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Abstract: Fuel cell systems are regarded as a promising candidate in replacing the internal
combustion engine as a renewable and emission free alternative in automotive applications. However,
the operation of a fuel cell stack fulfilling transient power-demands poses significant challenges.
Efficiency is to be maximized while adhering to critical constraints, avoiding adverse operational
conditions (fuel starvation, membrane flooding or drying, etc.) and mitigating degradation as to
increase the life-time of the stack. Owing to this complexity, advanced model-based diagnostic and
control methods are increasingly investigated. In this work, a real time stack model is presented
and its experimental parameterization is discussed. Furthermore, the stack model is integrated in a
system simulation, where the compressor dynamics, the feedback controls for the hydrogen injection
and back-pressure valve actuation, and the purging strategy are considered. The resulting system
simulation, driven by the set-point values of the operating strategy is evaluated and validated on
experimental data obtained from a fuel cell vehicle during on-road operation. It will be shown how
the internal states of the fuel cell simulation evolve during the transient operation of the fuel cell
vehicle. The measurement data, for which this analysis is conducted, stem from a fuel cell research
and demonstrator vehicle, developed by a consortium of several academic and industrial partners
under the lead of AVL List GmbH.

Keywords: real-time model; fuel cell system simulation; model-based control and diagnostics;
experimental data; fuel cell vehicle

1. Introduction

The paradigm shift in the global energy economy towards sustainable and renewable alternatives
has led to an increase in academic and industrial fuel cell activities. The development of fuel cell
systems has surpassed the prototype phase as several OEMs already offer fuel cell (FC) vehicles
in small series. With the increase of the technological readiness, the requirements imposed on
the fuel cell system are becoming more and more stringent. To increase the market penetration
and competitiveness, specific costs need to be reduced while durability and efficiency have to be
increased [1]. These requirements lead to conflicting goals. For example, it is desired to reduce the
capacity of the auxiliary battery, in order to save costs. However, this leads to a more direct and
dynamic exposure of the fuel cell system to transient power demands. During these transients, several
internal states should be maintained within defined limits so as to prevent the onset of critical operating
conditions such as oxygen or hydrogen starvation, excessive membrane humidity cycles, flooding
and dry-out [2,3], imposing a significant challenge on any control scheme. This is further aggravated
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by the fact that the critical internal states of the fuel cell stack cannot be measured directly, or it is
just not economically reasonable to do so. To meet these challenging and possibly conflicting goals
(i.e., an efficient operation is not necessarily fault tolerant or life-preserving), advanced model-based
analysis, diagnostics and control methods [4–6] are becoming indispensable .

The intended use of a model determines the trade-off between its complexity and accuracy.
For real-time diagnostics and control applications, various fuel cell stack models, which are typically of
low spatial dimensionality, were proposed [7–11]. However, the achievable simulation accuracy
is not only determined by the model structure, but also by its capability to be parameterized
on experimental data. Preliminary studies on dynamic fuel cell stack models were conducted
in [7,12]. Therefore, the transient effects during the dynamic, automotive operation are analyzed
in simulation. Extensive experimental validation is not provided. A more detailed discussion on the
experimental parameterization and validation, using measurements on a single cell, is found in [13].
Therefore, the need for a parametric sensitivity analysis of the model, as a prerequisite for a successful
parameterization, is also mentioned. In recent years, the topic of experimental parameterization of
fuel cell models gained more attraction. The proposed parameterization schemes mainly revolve
around the use of heuristic and gradient free optimization techniques (such as differential evolution,
genetic algorithms, particle swarm optimization [14–16]) , as they tend to be robust for the price of
high computational effort and slow convergence. Macroscopic fuel cell system simulations, embedded
into a virtual vehicle can be found in [17,18]. For the validation of these macroscopic vehicle models,
the simulated vs. measured vehicle velocity is compared, for which a virtual driver (i.e., a feedback
control law) is required. It is to be noted that due to this closed loop behaviour of the model,
the achieved accuracy in the target velocity profile is substantially influenced by the virtual driver.

In this work, a zero-dimensional, transient fuel cell stack model is presented, striking a reasonable
balance between accuracy and computational effort. In addition to the gas-dynamics in cathode
and anode, described by the interconnection of zero-dimensional volumes, the diffusion through
the gas diffusion layer is considered on the cathode side as well as the transient humidification of
the membrane.

For the experimental parameter estimation of the proposed model, a highly efficient
parameterization methodology is used. Therefore, the non-linear fuel cell stack model is approximated
using multiple local linear models which are obtained via analytic linearization. Due to this, the relation
between each local linear model and the parameter vector of the original non-linear model is
retained. As such, additional local linear models (and corresponding experiments) can be added
to the parameterization in order to improve the estimation accuracy, without introducing additional
parameters. After parameterization, the stack model is integrated into a virtual system simulation
considering the compressor dynamics, the feedback controllers applied for anode and cathode pressure
control and the purging strategy. As such, the virtual fuel cell system is subjected to the same dynamic
set point demand trajectories as the real fuel cell vehicle (determined by the operating strategy).
The resulting simulation accuracy of the parameterized stack model, embedded into the system
simulation is then compared to the real driving data of a fuel cell vehicle during road operation.
This demonstrator vehicle (shown in Figure 1) was developed in the KEYTECH4EV project [19] and
allows invaluable access to the internal sensor values of the fuel cell system. As such, the validation of
the system simulation can be carried out in detail.

The demonstrator vehicle is based on a hybrid VW Passat that was retro-fitted with a fuel cell
system (ElringKlinger NM5 stack [20]). System integration and functional operation development
was conducted at AVL List Gmbh. The general specifications of the fuel cell demonstrator vehicle
can be seen in Table 1. For the measured drive cycle of the vehicle, the internal states of the stack
simulation are investigated, giving invaluable information from the fuel cell stack during the transient
operation. For example, it is analyzed how nitrogen is accumulated in the anode or how the membrane
humidity is affected during the transient vehicle operation. After evaluation of the system simulation
with real driving data, the paper gives an open ended discussion of possible use-cases and potential
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improvements in fuel cell system control and diagnosis, based on the premise of such a real-time
capable model.

(a) (b)
Figure 1. (a) The KEYTECH4EV fuel cell demonstrator vehicle, based on a VW Passat hybrid. (b) Engine
bay with the retro-fitted fuel cell system.

Table 1. FC demonstrator vehicle specifications.

Vehicle Platform VW Passat GTE

Vehicle gross weight 1746 kg
Battery capacity 9.9 kWh
Battery power 85 kW

Fuel cell system power 55 kW
e-drive power 100 kW

Hydrogen tank capacity 4 kg
Number of tanks 3

Hydrogen consumption 0.8 kg/100 km
Driving range >500 km

The remaining paper is organized as follows: In Section 2, the zero-dimensional, dynamic
and real-time computable fuel cell stack model is presented. The parameterization methodology,
based on the analytic linearization of the stack model, is briefly reviewed. As the linearization requires
continuous differentiability, suitable approximations for the discontinuous switching and saturation
nonlinearities are introduced. In Section 3, the fuel cell stack model is integrated into the system
simulation, which is then driven by the same set-point values determined by the operating strategy of
the vehicle. The resulting accuracy of the system simulation and the internal states of the fuel cell stack
for the measured drive-cycle of the vehicle are presented in Section 4. A brief discussion on potential
use-cases of such a system simulation, outlining future work is given in Section 5.

2. Fuel Cell Stack Model

This section focuses on the derivation of the fuel cell stack model, used in the system simulation.
In order to meet the requirement of real-time computability, a zero-dimensional modeling approach
is used (the model schematic can be seen in Figure 2). The cathode (ca) and anode (an) pathways
are divided into three manifolds: supply manifold (SM), center manifold (CM), and exit manifold
(EM). The center manifold is thought of as the lumped volume of the FC stack anode and cathode
respectively. Supply and exit manifold represent the auxiliary volumes in front and after the stack,
which is also where the sensors (mass flow, pressure, humidity) reside. On the cathode side, transient
diffusion of species through the gas diffusion layer (GDL) to the catalyst layer (CL) is considered,
leading to an additional volume, whose inflows are determined by Fick’s diffusion. On the cathode
side, the consumption of oxygen and the generation of product water is carried out in the catalyst
layer manifold, whereas on the anode side the mass fluxes due to reaction and crossover of species are
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directly coupled to the center manifold. A transient phase change from water vapor to liquid water is
considered when the water vapor partial pressure exceeds the saturation pressure.

Figure 2. Lumped model structure of the dynamic fuel cell stack model.

2.1. Derivation of Model Equations

The dynamics of the considered species

i ∈ {H2, O2, N2, H2Ovap} (1)

are then governed by balancing the masses for the interconnected volumes

v ∈ {SMan, CMan, EMan, SMca, CMca, EMca, CLca} (2)

which is formally stated as
dmi,v

dt
= Wi,v,in + Wi,v,R + Wi,v,out. (3)

Thereby, Wi,v,R denotes the manifold-specific source and sink terms (e.g., reaction of hydrogen and
oxygen, generation of product water, membrane water transport and nitrogen crossover). A summary
of the manifold specific source and sink terms is given in the Appendix A in Table A1. The mass flows
between manifolds are described by a linear nozzle equation

Wi,v,in = yi,v−1kv∆pv, (4)

where kv denotes the linear nozzle coefficient and ∆pv the pressure difference with respect to the
previous volume ∆pv = pv−1 − pv. The linear nozzle flow Equation (4) can be readily exchanged with
the nonlinear nozzle equation [21] to differentiate between choked and non-choked flow conditions.
However, owing to the already existing model simplifications, and adhering to a parsimonious
modeling principle, the linear flow equations are used in this work. Furthermore, it is assumed that the
mass fractions of the in-flowing species yi,v−1 are given by the mass fractions of species in the previous
manifold. Also due to consistency, it follows that Wi,v,in = Wi,v−1,out. Note that for the catalyst layer
manifold Wi,CLca,in = Wi,CLca,out = 0. This corresponds to the assumption that the flow from center
manifold to the catalyst layer is governed by diffusion and convective mass transport through the
GDL is neglected [22,23]. The supply manifold in-flows Wi,SMan/SMca,in can be calculated from the
(measured) overall mass flows WSMan/SMca,in and the relative humidities φSMan/SMca,in. The actuation
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of the back-pressure valve on cathode and purge valve on the anode are described by a time-varying
nozzle coefficient

kEMan/EMca(t) = αEMan/EMca(t)k̃EMan/EMca, (5)

where k̃EMan/EMca denotes the nominal nozzle coefficient and αEMan/EMca(t) ∈ [0, 1] the actuation
signal of the valve.

The mass of species i in manifold v can be related to its partial pressures via the ideal gas law [24],

pi,v =
mi,v

Vv
RiT, (6)

where Ri denotes the specific gas constant of species i, Vv the volume of manifold v, and T the
temperature, which is assumed to be uniform in the stack. The overall pressure in volume v is then
given by

pv = ∑
i

pi,v. (7)

Note that when there are no species-specific source and sinks terms in a manifold (as in the supply
and exit manifolds), the individual balancing of species is not necessary, as the resulting differential
equations for each species will be linear dependent. In order to arrive at a minimal realization of the
model (i.e., minimum number of individual states in the model) the overall mass or pressure can be
balanced instead.

When the water vapor partial pressure pH2Ovap,v in volume v exceeds the saturation pressure
(which is assumed to be a function of temperature psat(T) [24]) liquid water starts to condense.
To capture this effect, transient phase change relations are considered [25–27]:

A mass balance for liquid water yields

dmH2Oliq,v

dt
= Wphase,v, (8)

with the phase change rate defined as

Wphase,v =

k̃cond(t)
(

pH2Ovap,v − psat(T)
)

, if pca
vap > psat(T)

k̃evap(t)
(

pH2Ovap,v − psat(T)
)

, otherwise.
(9)

Therefore, k̃cond(t) and k̃evap(t) denote the time-varying, lumped condensation and evaporation rate
constants. A detailed discussion and exact numerical expressions thereof can be found in [27]. Note
that any transport mechanisms of liquid water are currently neglected. As such, liquid water remains
in its respective volume where it has condensed until it evaporates again.

The recirculation from the anode exit manifold to supply manifold is considered via an additional
massflow Wan,reci which is assumed to be known.

The transient wetting and drying of the membrane is modeled as a simple first order system with
a time constant τm, using the average water activity of cathode and anode as an input:

ȧm = − 1
τm

(
am +

aCLca + aCMan

2

)
, (10)

with
ak =

pH2Ovap,k

psat(T)
k ∈ {CLca, CMan}. (11)

The dynamic membrane water activity am is used to determin the ohmic resistance, the electro-osmotic
drag and back diffusion coefficient [28]. The electrochemical model used in this work, coupling the
thermodynamic quantities (partial pressures of species, membrane humidity), current and voltage,
assumed to be static. This corresponds with to the fact that the time constants of the electrochemical
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reactions are several orders of magnitude faster then the time-constants associated with the convective
and diffusive transport of species [29]. The electrochemical model is described and discussed in detail
in [30].

Aggregating all differential equations describing the fuel cell stack leads to a highly non-linear
state-space model of the form

ẋ = f(x, u, θ), (12)

y = g(x, u, θ). (13)

In the remainder of this work, bold lower case letters are used to indicate a vector and bold upper case
letters indicate a matrix. The input u and state x vector defined as

u =



WSMan,in
WSMca,in
φSMan,in
αEMan

αEMca

T
I


, x =



pSMca
mO2,CMca
mN2,CMca

mH2Ovap,CMca

mO2,CLca
mN2,CLca

mH2Ovap,CLca

mH2Oliq,CLca

pEMca

pSMan
mH2,CMan
mN2,CMan

mH2Ovap,CMan

mH2Oliq,CMan

pEMan

am



. (14)

The output vector y is specific to the application of the model. For the task of model parameterization,
the output vector is defined by the available measurements, whereas for the application in
fault diagnostic- and model-based control, all internal states and derived quantities (e.g., partial
pressures/concentrations of species, membrane humidity, accumulated nitrogen in anode, stack
efficiency etc.) can be accessed.

2.2. Model Parameterization

So far, the structure of the fuel cell stack model was defined and derived. However, one important
aspect is still to be discussed. In order to achieve a suitable degree of accuracy of the simulation model,
the parameteres θ in (12) and (13) have to correspond to the actual fuel cell system under investigation.
Some parameters might be derived from fundamental constants, geometric considerations or expert
knowledge (with varying levels of accuracy). However in the general case, they have to be inferred
from the available experimental data; a scientific discipline also known as system identification [31].

One often encountered methodology in order to parameterize such a non-linear state space
models with a fixed model structured (also known as grey-box model estimation [32,33]) is based on
the minimization of the model output error. However, for the non-linear fuel cell stack model, this was
found to be computationally very expensive. Additionally, unfavourable model properties, such as
numerical stiffness and discontinuouties, can cause convergence issues. In order to alleviate these
issues, a parameterization workflow, based on the simultaneous estimation of multiple local linear
models, obtained via analytic linearization, is used.



Energies 2020, 13, 3148 7 of 20

For the sake of completeness, the model estimation via minimization of the output error, its issues
and difficulties, and the parameterization methodology based on simultaneous identification of
multiple local linear models are briefly reviewed:

A suitable scalar objective function, based on the output error between simulation model and
obtained measurements is given by

J(θ) =
1
N

N

∑
k=1

(y(θ, k)− ŷ(k))T Qy (y(θ, k)− ŷ(k))︸ ︷︷ ︸
Weighted output error

+ (θ− θ0)
T Qθ (θ− θ0)︸ ︷︷ ︸

Regularization

. (15)

Therefore, y(θ, k), denotes the simulated output (with respect to the parameter vector θ) at a discrete
time instance k (t = ∆tk, with ∆t being the sampling time) and ŷ(k) the corresponding measured
output. The matrix Qy is used to weight the errors of different outputs with respect to each other.
The second term in (15) is used to penalize the deviation of the parameters with respect to the initial
parameter. One the one-hand, this is motivated by the fact that certain parameters may be known to
some extent (expert-knowledge) with varying levels of confidence. On the other hand, introducing the
second term leads to a regularization of the optimization problem.

An optimal parameter estimate with respect to the objective function (15) is then formally stated as

θ̂
∗
= arg min

θ

J(θ). (16)

An analytic solution for θ̂
∗ is in general not obtainable due to the complexity of the optimization

problem. The optimal solution is therefore typically approximated using various iterative, numerical
optimization algorithms. For the parameterization of the fuel cell stack model, the following issues
can arise when trying to numerically solve the optimization problem:

1. The applied ordinary differential equation solver fails to provide a solution of the simulated
output y(θ, k) (e.g., due to numerical stiffness or improper parameter values during the
optimization). As a result, the objective function (15) cannot be evaluated and the parameterizaton
task fails.

2. The optimization algorithm does not converge to a suitable solution. A restart of the optimization
with different solvers, solver settings and weightings in the objective function is required.

3. The experimental data is not informative enough or conversely, all desired parameters cannot
be uniquely determined from the experimental data due (e.g., due to insufficient excitations,
sensors or measurement errors).

To alleviate these issues, a parameter estimation methodology, based on analytically derived local
linear models, is proposed. At its core, it is based on the following substitution:

Instead of simulating the non-linear model, the model output y is approximated by a local
linear model

∆ẋ = A(θ)∆x + B(θ)∆u, (17)

y ≈ ylin = C(θ)∆x + D(θ)∆u + y0(θ). (18)

where the local inputs ∆u = u− û0 and local states ∆x = xlin − x0(θ) are referenced with respect to a
specific steady state operating point. The system matrices are then defined as,
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A(θ) =
∂f(x, u, θ)

∂x

∣∣∣∣
x0(θ),û0

(19)

B(θ) =
∂f(x, u, θ)

∂u

∣∣∣∣
x0(θ),û0

(20)

C(θ) =
∂g(x, u, θ)

∂x

∣∣∣∣
x0(θ),û0

(21)

D(θ) =
∂g(x, u, θ)

∂u

∣∣∣∣
x0(θ),û0

. (22)

One key aspect that should be clarified is how to evaluate the partial derivatives in (19)–(22). While a
numeric approximation via finite differences is easily obtainable, it bears the distinct disadvantage
that the functional relation of the original model parameters to the linear model is thereby lost.
This effectively means that during the optimization the numeric linearization would be needed to be
carried out at each iteration. On the other hand, when evaluating the partial derivatives analytically,
symbolic expressions of the linear system matrices are obtained where the functional dependency on
the model parameters is retained. The analytic evaluation of the partial derivatives is done once in
a pre-processing step of the model and stored for later use during the optimization. In order for the
analytic linearization to succeed, the model needs to be continuously differentiatable. A more detailed
discussion about this can be found below in Section 2.3.

When using multiple experiments and corresponding multiple linear models for the parameter
estimation, the objective function (15) is adapted to

J(θ) =
M

∑
m=1

λm Jm(θ) + (θ− θ0)
T Qθ (θ− θ0) , (23)

where

Jm =
1

Nm

Nm

∑
k=1

(ylin,m(θ, k)− ŷ(k))T Qy (ylin,m(θ, k)− ŷ(k)) (24)

denotes the model output error of the m-th linear model and λm a corresponding weight. Note that this
approach is similar to the system identification via local linear model networks [34], but with the main
difference that with the present approach the structure of the local linear models is determined from a
physical non-linear model via analytic linearization. Due to this analytic linearization, each local linear
model still depends on the original physical parameter vector of the non-linear model. Thus, adding
additional experiments and local models to the estimation does not increase the parameter space (as it
would be the case for traditional local linear model networks, where each local model is depending on
its own parameters [35]).

Note that in order to accommodate the assumption of linearity, the experiments carried out on
the fuel cell stack have to be conducted accordingly. This effectively means that instead of having
an experiment throughout the whole operating region of the stack (which would be desired for the
estimation of the non-linear model) the experimental region of interest is split into several local
experiments at defined operating points with a reduced amplitude of excitation. As an added benefit,
carrying out local experiments on the fuel cell stack with reduced amplitudes of excitation is less
straining and more compliant to operational and safety limitations of a testbed. The parameterization
scheme based on the analytic linearization and simultaneous estimation of multiple local linear models
is graphically summarized in Figure A1 in the Appendix A. As a main advantage for this method, it
was observed that a significant increase in computational efficiency (three orders of magnitude) can be
obtained for the parameterization of the proposed fuel cell stack model, as opposed to the minimization
of the output error of the non-linear model. This can be mainly attributed to the numerical efficiency
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of linear ordinary differential equation solvers. Additionally, for linear models, unfavourable model
properties such as instability or unreasonable stiffness (which could arise from unsuitable parameter
values during optimization and can lead to a termination of the optimization) can be a-priori detected
via an eigenvalue analysis and penalized or disregarded in the optimization.

2.3. Approximating Model Discontinuities

To determine the system matrices (19)–(22) analytically, several computer algebra packages are
readily available. In the present work MATLABs symbolic math toolbox [36] was used. To ensure that
the analytic evaluation of the partial derivatives is successfull, the right-hand-side functions of the
non-linear model (12) and (13) need to be continuously differentiatable. However, when modeling the
dynamic behaviour fuel cell stack, model discontinuities arise from physical considerations and are
required in order to accurately reproduce the behaviour of the stack. One example is the condensation
of liquid water: If the partial pressure of water vapor is greater than the saturation pressure, liquid
water starts to condense and vice versa. This verbally described If.. Then.. rule correspondonds to a
discontinuous switching behaviour of the model. Another example is the saturation function. Masses
and pressure cannot become negative. Yet, when simulating a shut-down of the fuel cell stack where
the cathode is closed off and the remaining oxygen is being consumed by a small current, neglecting
the saturation of masses will lead to a negative oxygen mass in the simulation and the subsequent
implausible behaviour of the model.

To still capture these effects while still complying to the requirement of continuous
differentiatability, the model discontinuities need to be sufficiently approximated by smooth functions.
For the approximation of the switching behaviour,

h(x) =

{
a(x), if x ≤ xswitch

b(x), otherwise,
(25)

the following sigmoid activation function

H(x) =
1
π

atan(α(x− xswitch)) + 0.5, (26)

can be used. The switching bevahiour is then approximated by

h(x) = (1− H(x))a(x) + H(x)b(x). (27)

The transition coefficient α can then be used to tune the sharpness of the transition area.
A saturation non-linearity with a unitary gain and a lower and upper limit of Xmin and Xmax

respectively is given by the following exact equation:

y(x) =
1
2
(Xmin + Xmax + |x− Xmin| − |x− Xmax|). (28)

To achieve higher order differentiatability, the absolut value can be approximated using

|z| ≈
√

z2 + ε2, (29)

where ε is again a scalar tuning factor. In Figure 3, the switching and saturation function and its
smooth approximations for different values of the tuning factors can be seen.

In replacing all discontinuities with appropriate approximations, continuous differentiatability
can be ensured. Note that continuous differentiatability is not only required by the parameterization
scheme. It also a huge generel advantage, as it enables the use many state-of-the-art nonlinear control
and state-estimation schemes based on successive linearization (such as the extended Kalman filter).
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Figure 3. Approximation of model discontinuities with smooth functions for different values of their
respective tuning factors. (a) Approximation of hard switching function (if/else). (b) Approximation
of the saturation function.

3. Fuel Cell System Simulation

In the previous sections, the isolated fuel cell stack model and its experimental parameterization
was presented. In this section, it will be discussed how the stack model is integrated into fuel cell
system simulation. In a first step, the system boundaries and the intended use-case of the system
simulation need to decided, as this gives an indication about the required modeling depth of auxiliary
components in the model. As an example, lets consider the air supply on the cathode. Assuming that
the compressor is already suitably controlled, the relation between demanded air mass-flow W̃SMca,in
and actual mass-flow WSMca,in can be, in its simplest form, considered as a first order system

WSMca,in =
1

1 + τcomps
W̃SMca,in, (30)

where τcomp denotes the response time of the controlled compressor and s the complex valued laplace
variable. Therefore, the rotational dynamics and the compressor controls are all lumped together
into a single time constant. When investigating competing operating strategies, a simple approach
like this might already be sufficient in order to derive dynamic requirements on the compressor with
respect to the chosen operating strategy. However, it is obvious that no statements can be made about,
for example, the energy consumption of the compressor or if the chosen compressor type is suitable
at all. In such a case a more detailed model as in [37] is required. The intended use of the system
simulation in the context of this work is as a virtual sensor for fault detection, i.e it is desired to get
on-line insights regarding the internal states of the fuel cell stack during the dynamic operation of
the vehicle. For this reason, the modeling depth with regard to auxiliary components is relatively
shallow. Or rather, the simplest models were ought to be found while still maintaining the integrity of
the intended use.

The system simulation setup can be seen in Figure 4. When the driver presses the acceleration
pedal, a power demand for propulsion of the vehicle is generated. This power request is divided by
the power split strategy into a power demand for the traction battery and a power demand for the fuel
cell system. The current power demand Pdemand is further converted by the vehicle operation strategy
into set-points, namely:

1. Stack Current Ĩ,
2. Cathode inlet air flow W̃SMca,in,
3. Cathode supply manifold pressure p̃SMca,
4. Anode supply manifold pressure p̃SMan.
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Figure 4. Schematic of the FC System simulation. C1 denotes the feedback controller responsible for
the actuation of the backpressure valve. The controller C2 determines the injection of hydrogen.

For the stack current I, it is assumed that the power electronics and controls are sufficiently fast
such that no additional dynamics have to be considered and the demanded stack current Ĩ is used in
the stack simulation. The demanded air massflow W̃SMca,in is filtered using a simple first order system
as described above. In order to ensure that the demanded supply manifold pressures p̃SMca and p̃SMan
are met, a simplified control scheme based on the real vehicle, was implemented. A feedback controller
is used to actuate the back-pressure valve of the cathode, whose position is saturated between [0,1].
In order to fulfill the set-point pressure in the anode, a second feedback controller is implemented,
regulating the hydrogen inflow from the tank.

Note that an increase in anodic pressure is implemented straight-forward via the inflow from
the tank; however, the rate of decrease of anodic pressure is limited by the consumption of hydrogen,
gas crossover and leakages.

A coulomb counting purge strategy was implemented with a valve opening time of 0.3 s. In the
demonstrator vehicle, the injection of hydrogen and the anode off-gas recirculation is realized via
an ejector/injector unit where the inflow rate (and recirculation rate) is actuated via a pulse-width
modulation (PWM) of the injector valve. A control oriented model of an ejector/injector unit can be
found in [38,39]; however during simulation it was observed that the high frequency fluctuations
(15 Hz) caused by the PWM of the injector valve has drastic negative effects on the computational
efficiency of the simulation, while simultaneously causing negligible ripples in pressure. The hydrogen
inflow valve is therefore continuously operated in simulation. Additional external inputs used in the
system simulation are for example the uniform stack temperature, relative humidity of in-flowing air
and the atmospheric pressure.

Note that for a stand-alone simulation of the fuel cell stack, it is not advised to use the measured
hydrogen flow as an input to the simulation due to the following reason: When the purge valve is
closed, the anode pressure dynamics exhibit an integrating behaviour with respect to the massflow.
Since the measured hydrogen massflow (originating from a closed control loop) will be, at least to some
extent, subjected to measurement noise or bias the resulting simulated anode pressure will exhibit a
random walk or a continuous drift due to the integration of measurement errors. Therefore, either the
supply manifold pressure or, as in the real system, a massflow originating from a closed loop control
scheme should be used.

4. Results

In this section, the accuracy of the fuel cell system simulation is analyzed and evaluated.
During the operation of the research vehicle on the test circuit, the set-point values for the fuel
cell system, which are determined by the operating strategy, were recorded. These set-point values are
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used as an input to the fuel cell system simulation. The resulting simulation output is then compared
to available measurements in the vehicle.

4.1. Validation of the System Simulation

In Figure 5, the outputs of the system simulation, driven by the reference values of the operating
strategy, are compared to available measurements in the vehicle. The shaded areas depicted therein
mark time intervals during which the vehicle was put into shut-down mode. The associated switching
processes of valves as well as in the power electronics during shutdown are not part of the model.
As a result, the simulated voltage in the model resorts back to open circuit voltage during shutdown
and deviates from the measured voltage of the fuel cell system. During nominal operation of the
vehicle however, a remarkable level of agreement between simulated outputs and experimental
measurements can be observed. The periodic pressure spikes in the anode, during operation under
high pressure, result from the frequent opening of the purge valve. In the current setup, the opening of
the purge valve acts as an unknown disturbance. The sudden loss in pressure is then compensated by
the feedback controller, regulating the hydrogen inflow, leading to the visible oscillatory behaviour.
Substantial improvements could be achieved by using the (known) purge signal in a disturbance
rejecting feedforward control scheme.

It is to be noted that no corrections based on measured outputs are taken during the simulation and
the results are purely obtained by an independent simulation, driven by the reference-values generated
by the operating strategy of the vehicle. The simulation was conducted in MATLAB/Simulink on a
single core of personal laptop (CPU: I7-9750H @ 2.60 GHz). The computation time amounted to 81 s
for the experiment shown in Figure 5 and is therefore ∼10 times faster then real-time.

4.2. Investigation of Internal States

In Figure 6, some of the simulated internal states of the fuel cell during the transient operation can
be seen. The first two plots show the transient change of oxygen and hydrogen mass in the cathode
(Channel and GDL) and anode during the drive cycle. Such real-time signals during operation are
an invaluable source of diagnostic information as to prevent fuel starvation. Note that the detection
and prevention of fuel starvation is frequently indicated by the stoichiometric ratio [40]. However,
under dynamic operating conditions the description using the stoichiometric ratio is somewhat
inadequate. For example when determining the stoichiometric ratio for oxygen, the mass flux needed
for reaction can be related to the inflow of oxygen into the stack, which is typically measured by a mass
flow sensor located between the compressor and the cathode inlet. Under steady state conditions, it is
obvious that starvation occurs when the inflowing amount of species is less than the amount required
for reaction. However, during transient operation, the use of the stoichiometric ratio, as determined by
the amount of inflowing species, may lead to false conclusions, as the internally stored (compressed)
oxygen in the cathode and its dynamics and transport processes are thereby completely neglected.
The third plot in Figure 6 shows the accumulation of nitrogen in the anode and its rapid discharge
due to purging. A coulomb-counting purging strategy was implemented to actuate the purge valve.
As hydrogen is ejected during purging, minimum purge action would be desired as to increase the
efficiency of the system. With a real-time estimate of the accumulated nitrogen, a threshold purging
strategy can be implemented.

The fourth plot in Figure 6 shows the estimated membrane humidity of the fuel cell stack.
The overall humidity levels of the membrane tend towards full saturation. However, significant drops
in membrane humidity are present during the transient operation of the vehicle. A model-based
explanation of this effect is as follows:

During the transient operation, significant changes in anode and cathode pressure of up to 1 bar
are encountered (as can be seen in Figure 5). Thus, the water vapor partial pressure in cathode and
anode changes proportionally. However, the water vapor saturation pressure (which is a function
of temperature) almost stays constant. As such, a decrease in cathode and anode pressure leads to
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a proportional drop in cathode and anode humidity (e.g., see (11)), thus effecting the membrane
humidity. Conversely, when the membrane is fully saturated and the pressure is drastically increased,
liquid water start to condense, as can be seen in the fifth plot of Figure 6.

Figure 5. Comparison of measurement data from the Keytech4EV research vehicle to the outputs of
the FC system simulation. Grey-shaded areas depict shutdown sequences which are out of the scope of
the model.
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Figure 6. Internal states of the fuel cell stack as determined by the system simulation.

5. Discussion

The results shown above depict a very good agreement between simulated and measured outputs
of the fuel cell system over the whole operating range during the transient operation of the vehicle.
Also the internal states of the simulation during the transient operation show a plausible behaviour.
For a hard validation of internal states however, additional measurements of the fuel cell system
on a test-stand would be desired (e.g., high frequency resistance measurements or a dynamic mass
spectrometer on the cathode and anode exhaust) which are not available in the vehicle.

Due to the scalability of the zero-dimensional stack model and the proposed robust
parameterization scheme, a distinct flexibility in the presented workflow for developing the system
simulation is achieved. As such, it can be straight forward adapted to different system architectures
and fuel cell stacks. It is obvious that the availability of a real-time computable system simulation
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enables invaluable possibilities in order to improve the efficiency of a fuel cell stack in a vehicle
application. A (non-exhaustive) list is briefly discussed as a reference for future work:

• State Estimation and Fault Detection: To improve the accuracy with respect to unknown
disturbances, measurement noise and emerging faults, the system simulation can be embedded
into an observer algorithm to estimate (and correct) the simulation states based on available
measurement data. The presented model, as it is continuously differentiatable, is especially
suitable for estimation schemes based on successive linearization such as the extended Kalman
filter [41]. Having a robust state estimation enables the on-line estimation of hazardous conditions
such as fuel starvation, dry-out and flooding and excessive humidity cycles.

• Model Based Control: The fuel cell system is a strongly coupled multi-input multi-output system
for which model-based control methodologies have become indespensible. In a nutshell, the task
of the fuel cell system is to provide the required power at the highest possible system efficiency
(e.g., considering parasitic consumptions such as the compressor), while taking into account safety
and life-time related limitations. The verbal description of the control objective alone points in
the direction of optimal control as a suitable candidate. The existence of desired safety-limits,
which can be described as constraints either on the inputs, states, or outputs, suggests Model
Predictive Control (MPC) [42,43] as a suitable methodology to balance the conflicting goals of life
preservation, tracking performance and efficiency maximization. In this sense, the MPC rather
takes over the task of planning the operating strategy, which is done on-line together with the
a priori information predicted by the real-time model and the a-posteriori correction based on
available measurements of the system.

• Improving the Operating Strategy Even in a non-optimal way it is straight forward to see that the
availability of a dynamic fuel cell system simulation enables an engineer to refine the operating
strategy with a fraction of the time and costs as opposed to the development at a real test stand.
Additionally, all internal states are accessible during the transient operation, which are in general
unknown on the real-system.

6. Conclusions

In this work, the performance of a real-time, dynamic fuel cell system simulation is evaluated
using experimental data obtained from a fuel cell research vehicle during on-road operation. In order
for the simulation to represent the actual system, an efficient model parameterization scheme based on
analytic linearization is used. The required continuous differentiatability is ensured by introducing
suitable approximations of discontinuities. The fuel cell stack model is then further integrated
into a system simulation, which is then compared to the measurements obtained from the vehicle.
A remarkable fit of simulated to measured outputs of the fuel cell system was obtained during nominal
operation, while being significantly faster then real-time. The simulated transient internal states of
the fuel cell stack (such as the masses of oxygen, hydrogen, nitrogen in cathode and anode or the
membrane humidity), which are otherwise not measurable, are shown and exhibit plausible behaviour.
The presented results highlight the applicability and added value of model-based diagnostic and
control methods for the use in fuel cell vehicles. As a main limitation of the present work, it is to be
noted that the approach of lumped volumes does not allow for the simulation of spatially resolved
information such as pressure and concentration gradients along the channel. Also the effects and
transport mechanisms of liquid water can be further refined. In future research the advantages of
increased complexity versus their effects on real-time computability needs to be analysed and carefully
balanced. Furthermore, the presented parameterization methodology via simultaneous identification
via local analytic models could be expanded to accommodate real-time models of higher spatial
resolution (1D, quasi-2D).
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Appendix A. Auxiliary Tables and Figures

Table A1. Individual source terms for the lumped volumes of the fuel cell stack model.

Source Terms Descriptions

Wj,CMca,R = −Wj,GDL The diffusion of oxygen, nitrogen and water vapor from
the center manifold through the GDL to the catalyst layer
is described by

Wj,GDL =
D

δ2
GDL

(
VGDL
VCA

mj,CMca −mj,CLca

)
Therefore, iCL ∈ [O2, N2, H2Ovap]. D denotes the
diffusion coefficient (assumed to be equal for all species)
and VGDL the volume of the gas diffusion layer.

WO2,CLca,R = WO2,GDL −WO2,react The massflow of oxygen due to the electrochemical
reaction [44] is given by

WO2,react =
INcells

4F
MO2 ,

where I denotes the stack current, Ncells the number of
cells in the stack, F Faradays constant and MO2 the molar
mass of oxygen.

WN2,CLca,R = WN2,GDL −WN2,perm The permeation of nitrogen from cathode to anode through
the membrane is considered via

WN2,perm = kperm(pN2,CLca − pN2,CMan),

with kperm as the permeation coefficient [45].

WH2Ovap,CLca,R =WH2Ovap,GDL + WH2Ovap,react

+WH2Ovap,mem + Wphase,CLca
The generation of product water [44] is given by

WH2Ovap,react =
INcells

2F
MH2Ovap .

The massflow WH2Ovap,mem describes the exchange of
water vapor through the membrane. Electro-osmotic
drag and back-diffusion is considered [28]. Wphase,CLca
describes the transient, bi-directional phase-change from
water vapor to liquid water. The numerical expressions
used can be found in [27]

WH2,CMan,R = −WH2,react The massflow of hydrogen beeing reacted [44] is given by

WH2,react =
INcells

2F
MH2

WN2,CMan,R = WN2,perm Nitrogen crossover leads to the accumulation of Nitrogen
in the anode, which is ejected when the purge valve
is actuated.

WH2Ovap,CMan,R = −WH2Ovap,mem −Wphase,CMan The phase change of water vapor to liquid water in the
anode center manifold is calculated analogously as for the
cathode side.
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Figure A1. Workflow of the model parameterization via multiple analytic local linear models.
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