]. The impacts
associated with outages in these countries is often substantial due to high societal reliance on electricity.
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Even then, concern about power outages in the developed world is low because of their limited scope
in terms of frequency, duration and affected area [5].

On the contrary, power outages in developing countries are frequent and last for extended periods
of time. Most of the outages occur on the low voltage distribution network due to faults associated with
aging infrastructure, poor maintenance, illegal connections and adverse weather. Many developing
countries also experience another, more serious type of power outage: mandatory rolling blackouts or
load shedding. Mandatory load shedding is usually triggered by a supply–demand mismatch due
to shortfalls in electricity generation and/or spike in electricity demand. Load shedding sometimes
affects large geographic areas (entire regions or countries) and can last for years. Ghana is one of the
countries in Africa that has been through several acute, multi-year electricity supply shortages over
the past four decades, which have resulted into nation-wide load shedding (also known as “dumsor”
in the local “Twi” language). The most recent mandatory load shedding in Ghana lasted for about four
years, from 2013 to 2016. At the peak of the power supply crisis, electricity users experienced up to
16 h of no power on a daily basis (or 24 h of power outage for every 12 h of power) [6,7].

Frequent and prolonged electricity outages—including load shedding outages—have significant
negative consequences in the affected areas. The impacts cut across the social, economic and
environmental aspects of society. Across several African countries, power outages have been found to
have a substantial drag effect on economic growth [8]. Power outages are negatively correlated with
the performance of firms, measured as firm sales [9], firm productivity [10] and also cause significant
monetary losses related to equipment damage and damage to raw materials [11]. Power outages also
have negative implications for social and sustainability issues, such as health, employment, education,
population growth and poverty eradication. The use of back-up diesel generators to mitigate power
outage impacts often drives up consumer expenditure on electricity and also reduces air quality due to
increased local emissions [12]. Power outages also discourage entrepreneurship and reduce demand
for labor thereby limiting the chances of finding employment [13]. In Ghana, up to USD 3 billion of
economic activity and thousands of jobs are reported to have been lost during the recent electricity
supply crisis [14]. These load shedding outages were also linked to increased tax evasion by firms [15]
and the non-payment of utility bills by household-level consumers [16]. Load shedding is also reported
to have increased the risk of in-facility mortality, especially for healthcare facilities situated in Ghana’s
urban centers [17]. “Dumsor”-themed public demonstrations were also held in the leading cities of
Accra and Kumasi to protest the government’s failure to deal with the power supply shortages [18].

In Africa and other developing regions, power outages and their impacts are arguably most
felt in urban areas since cities often have high electricity access and consumption rates as compared
to rural areas. However, even within a city, electricity supply and (un)reliability can significantly
vary from one locality to another. There are some studies that have examined electricity outage
experiences within cities/urban areas, albeit mostly for developed nations. Some of these studies have
also identified the factors that influence the distribution of power outages across small communities
within a city [19,20]. For example, during times of limited electricity supply, high priority facilities such
as hospitals may continue to receive uninterrupted power due to the criticality of the services that they
provide [20]. This may indirectly benefit local communities within the vicinity of such critical facilities.
Sometimes, areas with industrial and large commercial establishments also maintain a continuous
supply of electricity (even during times of shortages) due their perceived importance to the national
economy [21]. Additionally, in the case of Ghana, the distribution of electricity during the recent power
crisis has been said to have political and wealth leanings. Min [22] showed that improvements in
electricity service quality after the recent power supply shortages were more noticeable in communities
with high support for the ruling elite. Aidoo and Briggs [6] found a relationship between electricity
availability and wealth in Accra, Ghana, where residents in ‘poor communities’ were more likely to
experience longer load shedding outages than those in ‘wealthier ones.’
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Spatial Approaches in Energy Studies

Spatial approaches are useful both for the analysis and presentation of useful information on
various geographic scales. Spatial methods have been used in many studies across different fields and
countries, for example, to study crime rates in Brazil [23], prevalence of low birth weight in Georgia,
USA [24], regional distribution of educational attainment in Western Europe [25], adult in-migration
patterns in North Carolina, USA [26], differences in secondary school education achievement in
Australia [27], distribution and drivers of forest fires in Portugal [28], and for identification and pattern
analysis of health care hot spots in Taiwan [29], among many others. In Africa, spatial analysis
has been used to examine the link between shifting population trends and climate change revealing
hotspots of vulnerability to climate change impacts in central, southern and East Africa [30]. Spatial
regression has also been used to examine the effect of topographical parameters on rainfall distribution
in East Africa [31]. A study by Ansong et al., [32] on space and time-varying trends in academic
performance at junior high school level in Ghana, employed spatial grouping analysis to depict
growth trajectories across the rural–urban divide. On the health front, a scoping review on the use of
Geographic Information System (GIS) and spatial analysis in HIV-related research in Africa has been
done showing widespread use of these approaches [33]. There is similarly relative widespread use
of spatial techniques within other research fields in Africa. However, the use of such techniques in
energy-related studies on the continent has remained relatively low.

In other countries, especially developed countries, spatial methods have been employed to
study various energy topics including energy resource potential, energy consumption and demand,
and energy prices. GIS techniques have been used to assess the potential and use of various renewable
energy resources in India [34], Turkey [35] and southern Appalachian region in USA [36]. Cluster
and Outlier analysis together with GeoDetector have been used to assess the distribution and drivers
of renewable energy industries on a national level in China [37]. Spatial autocorrelation and spatial
regression modelling have been used in a study by Xie et al. [38] to examine the spatial patterns and the
driving factors behind changing energy consumption across regions in China. Spatial auto-regression
was able to reveal more determinants of energy consumption change than a standard regression model.
Walker et al. [39], has also used local measures of spatial autocorrelation to assess local variations in
the prices of heating oil in Northern Ireland and found significant local spatial variations. Dar-Mousa
and Makhamreh [40] used Global Moran’s I analysis, a spatial statistical approach to assess patterns in
electricity consumption in Amman city, Jordan and found a positive and significant autocorrelation
with nearby areas having similar per capita electricity consumption values. A study by Tyralis et al. [41]
also employed hotspot analysis, cluster and outlier analysis as well as grouping analysis to identify
spatial patterns in electricity demand across administrative divisions in Greece. Spatial modelling
approaches have also been used to examine and model electricity outages and their relationship with
socio-economic and environmental factors at different spatial scales (state, region, county, census
block) in the US [2,19,20]. Spatial visualization using maps has also found application in improving
the communication of load shedding schedules in South Africa, enabling users to easily visualize
and better plan for load shedding [42]. These and other related studies demonstrate the usefulness
of spatial analytical techniques in examining and communicating spatial characteristics of energy
parameters on both local and national scales. In order to undertake such analyses, sufficiently detailed
spatial data on energy (electricity) parameters on a spatial level of interest is required. While this data
is usually available in developed countries, in developing countries (including in Africa), detailed
granular data is often not collected, is inaccessible or unusable due to its poor quality. Moreover,
efforts to collect such data by any researcher can be difficult because of restrictive bureaucratic and
financial requirements. This potentially explains why very few spatial analyses on energy (electricity)
parameters have been carried out in Africa, especially on a local level.

In the present study, the objective is to spatially present and analyze electricity outage
(load shedding) experiences in Accra, Ghana. In particular, the study aims to: (1) spatially quantify
and map electricity load shedding outages across local communities; and (2) examine the global and
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local spatial patterns of these load shedding outages. The study utilizes a comprehensive outage
dataset from the utility company to calculate community load shedding levels over a one-year period.
A Geographic Information System (GIS) approach is used to disaggregate and link available macro-level
load shedding outage data to corresponding local communities. Furthermore, spatial statistical tools
are applied to examine the spatial patterns and relationships among load shedding variables across the
communities. This is a first step towards integrating spatial dependency in modelling societal drivers
to load shedding experiences in Accra, Ghana [20]. The study is motivated by the need to provide
community-scale spatial information to utility-level decision makers for better planning of electricity
distribution during times of supply shortages. Subsequent sections are structured as follows: Section 2
presents the study area and data used, methods used in the study are described in Section 3, Section 4
presents and discusses the study results, while the final study conclusions, including limitations and
areas of future research, are given in Section 5.

2. Study Area and Data

2.1. Study Area

The Accra Metropolitan Area (AMA), also known as, Accra Metropolis (or simply, Accra) is the
capital city of Ghana and one of the districts in the Greater Accra Region. Its total surface area is
approximately 200 km2. In 2010, the Accra metropolitan area was home to 1,665,086 people but the
population was projected to reach in excess of 2 million people in 2019 [43]. The Accra metropolitan area
is divided into several sub-metropolitan areas, including: Okaikoi, Ashiedu Keteke, Ayawaso, Kpeshie,
Osu Klotey and Ablekuma. Within the sub-metropolitan areas, there are several smaller communities
whose informal boundaries mainly follow natural barriers, such as roads and drainage channels.
These communities are herein referred to as neighborhoods. A neighborhood has been defined as
“a geographic unit of limited size, with relative homogeneity in housing and population, as well as
some level of social interaction and symbolic significance to residents.” [44] This definition presents
a neighborhood both as a social entity—with similar characteristics and a sense of cohesion—and
as a physical/geographical area of known boundaries. The boundaries of the Accra neighborhoods
have been delineated in the Accra neighborhood map produced by Engstrom et al. [44]. The map
was developed by first georeferencing a local tourist map—containing local vernacular names of the
communities—onto an enumeration area map. Each enumeration area (EA) was then ‘dissolved’
into an associated neighborhood such that no EA was shared by two neighborhoods. The resultant
neighborhood map was validated by local residents as well as by public officials [44].

This study employs a neighborhood as the spatial unit of analysis and uses a part of the
above-mentioned Accra neighborhood map as the study area. The part of the map used in this
study covers 47 neighborhoods in the western part of the Accra metropolitan area (see Figure 1).
The neighborhoods were selected because they are served by a single electricity utility branch,
which availed relevant data useful to this study. The selected neighborhoods cover 31% of the total area
of Accra metropolis and are home to about 56% of the city’s total population. The average population
density of these neighborhoods is 19,930 people per square kilometer. The average size of the selected
neighborhoods is 1.48 km2, ranging from 0.26–5.12 km2 and a standard deviation of 0.95. The average
population in these neighborhoods is 24,505 people, ranging from 2050–58,120 people. Dansoman
estate is the neighborhood with the largest population and surface area, covering about 7% of the total
area of the selected neighborhoods. Awudome estate is the neighborhood with the least population and
surface area. At 65,838 people per square kilometer, Sabon Zongo has the highest population density
among all the selected neighborhoods, while Victoriaborg has the lowest population density [44].
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Figure 1. Map of the study area showing neighborhoods.

2.2. Data and Data Sources

Together with the neighborhood map, the study utilized several datasets, including: electricity
network (feeder) drawing, electricity outage statistics, and socio-demographic data. Socio-demographic
data was obtained from Ghana Statistical Services (GSS) and Engstrom et al. [44]. The electricity
network drawing—in AutoCAD format—was obtained from the electricity utility company together
with the electricity outage statistics. The electricity network drawing was first converted into shapefile
format in ArcGIS and georeferenced. Only the 11 kV feeder network was used in this study because
electricity load shedding was mostly carried out on the 11 kV feeder level. The electricity outage
statistics obtained from the electricity utility company consist of information about different outage
types, including planned, unplanned, national load shedding and emergency outages. For most outage
segments, information on outage start date and time, outage end date and time, the duration of outage,
affected feeder name and voltage, and the number of affected customers was recorded. The outage
statistics selected for this analysis are load shedding statistics recorded over the year 2015. The 2015
load shedding statistics are one of the most comprehensive outage statistics collected by the utility in
the study area. Over 10,000 load shedding segments were recorded in that year at the peak of an acute
electricity supply crisis. This represented about 70% of the total outages reported within the utility
service area over a four-year period, 2013–2016.
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2.3. Mapping Neighborhood Load Shedding Outage Experiences

In order to assess the load shedding experience of each neighborhood, the georeferenced 11 kV
electricity network drawing was overlaid onto the neighborhood map within ArcGIS Desktop software
(Release 10.5.1, ESRI, Redlands, CA, USA) (Figure 2). Each neighborhood in the study area was
associated with one or more 11 kV electricity network feeders that intersected it. A feeder that crosses a
neighborhood potentially supplies electricity to that neighborhood and therefore contributes to its load
shedding experience. However, it is also possible that a feeder might pass through a neighborhood
without necessarily supplying electricity to it (going to another place). Therefore, in determining
whether a feeder contributed to the load shedding experience of any given neighborhood, we only
considered feeders that were connected to 11 kV stepdown distribution transformers located in that
neighborhood (Figure 3). Knowing which feeder(s) supply electricity to a neighborhood is essential for
tagging load shedding outage statistics to corresponding neighborhoods.
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Figure 2. Map of neighborhoods overlaid with an 11 kV power distribution network (left) and overlaid
with 11 kV distribution transformers (right).

From Figure 2, it can be seen that some neighborhoods were not intersected by any 11 kV electricity
feeder. A case in point is Chorkor and Old Dansoman in the south of the study area. This—according
to utility officials—was a case of missing data and did not imply that those particular neighborhoods
are not supplied by an 11kV electricity network. This was also verified by the author (PN) who
physically visited the neighborhoods and found that there was a functional electricity distribution
network. During the validation process of the overlaid network map, the electricity feeders that serve
these neighborhoods were identified basing on the knowledge of technical personnel from the utility
company. As such, all the neighborhoods are included in the subsequent calculations and analyses.
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3. Methods

3.1. Calculating Neighbourhood Load Shedding Exposure and Normalization

In order to determine load shedding experiences across the neighborhoods in the study
area, a variable called load shedding exposure, sometimes known as outage exposure, was used.
Load shedding exposure is defined here as the cumulative number of load shedding outage hours
(or minutes) experienced on any single electricity feeder serving a given neighborhood in the study area.
The load-shedding exposure variable is a standardized variable and is therefore suitable for avoiding
potential bias of comparing total neighborhood outage hours—since neighborhoods are served by
a different number of electricity feeders. Load shedding exposure, LSe, for each neighborhood was
calculated according to the following equation:

LSe = LS f × LSd, (1)

where LS f is the average load shedding frequency; LSd is the average load shedding duration.
Average load shedding frequency, LS f , refers to the number of times that a single electricity

feeder serving a given neighborhood was under load shedding (experienced load shedding outages).
Average load shedding duration, LSd, is the average length of time that a single load shedding outage,
experienced on a single feeder serving a given neighborhood, lasted. LS f and LSd are calculated
according to the following equations.

LS f =
T f

N
, (2)

LSd =
Td
T f

, (3)



Energies 2020, 13, 4280 8 of 26

where T f is the total number of load shedding outages experienced on all feeders serving a neighborhood,
Td is the sum of the duration of all load shedding outages experienced in a neighborhood, and N is the
total number of electricity feeders serving the neighborhood.

The load-shedding exposure values obtained using Equation (1) can show which neighborhood is
experiencing more (or less) load shedding hours than others. But the load-shedding exposure variable
does not take into account the external (societal) factors that often influence the observed load shedding
distribution patterns. Electricity distribution decisions especially under conditions of limited supply
are usually shaped by societal factors such as socio-economic and political factors [6,22]. In order to
fully explain load shedding distribution dynamics, these factors should be taken into account. Through
normalization, the load-shedding exposure values can be adjusted to integrate societal perspectives.
As a further step in exploring neighborhood-level load shedding experiences, load-shedding exposure
values were transformed using surface area, population and population density variables. A list of
the variables involved in this step is given in Table 1. Hereafter, we focus our attention on analyzing
the spatial patterns of the four load-shedding exposure variables (LSe, LSe/area, LSe/population, and
LSe/population density).

Table 1. Normalizing and transformed variables for assessing neighborhood load shedding experiences.

Variable Unit of Measurement

Neighborhood surface area km2

Neighborhood population number of people
Neighborhood population density number of people per square kilometer

Load shedding exposure, LSe h
LSe/area h/km2

LSe/population min/capita
LSe/population density min/(capita/km2)

3.2. Spatial Analysis

In this sub-section, we present a two-step spatial analytical process. First, we visualize the
load-shedding exposure values and their transformations on the neighborhood map. Secondly,
we apply spatial statistical tools to assess for global and local patterns of spatial association in the
load-shedding exposure variables.

3.2.1. Visualization

Data visualization is a useful way for easily identifying patterns in a given dataset.
When visualization is done using a map, it is easy to identify how certain attributes vary at a given
spatial scale. In this study, the load-shedding exposure variable and its transformations are visualized
in order to generate an initial picture of their spatial characteristics. However, data visualization alone
cannot be relied upon to make spatial inference [41]. As a step towards making complete spatial
inference, we further apply spatial statistics tools to the visualized variables. In particular, we analyze
for significant global spatial autocorrelation, and the presence/location of hot/cold spots, clusters and
outliers. The visualization and analysis were carried out in ArcGIS Desktop software (Release 10.5.1,
ESRI, Redlands, CA, USA).

3.2.2. Global index of Spatial Autocorrelation

Autocorrelation is the measure of the similarity of one value relative to other values surrounding it.
In most traditional (nonspatial) statistical analysis, autocorrelation in a dataset is undesirable because it
violates the principle of independence/stationarity of data. However, significant spatial autocorrelation,
which points to the presence of spatial structuring in a dataset, is a basic indicator that some underlying
spatial processes could be influencing the patterns, thus necessitating further examination. In this
study, we apply the global Moran’s I statistic to evaluate the global spatial autocorrelation (GSA) of



Energies 2020, 13, 4280 9 of 26

the four load-shedding exposure variables. Moran’s I statistic is related to the Pearson’s Correlation
Coefficient [45] and is represented by the following equation [46]:

I =
n
so

∑n
i=1

∑n
j=1 wi, jziz j∑n
i=1 z2

i

(4)

where zi is the deviation of an attribute for feature i from its mean (xi −X); wi, j is the spatial weight
between feature i and j; n is the total number of features; and SO is the aggregate of all the spatial weights:

So =
n∑

i=1

n∑
j=1

wi, j (5)

The zI-score for Moran’s I statistic is calculated as:

zI =
I− E[I]√

V[I]
, (6)

where:
E[I] = −1/(n− 1), (7)

and
V[I] = E

[
I2
]
− E[I]2 (8)

From the analysis, a positive and statistically significant Moran’s I (z-score > 1.65, p-value < 0.10)
indicates spatial clustering in a dataset while a negative and statistically significant Moran’s I (z-score
<-1.65, p-value < 0.10) indicates spatial dispersion. A positive or negative Moran’s I value that is not
statistically significant (z-score between -1.65 and 1.65, p-value > 0.10) implies spatial randomness [46].
While global Moran’s I statistic is important for examining the presence of spatial patterns within a
dataset, it does not tell specifically where the patterning occurs. To investigate the locations of spatial
patterns in the load-shedding exposure variables, local indicators of spatial association were used.

3.2.3. Local Indicators of Spatial Autocorrelation

Local indicators of spatial association (LISA) are important for pinpointing the locations of spatial
hot spots, cold spots, clusters and outliers [45,46]. The two most common local indicators, namely
Getis-Ord Gi

* statistic and Anselin Local Moran’s I statistic were used in this study.
Briefly, the Getis-Ord Gi

* statistic is useful for identifying statistically significant hot spots and
cold spots from a set of weighted features. The Getis-Ord Gi

* statistic is a z-score and is calculated
according to Equation (9) [47]. Features with high/low values can only be hot/cold spots if they are
surrounded by other features with similarly high/low values in a statistically significant way. For a
given set of features and variables, the Gi

* statistic tool generates a set of z-scores and p-values for
each feature. The limits of the z-scores and p-values necessary for identifying statistically significant
hot/cold spots are described in Table 2.

G∗i =

∑n
J=1 wi, jx j −X

∑n
j=1 wi, j

S

√ [
n
∑n

j=1 w2
i, j−

(∑n
j=1 wi, j

)2
]

n−1

, (9)

where x j is the attribute value for feature j; wi, j is the spatial weight between feature i and j; X is the
mean of the corresponding attribute; S is the standard deviation of the corresponding attribute; and n
is the total number of features.
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Table 2. Hot/cold spot classification.

z-Score * p-Value ** Meaning
Hot Spot Cold Spot

>2.58 <−2.58 0.01 Statistically significant hot/cold spot at 99% confidence level
1.96 to 2.58 −2.58 to −1.96 0.05 Statistically significant hot/cold spot at 95% confidence level
1.65 to 1.96 −1.96 to −1.65 0.1 Statistically significant hot/cold spot at 90% confidence level

* z-scores are standard deviations. Positive and negative z-scores correspond to hot spots and cold spots respectively.
** p-values are probabilities.

Anselin Local Moran’s I statistic is used to identify spatial clusters and outliers among the
features and their corresponding variables. Akin to hot/cold spots, clusters are neighborhoods that
are surrounded by other neighborhoods with similarly high or low load-shedding exposure values.
Outliers are neighborhoods that are surrounded by other neighborhoods with dissimilar load-shedding
exposure values. The possible combinations of cluster/outlier neighborhoods are given in Table 3.
The calculation for Anselin Local Moran’s I statistic is based on the following equation [48]:

Ii =
xi −X

S2

∑n

j=1, j,i
wi, j

(
x j −X

)
, (10)

where xi is an attribute for feature i; X is the mean of the corresponding attribute; S is the standard
deviation of the corresponding attribute; and wi, j is the spatial weight between the feature i and j.

Table 3. Cluster and outlier classification.

Cluster/Outlier Type Explanation

High-High Cluster Statistically significant * cluster with surrounding neighborhoods having similarly high outage values

High-Low Outlier Statistically significant * spatial outlier with a high load-shedding exposure value surrounded primarily
by neighborhoods with low load-shedding exposure values

Low-High Outlier Statistically significant * spatial outlier with a low load-shedding exposure value surrounded primarily by
neighborhoods with high load-shedding exposure values

Low-Low Cluster Statistically significant * cluster with surrounding neighborhoods having similarly low outage values

* Statistical significance is interpreted from the z-scores and pseudo p-values which are calculated together with the
Local Moran’s I statistic.

3.2.4. Conceptualization of Spatial Relationships

To better analyze the spatial associations amongst the study variables, it is necessary to first
conceptualize how the neighborhoods interact within space. Various methodological options for
defining spatial relationships among features exist within ArcGIS platform. Selecting an appropriate
approach depends on the perceived spatial associations among the features under analysis. In this
study, we use the polygon contiguity method, particularly the first-order contiguity edges and corners
(Queen’s case) spatial weights matrix. The Queen’s case has been shown to better represent the spatial
interaction of irregularly shaped and sized polygons than distance-based methods [29]. For this reason,
we argue that it better represents the interaction among the study area neighborhoods. Subsequent to the
use of the first-order queen’s case, we also utilize the row standardization option—where applicable—to
minimize bias due to effects of aggregation and sampling that could result in neighborhoods having
different numbers of neighbors.

4. Results and Discussion

4.1. Calculating, Normalizing and Visualizing Load Shedding Exposure

The calculated neighborhood-level load shedding exposure, LSe, values are shown in Figure 3.
The values range from 1117 to 3244 h for the year 2015. The descriptive statistics of load shedding
exposure, LSe together with those for the normalized variables are given in Table 4. From the LSe results,
it can be seen that experiences with load shedding vary markedly across neighborhoods in Accra.
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This is in agreement with the findings of a study carried out by Aidoo & Briggs [6]. Neighborhoods in
the North, Central and Western parts of the study area generally experienced more load shedding
exposure than those in the South and Eastern parts. Eleven neighborhoods have load-shedding
exposure values in the highest classification range (2919 to 3244 h), two more than those in the lowest
classification range (1117 to 1760 h). Each of the neighborhoods in the highest classification range, apart
from Korle Dudor, shares a physical boundary with at least one of the other neighborhoods with which
it occupies the same classification range. This indicates the potential clustering of neighborhoods with
similarly high values. The same can be said for the neighborhoods with values classified under lower
classification ranges.

Table 4. Descriptive statistics of the study variables.

Variable Mean Standard Deviation Minimum Maximum

Area (km2) 1.48 0.96 0.26 5.12
Neighborhood population 24,505 14,860 2050 58,120

Neighborhood population density 19,930 13142 2443 65,838
Load shedding exposure, LSe (h) 2497.40 549.81 1117 3244

LSe/area (h/km2) 2632.17 2105.18 362 11,151
LSe/population (min/capita) 11.11 13.66 1.54 84.59

LSe/population density (min/capita/km2) 11.96 10.56 2.60 64.79

Through the normalization of load shedding exposure, we have introduced factors of surface
area, population and population density to control for size and compositional differences among the
neighborhoods. The spatial distribution of normalization factors is given in Figures 4–6, while the
resultant normalized load-shedding exposure values are visualized in Figures 7–9. From the maps, it is
evident that the spatial distribution of load shedding exposure is markedly altered by the normalization.
For all normalized load-shedding exposure variables, most of their values fall within the two lowest
classification ranges. For example, for LSe/population, only six neighborhoods have values in the
two highest classification ranges combined (17.43 to 84.59 min/capita). This can be attributed to the
presence of a few outlier neighborhoods with very high normalized values. Because of this, there is
also a very high likelihood of finding significant spatial clustering of neighborhoods with low values.
From Figure 7, normalization with surface area confers higher values to neighborhoods with smaller
surface areas. For both LSe/population and LSe/population density, only one neighborhood (Awudome
estate and Victoriaborg, respectively) has a very high value, classified under the highest classification
range. The fact that there are a few, scattered high exposure neighborhoods surrounded by low
exposure neighborhoods also hints at the potential presence of spatial outliers.
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4.2. Global Spatial Autocorrelation of Load Shedding Exposure

The results from the analysis of global spatial association for the load-shedding exposure variables
are presented in this subsection (see Table 5). As explained in Section 3.2.2, the global Moran’s index is
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useful for investigating the (non-)existence of global spatial patterns. Load shedding exposure, LSe and
LSe/population density values exhibited statistically significant Moran’s I results (p < 0.05), while the
Moran’s I results for LSe/area and LSe/population values were not significant (p > 0.1).

Table 5. Global Moran’s I result for load-shedding exposure variables.

Variable Moran’s I z-Score p-Value

Load shedding outage exposure, LSe 0.332901 3.841752 0.000122 **
LSe/area −0.086759 −0.745002 0.456270

LSe/population 0.092946 1.598783 0.109869
LSe/population density 0.181642 2.573218 0.010076 *

* statistically significant at p < 0.05; ** statistically significant at p < 0.01.

The statistical significance of the global Moran’s I results for load shedding exposure, LSe and
LSe/population density is at 99% and 95% confidence levels, respectively. This implies that the likelihood
of the spatial distribution of their values in the study area being as a result of random chance is
1% and 5%, respectively. Furthermore, the positive z-score results of 3.84 and 2.57 obtained for
LSe and LSe/population density, respectively, confirm the spatial patterns as clustering of similar
values. This means that, for both these variables, neighborhoods with similar values tend to be
located more closely together than would be expected out of random chance. Consequently, the null
hypothesis of complete spatial randomness can be rejected for both load shedding exposure, LSe

and LSe/population density. It can be concluded that spatial processes, other than random chance,
influence the distribution of load shedding exposure, LSe and LSe/population density values across
the neighborhoods.

The spatial clustering of load shedding exposure, LSe values can be explained by several
factors. Firstly, in the study area, one 11 kV electricity feeder can serve electricity to several
(bordering) neighborhoods. Therefore, nearby neighborhoods can potentially have the same or
similar load shedding experience. Secondly, nearby neighborhoods also potentially have similar
socio-economic characteristics. Considering that electricity (un)availability can be targeted basing on
economic conditions [6], neighborhoods within the vicinity of each other can experience similar load
shedding exposure.

The z-scores of all the transformed load-shedding exposure variables are smaller in magnitude
compared to the unnormalized variable. This indicates that normalization has had a diminishing
effect on the intensity of spatial patterning of load shedding exposure. Precisely, normalization
with population density weakens but retains a statistically significant level of spatial clustering
(z-score = 2.57; p < 0.05) of load shedding exposure. Normalization with population also reduces the
clustering intensity of load shedding exposure (z-score = 1.60), but to a level where the clustering
pattern is no longer statistically significant (p > 0.1). On the other hand, the negative z-score (−0.745)
obtained for the LSe/area variable indicates spatial dispersion rather than clustering. However, the
pattern is also not statistically significant.

4.3. Hot Spot Analysis

Figures 10–13 show the results from the hot spot analysis for the load-shedding exposure variables.
Across all the variables, 16 different neighborhoods were identified as hot spots, and 10 neighborhoods
as cold spots. Hot spots were identified in three of the four variables while cold spots were found
in only two variables. Some neighborhoods were identified as hot spots in more than one variable
while in another instance, a neighborhood classified as a hot spot in one variable was identified
as a cold spot in another variable. A summary of the cross-cutting hot/cold spot neighborhoods
is given in Table 6. For the unnormalized load shedding exposure, LSe, (Figure 10), a total of 18
out of the 47 neighborhoods were identified as either hot spots or cold spots at different confidence
levels. Ten neighborhoods are classified as hot spots while eight neighborhoods are cold spots.
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Only two neighborhoods—Tsaabaa (a hot spot) and Korle Gonno (a cold spot)—are spots at the
highest confidence level of 99%. Ten neighborhoods are hot/cold spots at the 95% confidence level.
With regard to the normalized load-shedding exposure variables (Figures 11–13), not many hot/cold
spots were identified. Darkuman and South Ordokor are the only significant (cold) spots—at a 90%
confidence level—for LSe/area. For LSe/population and LSe/population density, four and five hot spot
neighborhoods, respectively, have been identified, being mostly located in the eastern tip of the study
area. No cold spot neighborhoods were returned for these two variables. Awudome estate is a highly
significant (99% confidence level) hot spot for LSe/population. Both Adabraka and Tudu are moderately
significant (95% confidence level) hot spots for LSe/population density

Table 6. Intersecting hot/cold spot neighborhoods for different load-shedding exposure variables.

Hot Spot Analysis (Getis-Ord Gi
* Statistic)

Cold Spots Hot Spots

LSe/area LSe/population density

Cold Spots LSe - Adabraka

Hot Spots

LSe South Ordokor -

LSe/population -
Asylum Down
North Ridge
Victoriaborg
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4.4. Cluster and Outlier Analysis

Cluster and outlier analysis was carried out to complement the results from the hot spot
analysis. Beyond this, however, cluster and outlier analysis was also useful for identifying
outlier neighborhoods whose load-shedding exposure values significantly differ from those of their
surrounding neighborhoods. Across all variables, a total of eight (08) different neighborhoods were
identified as high-high clusters, ten (10) as low-low clusters, two (02) as high-low outliers and three
(03) as low-high outliers. Each variable returned at least two low-low clusters while high-high cluster
neighborhoods were identified in all variables except LSe/area. Neighborhoods that were identified
as clusters in more than one variable are given in Table 7. From Figure 14, the unnormalized load
shedding exposure, LSe, has the highest number of clusters—both high-high (07) and low-low (05)
clusters. However, no significant outlier was identified in this variable. With regard to the LSe/area, two
neighborhoods—Darkuman and South Ordokor—were identified as low-low clusters and Bubiashie as
a high-low outlier (see Figure 15). In Figure 16, four neighborhoods, including Darkuman, Mataheko,
New Fadama and New Russia, are low-low clusters for LSe/population, while the Korle Lagoon area is
a high-low outlier. The clusters for LSe/population density are Chorkor, Lapaz and New Fadama (all
low-low clusters), while Adabraka, Asylum Down and Tudu are low-high outliers (see Figure 17).
North Ridge is a high-high cluster for both LSe/population and LSe/population density.
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Table 7. Neighborhoods showing more than one clustering tendency for different load-shedding
exposure variables.

Cluster and Outlier Analysis
(Local Moran’s I Statistic)

Low-Low Cluster High-High Cluster

LSe/population LSe/population density LSe LSe/population

Low-Low
Cluster

LSe - Chorkor - -

LSe/area Darkuman - South Ordokor -

LSe/population - New Fadama Mataheko
New Russia -

High-High
Cluster LSe/population density - - - North Ridge

4.5. Comparing Results from Local Indicators of Spatial Association (LISA) Analyses

Table 8 is a comparative presentation of results from both hot spot analysis and cluster and outlier
analysis. Several neighborhoods that intersect as spots and clusters/outliers are identified. There are
eight (08) neighborhoods categorized both as hot spots and high-high clusters. Seven of these were
identified under load shedding exposure, LSe. The other neighborhood categorized both as a hot spot
and a high-high cluster is North Ridge under both LSe/population and LSe/population density. Several
neighborhoods that were identified as hot spots fall under outlier category when using cluster and
outlier analysis. Particularly, Adabraka, Asylum Down and Tudu, which are hot spot neighborhoods
for LSe/population density, are identified as low-high outliers under the same variable. Other hot spot
neighborhoods under LSe, LSe/population and LSe/population density are categorized as “insignificant”
when using cluster and outlier analysis.

Several neighborhoods identified as cold spots also turned out as low-low clusters. Six
(06) neighborhoods under LSe and LSe/area fall within this characterization. For LSe, four (04)
neighbourhoods, which are cold spots, are categorized as “insignificant” when using cluster and outlier
analysis. Under all variables, some neighborhoods that were categorized as “insignificant” under hot
spot analysis were found to be significant clusters/outliers and vice versa. However, in general, most
of the neighborhoods remained “insignificant” when using both hot spot analysis, and cluster and
outlier analysis.

From the above results, hot spot analysis and cluster and outlier analysis can generally be said to
be complimentary approaches, particularly for identifying spatial clusters. While some differences
have been observed in the cluster and spot results under the same variable, these may be attributed to
the fact that clusters (and outliers) are only considered significant at p < 0.05, while hot/cold spots are
classified from a 90% confidence level. This highlights the uniqueness of the underlying calculations
upon which the two local indicators of spatial association (LISA) approaches are based [48]. Therefore,
depending on the purpose of the study, it may be beneficial to use both methods and compare their
results. Additionally, both methods are useful for any study—including the present study—which is
interested in identifying spatial clusters at varying confidence intervals (possible by hot spot analysis)
as well as spatial outliers (possible by cluster and outlier analysis). In this case, the two methods play a
supplementary role.
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Table 8. Neighborhoods at the intersection of different spot and cluster/outlier types.
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New Russia
South Ordokor

Tsabaa

- - -
Achimota

Akweteyman
North Ordokor

Cold Spot -

Chorkor
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- -
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North Kaneshie
North Industrial Area
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All the remaining
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Hot Spot North Ridge - - -

North Ridge
Victoriaborg

Asylum Down
Awudome Estate

Cold Spot - - - - -
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All the remaining
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Victoriaborg

Cold Spot

Insignificant
Chorkor
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New Fadama

All the remaining
neighbourhoods

(39)

4.6. Comparing Visualization and Spatial Statistical Analysis Results

For load shedding exposure, LSe, there was a general agreement between the spatial characteristics
inferred from both visualization and spatial statistical tools. However, for normalized variables, this
was not the case. For all normalized variables, visualization categorized most neighborhoods under the
two lowest classification ranges on their respective maps. This seemed to suggest a higher possibility
of finding many low-low clusters as well as a high likelihood of finding spatial outliers, especially
high-low outliers. However, several neighborhoods that appeared to be cold spots, low-low clusters or
high-low outliers from the visualized data were not identified as such when using spatial statistical
tools. Therefore, while spatial visualization is a useful tool for data exploration, it should not be entirely
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relied upon for making concrete spatial interpretation [41]. It should be used in conjunction with other
more robust spatial tools.

5. Conclusions, Limitations and Future Research

In this study, electricity outage segments from the 2015 load shedding outages were spatially
linked to 47 corresponding neighborhoods in Accra, Ghana. Using a load-shedding exposure variable,
the extent of electricity outages experienced in each neighborhood was quantified. The load-shedding
exposure values were then transformed using relevant factors, examined for spatial patterns and
relevant maps produced. The mapped results are very easy to understand by a wide range of
stakeholders including utility-level decision makers, local leaders and residents. To the best of our
knowledge, no previous study has used such a spatial approach to comprehensively quantify, analyze
and present outage exposure in Ghana at such a small geographical scale. By using an extensive
outage dataset from the electricity utility company, this study has presented a more complete picture
of neighborhood load shedding experiences, beyond what was previously reported in other studies. In
particular, the study results reveal the following:

Firstly, there are considerable variations in load shedding experiences across neighborhoods in
Accra. Some neighborhoods were exposed to twice as many load shedding hours as others during the
2015 nationwide electricity crisis. Neighborhoods having similarly high or low load shedding exposure
are more spatially clustered together than would be expected by random chance. This indicates
that other spatial processes (socioeconomic, political, demographic and other factors) influenced the
distribution of load shedding outages in the study area. Secondly, normalizing load-shedding exposure
values with surface area, population and population density significantly altered the spatial distribution
characteristics of load shedding exposure in Accra neighborhoods. Specifically, the strength of the
spatial association of load shedding exposure was diminished when normalization was carried out.
In any case, normalization was useful for transforming the absolute load-shedding exposure values
to ensure some form of standardized comparison of experiences across neighborhoods. Moreover,
societal factors introduced into the analysis through normalization helped to explore the distribution
of load shedding experiences from different perspectives. Lastly, there are several hot/cold spot, cluster
and outlier neighborhoods across both the normalized and unnormalized load-shedding exposure
variables. By pinpointing the location of hot/cold spots and clusters, the study has provided useful
spatial information to utility-level decision makers. In case of future electricity supply shortages, the
electricity utility company can utilize these results to improve load shedding planning in the study area
towards achieving sustainable electrification. Hot spots, high-high clusters and high-low outliers also
point to potential priority neighborhoods for implementing targeted interventions to build resilience
against load shedding impacts, including information campaigns about coping measures. Moreover,
a further investigation of any unique features in the low-high outlier neighborhoods, may provide
useful information about potential drivers of outage decisions made by utility managers, such as,
the prioritization of critical infrastructure (for example, hospitals).

Whereas every effort was made to undertake a comprehensive study covering the whole city of
Accra, ultimately the study was limited to neighborhoods in the western part of the Accra metropolis,
which are under the jurisdiction of a single electricity utility branch. Therefore, the results can only be
interpreted within the context of the study area and may not necessarily represent the experiences
across the entire city of Accra. Analyzing load shedding experiences across all the neighborhoods in
Accra may offer a complete picture of city-wide experiences. However, extra caution should be taken
when carrying out a city-wide assessment for Accra using this approach. Since the Accra metropolis is
served by two branches of the utility company, there is a potential risk of introducing data-related
errors into the analysis. There is no guarantee that both utility branches consistently collect all the
outage statistics over a long period of time. Furthermore, for normalization, a few select societal factors
have been used because their data was readily available. Future studies should utilize other relevant
variables and explore their effect on outage experiences. Beyond normalization, other methods, such as
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regression analyses may be used, for example, to assess and model the relationship between outage
exposure and socioeconomic or demographic factors, while taking into account spatial aspects. Finally,
other studies should also seek to understand how neighborhoods experience other types of electricity
outages, such as unplanned outages and the underlying causes of these recurrent outages. This could
shed more light on the persistent challenges in electricity distribution in developing countries, for
example, aging infrastructure, electricity pricing, maintenance scheduling, and governance challenges.
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