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Abstract: In this paper, a procedure is proposed to determine the fatigue life of the electrical cable
connected to a 5 MW floating offshore wind turbine, supported by a spar-buoy at a water depth of 320
m, by using a numerical approach that takes into account site-specific wave and wind characteristics.
The effect of the intensity and the simultaneous actions of waves and wind are investigated and
the outcomes for specific cable configurations are shown. Finally, the fatigue life of the cable is
evaluated. All analyses have been carried out using the Ansys AQWA computational code, which
is a commercial code for the numerical investigation of the dynamic response of floating and fixed
marine structures under the combined action of wind, waves and current. Furthermore, this paper
applies the FAST NREL numerical code for comparison with the ANSYS AQWA results.

Keywords: wind energy; floating offshore wind turbine; dynamic analysis; fatigue life assessment;
flexible power cables

1. Introduction

Power cables are wideley used in power transmission lines and the electrification of floating oil
and gas production infrastructures, where they have to withstand considerable cyclic loads induced by
the combination of floating body dynamics with wind, waves and current effects [1,2].

One of the main design issues for power cables in marine applications is the fatigue strength;
fatigue assessment studies have demonstrated that accurate analysis of the complex dynamic behavior
induced by the offshore environment must be carried out for fatigue assessment purposes. Dai et al.
(2020) [3] presented experimental and numerical studies on dynamic stress and curvature in steel
tube umbilicals, and the results show that curvature, governs the fatigue problem, even when it is
small. Yang et al. (2018) [4] presented a parametric study of the dynamic motions and mechanical
characteristics of power cables for a wave energy conversion (WEC) system. The results show that the
large curvature responses of the cable typically occur at high wave heights and near the wave period
of resonance. Yang et al. (2017) [5], regarding the same WEC system, demonstrated that minor fouling
can increase the fatigue life of the power cable.

A relatively new application area for marine power cable elements is floating offshore wind
turbines (FOWTs) [6] and farms. In fact, wind energy has become one of the most important renewable
energy sources in recent decades. Its development requires an increasing electric transmission capacity
and better ways to preserve system reliability. Wind-generated power continues to grow rapidly
throughout the world, and offshore wind farms are expected to account for a large portion of the total
wind energy output and may even contribute significantly to the total electricity production in some
countries [7]. The cost-effective operation of marine energy conversion systems needs the reliable
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design of marine power cables, which are currently the components for which design procedures
mainly need further development, due to their limited fatigue strength. FOWTs in particular, together
with their mooring systems and connected power cables, must withstand various environmental
actions, such as correlated variability in the wind, current, and wave loads, which cause variable and
uninterrupted dynamic motion and stress in the power cables that connect the single FOWTs with each
other and/or with the land. The accumulation of variable stress results in cumulative damage to the
fatigue [8], which, for this kind of system, is a weak point in the design panorama.This is something
that, together with other design or operating issues, currently prevents the large-scale installation
and diffusion of floating offshore wind farms as reliable systems for energy generation and as an
evolution of the currently widely diffused fixed-foundation offshore wind farms. These weaknesses
are particularly relevant for the electrical cables which connect the single turbines to one another in the
farm [9], named “inter-array” or “umbilical” cables.

Therefore, the definition of advanced and reliable tools for the investigation of fatigue damage is
necessary, and this topic is highly recognized by the research community [9] and the industry [10,11].
Design approaches in this area intend to ensure the required fatigue life for the structure or key parts
of it [12], and they are devised toghether with appropriate inspection programs for monitoring fatigue
damage initiations or progress.

This paper proposes a procedure for the fatigue life evaluation of a power cable which is attached
to a single FOWT in a lazy wave geometrical configuration by considering (i) the correlated intensities of
wind, ocean current and wave actions [13]; (ii) the different operating conditions of the turbine; (iii) the
complete non-linear dynamics of the turbine-cable coupled system [14]; and (iv) the difference between
fatigue actions in different locations along the cable. Several modeling issues are faced in order to
increase confidence in the results obtained by the multiphysics modeling of the system. The wind field
sampled by the rotor in operating conditions, the fluid-structure interaction between the wind and the
FOWT due to the platform’s large displacements, the joint bending and axial induced strain in the cable
and the non-linearity involved in the problem (due to both large displacements and the appearance
of plastic strains) are included in the analyses by making reliable assumptions and by calibrating
the procedures employing sensitivity analyses. The objective of this paper is to provide a reliable
procedure for assessing the fatigue failure of the power cables of FOWTs. The proposed procedure is
applied to the umbilical cable attached to the spar-buoy supported 5 MW NREL wind turbine [15] in a
water depth of 320 m, considering site-specific wind, waves and current for a short-term sea state of
the China Sea. The case study is modeled both in the FAST NREL code [15] and in the ANSYS AQWA
Commercial code [16]. The obtained results offer supporting data for the a-priori identification of
weaknesses and critical components for fatigue strength and for the evaluation of the desired level of
reliability before deployment.

2. Analysis Method for Fatigue Life Evaluation

As is well known, the simplified relationship between the stress of amplitude Si and the
associated number of cycles Ni that leads to the fatigue failures of mechanical components under
constant-amplitude oscillating loads can be represented for different intensities by the S-N (σ-N) fatigue
curve [17]. The S-N curve is a characteristic of the materials, of the shape of the component or of
the design configuration of the structure. Under the indications provided in the Det Norske Veritas
(DNV) design standards [18,19], the fatigue damage for different levels of stress oscillation magnitude
can be calculated for the pertinent components of FOWTs by the Palmgren–Miner assumption, using
Equation (1) [17]:

Dm = Σ
ni

Nicycles
(1)

where Dm is the accumulated fatigue damage due to all considered stress oscillation magnitudes, ni is
the number of the stress oscillations with magnitude Si and Nicycles is the number of cycles of stress
oscillation with magnitude Si which lead to fatigue failure.
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The electrical cables that connect the FOWTs in floating offshore wind farms are of the umbilical
typology, providing a service-support from the main station to the single FOWTs. Such umbilical cables
are of the optical powered submarine type and are provided to supply electrical power or to send
operating control inputs and data to underwater elements in offshore oil and gas infrastructures [20].
Umbilical cables are implemented in floating offshore wind farms and connected to each FOWT for the
same purpose; therefore, their integrity and service ability are crucial for the correct coordination and
operation of the FOWTs within the farm. The stress conditions in such non-homogeneous cross-sections
of the umbilical cables is quite complex, with non-linear local stress due to contact and friction between
the components of the tube, and the model and aleatory uncertainty due to this complexity is critical
for the reliability of any fatigue analysis. For the sake of simplicity, and in line with state of the
art literature on the topic [9], the cable will be modeled in this paper with a homogeneous-material
equivalent to the cross-section.

As an alternative to the σ-N plane, fatigue curves may also be represented by the total strain (ε)
versus the number of cycles (N), as detailed below. Equation (1) is useful for both the stress versus
number of cycles curve and the strain versus number of cycles curve (ε-N). The evaluation of the total
strain time history in a critical fatigue-prone location of the cable, and corresponding to a specific sea
state, is conducted by a non-linear numerical analysis of the coupled FOWT-electrical cable system,
and ε accounts for both elastic (εe) and plastic strain (εp). This may then be expressed as follows [21]:

ε(t) = εe(t) + εp(t) =
σel(t)

E
+ εp(t) (2)

where E is the Young’s elastic modulus assigned to the equivalent homogenous material modeling the
cable, and σel is the elastic tension stress of the electrical cable, evaluated step-by-step as the maximum
cross-section tensile stiffness in the homogeneous material cross-section by considering both the axial
and bending contributions:

σel(t) =
N(t)

A
+ χ(t)·E·

D
2

(3)

in which, by referring to the circular cross-section of the cable, N is the axial force, A is the area, χ is the
bending curvature and D is the diameter.

The plastic strain contribution εp enters the game only when the total stress, as evaluated by
Equation (3), is larger than the yielding stress σy of the cable, which can be evaluated from the
strain–stress constitutive law assumed for the equivalent homogeneous material used for modeling
the cable (see Figure 1), as detailed in Equation (4)

εp(t) =
σy

E
+
σy − σel(t)

E′
(4)

where E′ is the material plastic modulus.
The non-linear stress–strain behavior and relaxation characteristics mean that the impact of plastic

strains plays a non-negligible role in the electrical cable’s fatigue analysis. Inside the umbilical cable,
the conductors, which are commonly made of pure electrolytic tough pitch (ETP) copper, are vulnerable
to fatigue accumulation and mechanical failure, as highlighted by Karlsen and co-authors (2009) [11],
who state that “the material has excellent conductivity but poor mechanical properties, which include
stress-relaxation (creeping) and non-linear stress-strain behaviour, and they suggests using ε-N curves
(referring to strain) instead of traditional σ-N curves”.

The Monograph 177 [22] from the National Institute of Standards and Technology (NIST)
summarizes the results of a total of 126 plastic strain-controlled tests and 150 stress-controlled tests
that were performed on a large set of coppers made by annealed material and cold-worked material.
The stress-controlled test data may be converted to elastic strain values according to Equation (2) with
εp = 0.
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The ε-N fatigue curve considering the effect of both elastic and plastic strain can be expressed by
the Coffin–Manson relationship [21]:

ε
(
Ncycles

)
= εe

(
Ncycles

)
+ εp

(
Ncycles

)
== C1·N

−β1
cycles + C2·N

−β2
cycles (5)

where ε
(
Ncycles

)
are the strain amplitudes leading to failure at Ncycles number of cycles, and Ci and βi

(with i = 1 or 2) are appropriate material constants, provided by Thies et al. (2011) [23], for a typical
FOWT umbilical cable as C1 = 0.7692, β1 = 0.5879, C2 = 0.0219 and β2 = 0.1745. This curve is shown in
Figure 2, and it is the same that is used in the present paper for the fatigue analyses.
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Reference [11].

According to the above-mentioned calculations, the total strain time history in a critical
cross-section of the cable has to be evaluated and then processed by cycle counting, leading to
a set of amplitudes—number of cycle histograms which are compared with the fatigue curve of the
cable in order to assess the fatigue damage Dm associated with each single time history. One of the
most popular cycle counting methods is the rainflow method [24].
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In the context of FOWTs, the fatigue damage was calculated for each considered sea state. Then,
from the climate statistics of the site where the floating offshore wind farm was located, the joint
probability distribution of the sea states in the reference period of the analysis Tr (e.g., 1 year) was
estimated, and then the occurrences in Tr of the damage associated to each sea state could be evaluated.

3. Case Study

The NREL 5-MW wind turbine on the OC3-Hywind spar-buoy FOWT was chosen as a case study
for the evaluation of the fatigue life of an inter-array turbine (umbilical) cable. This case study was
chosen for its simplicity in design, suitability for modeling and the existence of numerical results in the
literature [25,26]. As already stated, the case study was modeled in both FAST and ANSYS AQWA
software. The structural, hydrodynamic and mooring line properties of the model are reported in
Appendix A.

Figure 3 illustrates the model of the 5 MW NREL wind turbine on the OC3-Hywind spar-buoy in
FAST (right) and the model with the same properties in ANSYS AQWA (left). It is worth noting that
the electrical cable was modeled in ANSYS AQWA but it was not modeled in FAST; the motivations
for this are given in Section 4. The tables in the appendix show the structural and hydrodynamic
properties and the mooring properties of the model. The lazy wave configuration of the electrical cable
is taken from Rentschler et al. [9], in which a hydrostatic optimization of the layout of the cable is
carried out with a genetic algorithm, with the goal of minimizing the cable fatigue, and by chosing the
position of the buoyancy elements as design variables, this results in a lower waveform position as
the optimal solution, with an accumulative length of the buoyancy parts from 18% to 23% of the total
cable length.Energies 2020, 13, x FOR PEER REVIEW 6 of 20 
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Figure 3. Left: model in ANSYS AQWA, Right: model in NREL FAST [26].

For the simulations in this paper, a typical cross-section of the electrical cable was utilized, with a
single layer of galvanized steel armor wires and extruded cross-linked polyethylene (XLPE) isolators.
The mechanical characteristics of the cable were assumed from the literature [6,27]. The values for
the diameter, weight and strength are shown in Figure 4, with reference to Figure 1; the linear and
non-linear elastic modules E and E′ and the yielding stress σy were equal to 128 GPa, 6.4 GPa and
350 MPa, respectively.
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4. Modeling the Spar-Buoy Supported Platform and the Cable

Depending on the wind speed and the environmental conditions, the configuration of the rotor
changes: it is in the operational, rotating blade condition when the wind speed is between the cut-in
and the cut-out values, while the wind turbine is parked for wind speeds higher than the cut-out value,
with the blades parallel to the wind [28]. Time history analyses were conducted for 4000 s for different
environmental conditions, and the first 400 s were removed in order to eliminate the transitory effects
of the simulation and wait for to the model to reach the stationary operation state.

The version of the FAST Code (version 8) that was used did not allow the researchers to add
extra non-structural elements (like power cables, etc.), but there were some possibilities to add extra
elements in ANSYS AQWA. This was the motivation for conducting the electrical cable and the fatigue
analyses in ANSYS AQWA. On the other hand, one of the issues we faced with the version of ANSYS
AQWA (version 18.2) that was used was the difficulty of modeling the rotating blades in the operating
conditions; consequently, the rotor-nacelle assembly was modeled there as a concentrated mass at
the hub height. To mitigate this weakness, the total rotor aerodynamic load time history (force in the
x-direction), named the “RtAeroFxh” output [15], as extracted from a preliminary FAST simulation
(where the electrical cable was not modeled) in a certain sea state case, was successively applied to
the hub in the model in ANSYS AQWA (where the electrical cable was then modeled and meshed
by 100 finite elements). Since the hydrodynamic loads were evaluated in ANSYS AQWA based
on the implemented wave theory and by making use of Morrison’s equation, in order to avoid the
double-counting of the hydrodynamic effects during the simulation in ANSYS AQWA, the RtAeroFxh
aerodynamic force was evaluated by not taking into account the three following effects: (i) presence of
waves; (ii) action of sea current and; (iii) inertial effect of water volumes moving with the platform.
This was because all these effects were taken into account in the subsequent ANSYS AQWA simulation.

One of the procedures that can be implemented to avoid double-counting is running the preliminary
FAST analysis by fully restraining the bottom Degrees Of Freedom (DOFs) of the platform and
maintaining the over-water dynamics (named the “fixed DOFs at spar” option). This procedure would
completely neglect the double-counting of all the three listed effects, but, on the other hand, this option
would also neglect some fluid-structure interaction (FSI) effects that have a non-negligible impact on
the RtAeroFxh (e.g., the wind’s incoming velocities and angles of attack are not combined with the
correct translational velocities and rotational displacements experimented by the rotor during the large
pitch, thrust and heave displacements of the floating platform when relative wind-rotor velocities and
rotational angles are obtained for aerodynamic load calculation purposes). The second strategy for
resolving the double-counting problem is to run the preliminary FAST analysis by assuming a “still
water” (no sea current and no waves) and by allowing the floating platform DOFs. By adopting this
strategy, the FSI effects are mostly taken into account (the relative velocities between the wind and
the rotor and tower will take into account the large displacements of the floating platform induced
by the wind itself); this is also important if the impact on the relative translational velocities of the
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hydrodynamic forces (less important than that of wind, which is due to both the translation and
rotation of the tower) is not considered and, at the end of the process, there will also be a (partial)
double-counting of the inertial effect of the water volumes moving with the platform. In this case,
a compromise should be put in place to run the analysis by the joint use of the two computational
codes. In order to show the differences found in the RtAeroFxh by running the preliminary analysis
with three different strategies, i.e., the above-mentioned “fixed DOFs at spar” and “still water” options,
and the analysis carried out by considering all the loads in FAST (“wave and current” mode, something
that would cause the above-mentioned double-counting effect if the extracted RtAeroFxh is successively
applied to ANSYS AQWA), the time histories of the RtAeroFxh values obtained for the three cases are
compared in Figure 5 for one of the sea states considered in the following fatigue analysis: sea state 15,
as identified in Table 2 by grey highlighting (wind velocity at the hub height equal to 21.7 m/s, current
velocity equal to 0.5 m/s, wave height equal to 4.5 m with period of 10 s).
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From Figure 5b, it is clear that the “fixed DOFs at spar” option provides conservative results with
respect to the “still water” option, while it is also obvious that the inclusion of the waves and current
would produce an additional contribution (the one that, if included, would be double counted in
ANSYS AQWA) that is relevant for the examined load case. In Figure 5c, it is shown that the frequency
content slightly changed between the three options (with different frequency contents for the “wave
and current” case compared to the other two). Based on this analysis, the final choice was made
to opt for the “fixed DOFs at spar” strategy in the subsequent fatigue calculations as this is on the
conservative side with respect to the “still water” model.

In order to further discuss the adopted strategy in coupling the two codes, it is worthwhile to say
that a step-by-step “two-way” coupling, that is, the continuous data exchange between the two codes
in order to take into account the interactions of the sub-domains (e.g., aerodynamics–hydrodynamics)
which are evaluated in the two different numerical codes, would be able to solve the above-mentioned
problems regarding the double-counting or the neglect of some effects. When, as in this paper, some
“one-way” coupling is put in place, the two codes elaborate separately the sub-domains of the problem,
and for just one of them the elaboration takes into account the data coming from the other domain/code
(in this paper, for example, we lost the effect of the ANSYS AQWA results on the FAST evaluations).
Therefore, the use of the one-way coupling implies the acceptance of a compromise regarding the
effects we lost and the accuracy of the obtained results. The correct strategy to pursue the one-way
coupling is to adapt/calibrate the separate sub-domain models in a way that minimizes the aspects we
lost but, more importantly, keeps the design/analysis on the conservative side. In our case, we adapted
the FAST model, used for the aerodynamic sub-domain evaluation, with the main goal of being on the
conservative side but with the secondary goal of not being too conservative (and far from accuracy) by
trying to eliminate the double-counting of the displacements induced by the hydrodynamic forces.

Model Verification

Due to the above-mentioned joint use of the two codes, this procedure needs to be validated,
especially regarding the evaluation of the hydrodynamic loads which are obtained by the two codes:
having the same response of the model under hydrodynamic loads is a primary condition in order to
assume that the obtained results are reliable and that the above-mentioned procedure of extracting the
aerodynamic loads from FAST leads to a consistent dynamics of the system. With this purpose, a set of
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validation analyses (comparison of the platform dynamics obtained by FAST and ANSYS AQWA and
comparison with the results in the literature for the same problem under different load conditions) are
carried out, based on the published results of Phase IV of the NREL 5 MW FOWT [26]. Fully non-linear
analyses in ANSYS AQWA and FAST are performed with all wind turbine DOFs (surge, sway, heave,
pitch, roll, yaw). The environmental conditions for the validation simulation are shown in Table 1.
The hydrodynamic, structural and mooring line properties were considered the same as in [26], while
the electrical cable was not modeled in this validation phase.

Table 1. Environmental conditions used for model verification purposes [26].

Enabled DOFs Platform, Tower

Wind Condition None
Wave Condition Regular Airy: H = 6 m and T = 10 s
Analysis Type Time-series solution

Figure 6 shows the time histories of the platform surge, heave and pitch displacement considering
the load case which is shown in Table 1 as obtained in the present study by ANSYS AQWA and
FAST, compared with the results published in [26] as obtained with FAST (“OC3” in the figure) for
validation purposes. The simulation shows there is a good agreement between the results of FAST and
ANSYS AQWA.
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In the fatigue analysis presented in the next section, the motion responses of the spar-buoy
platform were calculated in ANSYS AQWA under the combination of wind, current and wave loads.
Concerning the wind, in each analysis, in addition to the time history of the total force acting on the
rotor RtAeroFxh as extracted from FAST, the mean wind (Equation (6) below) is applied to the tower
above the sea. The Airy theory for regular waves [26] is applied for the waves’ dynamics computation,
while Morrison’s equations [26] are applied for the hydrodynamic forces evaluation. To model the
environmental condition, regular sea states are assumed.

5. Fatigue Analysis

The above-mentioned general procedure for fatigue life evaluation has been applied to the case
study by using the validated numerical models described above. The complete flowchart of the
fatigue analysis procedure adopted in this study is shown in Figure 7. The goal was to determine the
fatigue life in the cross-section of the cable that is located at a critical position, along with the cable
development for fatigue.
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As already stated, for each considered loading condition (sea state “SS” in what follows), the
aerodynamic forces’ time histories are extracted from FAST (in “fixed DOFs at spar” conditions and
without modeling the electrical cable) and applied to the top of the tower in the ANSYS AQWA model.
Then, the structural response is evaluated in ANSYS AQWA by a fully non-linear time-domain analysis,
considering also the model provided by the electrical cable. The outputs that are relevant for fatigue
damage assessment in the electrical cable with the method described in the previous section (axial force
and bending curvature in the cross-section of the cable at the location which is relevant for fatigue)
are then extracted to feed an in-house developed MATLAB routine which implements the evaluation
of the total strain time history as described in Equations (2)–(4). The bending curvature of the cable
is obtained step-by-step as a spatial first derivative of the bending deflection, starting from the time
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histories of the displacements of the two nodes adjacent to the focused location. When the time history
of the total strain in the given location for a certain SS is obtained, a MATLAB routine for the rainflow
cycle counting method [24] is applied and the fatigue damage for the considered SS is evaluated at
the focused location by the comparison of the cycle-counting histogram with the ε-N fatigue curve
shown in Figure 2. The procedure is repeated for all the relevant SSs (for a total of 20 SSs reported in
Table 2). Finally, the damages obtained are multiplied by their pertinent annual occurrences, evaluated
by a fitted Weibull distribution indicating the climate of the FOWT location. The total annual fatigue
damage Dm_year is then evaluated as the sum of the annual fatigue damages induced by the single
SSs, and the fatigue life of the cable Lf is evaluated as the inverse of the annual fatigue damage, while
the design fatigue life Lf_d is obtained by considering a safety factor SF_DNV equal to 10 as indicated
in DNV standards [29].

Table 2. Short-term sea atates (in grey, we show the sea state used for comparison in Figure 5) [30].

SS U10 (m/s) U(H) (m/s) Hs (m) T (s) Cv (m/s) P (%)

1 5.6 7.279722555 0.675 4 0.168 2.24096
2 6 7.799702738 0.675 5 0.180 8.68372
3 7 9.099653194 1.050 4 0.210 1.96084
4 7.80 10.13961356 1.050 6 0.234 14.006
5 8.5 11.04957888 1.550 4 0.255 1.4006
6 9 11.69955411 1.550 5 0.270 10.36444
7 9.40 12.21953429 1.550 7 0.282 20.16864
8 10.8 14.03946493 2.175 5 0.324 5.32228
9 11.2 14.55944511 2.175 7 0.336 15.4066

10 12 15.59940548 2.875 6 0.360 8.96384
11 13.2 17.15934602 3.625 6 0.396 3.08132
12 14.5 18.84928162 4.000 6 0.432 0.56024
13 15.0 19.49925684 4.500 7 0.450 3.64156
14 16.1 20.92920235 5.000 7 0.483 0.84036
15 16.7 21.70917262 4.500 10 0.501 0.84036
16 17.2 22.35914785 4.500 11 0.516 0.28012
17 17.4 22.61913794 5.500 10 0.522 0.56024
18 18 23.39910821 5.500 11 0.540 0.56024
19 19.1 24.82905372 6.750 10 0.573 0.84020
20 20 25.99900913 3.625 12 0.600 0.280

Sum of Probability 100

Figure 8 shows the electrical cable configuration. As already stated, the electrical cable configuration
provided in [9] was used in the simulations. The cable hung from a fixed point on the spar-buoy
platform at the sea surface, and the electrical cable was modeled by 100 elements. The fatigue of the
cable was calculated at different locations along the cable to individuate the most critical cross-section
for fatigue. The fatigue damage was highly influenced by the position of the cross-section along the
cable. For demonstration purposes, in the following, the fatigue life was evaluated for locations A and
B along the cable, as shown in Figure 8.
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5.1. Environmental Conditions and Considered SSs

The SS conditions for fatigue life evaluations are selected from the South China Sea S4 area,
the angle of incidence of wind and waves is fixed to the direction coinciding with to the X-axis,
that is orthogonal to the cable longitudinal extension, since this is recognized to be the most critical
configuration for fatigue in umbilical cables. The chosen sea states are listed in Table 2 in accordance
with the wave scatter diagram of the South China Sea S4 [30] in a one year period. The wind speed
profile, representing the variation of the mean wind with the height above the still water level U(z), is
evaluated by the power-law model shown in Equation (6), where U10 is 10 min average wind speed at
a 10 m height above the sea still water level, and α is the power-law profile [29]:

U(z) = U10·

( z
10

)α
(6)

Additionally, in Table 2, Hs is the wave height and T is the wave period, Cv is the current velocity,
and P is the annual probability of each sea state as evaluated by a Weibull probability distribution
function, which is adopted in fitting with the number of occurrences of the sea states. Equation (7)
describes the Weibull probability density function, while Figure 9 shows the Weibull probability
distribution function.

PDFweibull =
β

V

(
U10

γ

)β
e−(

U10
γ )

β

(7)

where, in this paper, β = 2.49 and γ = 10.4 m/s are the values assumed for the shape parameter and
scale parameter [31] in order to fit the available SS data.

Energies 2020, 13, x FOR PEER REVIEW 13 of 20 

 

 
Figure 8. Electrical cable layout. 

5.1. Environmental Conditions and Considered SSs 

The SS conditions for fatigue life evaluations are selected from the South China Sea S4 area, the 
angle of incidence of wind and waves is fixed to the direction coinciding with to the X-axis, that is 
orthogonal to the cable longitudinal extension, since this is recognized to be the most critical 
configuration for fatigue in umbilical cables. The chosen sea states are listed in Table 2 in 
accordance with the wave scatter diagram of the South China Sea S4 [30] in a one year period. The 
wind speed profile, representing the variation of the mean wind with the height above the still 
water level U(z), is evaluated by the power-law model shown in Equation (6), where U10 is 10 mins 
average wind speed at a 10m height above the sea still water level, and  is the power-law profile 
[29]: = ∙ 10  (6)

Additionally, in Table 2, Hs is the wave height and T is the wave period, Cv is the current velocity, 
and P is the annual probability of each sea state as evaluated by a Weibull probability distribution 
function, which is adopted in fitting with the number of occurrences of the sea states. Equation (7) 
describes the Weibull probability density function, while Figure 9 shows the Weibull probability 
distribution function. =  (7)

where, in this paper, = 2.49 and = 10.4 /  are the values assumed for the shape parameter 
and scale parameter [31] in order to fit the available SS data.  

 
Figure 9. Weibull distribution adopted for U10.



Energies 2020, 13, 3096 13 of 19

Wind turbines are typically designed for 20–25 years [32]. Under average wind conditions, an
onshore wind turbine can produce electricity for 4000–7000 h a year, corresponding to 70%–80% of the
total hours in the year [33]. On the above basis, an average number of 15 windy hours each day for a
total of 365 days during the year (5475 h per year) is considered in evaluating the occurrence of the SSs.

5.2. Fatigue Life Estimation

As already stated, in order to avoid the transitory effects of the simulation in the rainflow method
calculations, the first 400 s are removed from the ANSYS AWQWA analysis output before feeding them
into the cycle-counting MATLAB routine. As an example, Figure 10 shows the time histories of the
cable’s axial force as obtained at location A from the SS 10 simulation in Table 2. The results obtained
for the annual fatigue damage at location A for the 20 SSs are shown in Figure 11, while Figure 12
shows the percentage of the contribution of each SS to the annual fatigue damage. As stated above,
the annual fatigue damage due to a particular SS is evaluated by multiplying the fatigue damage
obtained by the non-linear time history analysis conducted in ANSYS AQWA by the number of annual
occurrences of that SS.
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Finally, Table 3 represents the evaluation of the annual fatigue damage Dm_year due to all 20 of
the SSs considered with their occurrences, obtained as the sum of the annual fatigue damages obtained
for all SSs. From these results, it is evident that location A is critical for fatigue and that it suffers
important damage which quantifies the fatigue life Lf of the umbilical cable to about 10 years, if scaled
by the safety factor SF_DNV which is reduced to 1 year. This result confirms the notion that fatigue in
electrical cables is a weak point for this kind of structure.
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Table 3. Annual fatigue damage and fatigue life estimation.

Sea State Annual Fatigue Damage.
Location A

Annual Fatigue Damage.
Location B

1 3.442737 × 10−3 2.68358 × 10−4

2 1.3747238 × 10−2 9.76374 × 10−4

3 2.526371 × 10−3 2.0901 × 10−4

4 1.9108678 × 10−2 1.10222 × 10−3

5 1.923422 × 10−3 1.13001 × 10−4

6 1.37916 × 10−2 8.4595 × 10−4

7 2.380188 × 10−2 1.44312 × 10−3

8 3.962855 × 10−3 2.18672 × 10−4

9 9.60747 × 10−3 3.96218 × 10−4

10 4.204048 × 10−3 1.88023 × 10−4

11 9.2328 × 10−4 3.25774 × 10−5

12 1.00209 × 10−4 3.50426 × 10−6

13 5.72823 × 10−4 1.28245 × 10−5

14 8.0497 × 10−5 1.65752 × 10−6

15 6.27443 × 10−5 1.28641 × 10−6

16 1.97191 × 10−5 3.1258 × 10−7

17 3.50939 × 10−5 5.99213 × 10−7

18 2.66189 × 10−5 5.45779 × 10−7

19 2.54863 × 10−5 9.23608 × 10−7

20 5.53736 × 10−6 4.84702 × 10−7

Sum of the annual damage for all SSs 9.796831 × 10−2 5.81566 × 10−3

Fatigue life of the cable Lf (years) 10.2074 171.9495
Fatigue design life of the cable Lfd (with the

application of the SF_DNV safety factor (years) 1.02074 17.19495

From Table 3, it is also evident that the evaluated fatigue damage is strongly dependent on the
location along the cable: location B experiences much less damage (more than 10 times lower) than
location A.This difference in the fatigue damage is due to the fact that the experimented oscillations
and bending deformations of the cable decrease from A to B due to the presence of the buoy section of
the cable development, the cable being stabilized by the buoyancy (see Figure 3).

Fatigue life assessment is highly dependent on the cable diameter and the location of the calculation
point for the fatigue analysis. As already mentioned above, two different points are used in the fatigue
analysis in this research in order to calculate the strain amplitude of the points (Figure 8). The suggested
safety factor (SF) of 10, based on recommendations [29], is applied in the present study to assess the
fatigue life.

6. Conclusions

This paper has assessed the fatigue life expected for an umbilical cable that is subjected to the
loading regime of a typical marine environment, and under the non-linear dynamic conditions as they
can be expected in a spar-buoy floating offshore wind turbine.

The main novelty of the paper lies in bringing together the mostly available knowledge to
provide a comprehensive procedure/tool for the fatigue analysis of the vulnerable electrical cables of
FOWTs. Such a tool cannot avoid complex structural dynamics analyses by putting in place simplistic
assumptions about loads, their occurrences and numerical models. In fact, in this paper, the fatigue life
of the cable’s copper conductor was estimated for the FOWT site by setting out an ad-hoc complete
procedure that: (i) computes the total strain time histories in the cable cross-section by the avail of fully
non-linear time histories and numerical analyses of the whole turbine system including the electrical
cable; (ii) evaluates the fatigue damage induced by a number of different sea states and by covering the
wide range of climate and operating conditions of the turbine; (iii) defines annual occurrences of the
different considered sea states for annual damage evaluation purposes based on the sea state statistics.
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Numerical analyses have been conducted by the joint use of two well-established numerical codes for
offshore floating structures, which is important for allowing multi-physic and multi-scale analyses of
such a complex structural system: critical points arising from this coupling have been pointed out (e.g.,
correct consideration of the FSI and large displacements) and the associated analytical steps/choices for
ensuring that the design remains on the conservative side under the current integration level of the
two codes have been discussed, which is also a point of novelty for the paper.

Regarding the fatigue design of FOWT electrical cables, our general engineering findings are:

• floating offshore wind turbine power cables must withstand a dynamic loading regime when
they are attached to the support platform (e.g., spar-buoy) and are susceptible to fatigue failures.
The fatigue life of the examined case is 10 years if not scaled with the safety factor prescribed by
the DNV standards. When a value of 10 is applied as a safety factor, the design fatigue life reduces
to 1 year only;

• the correct evaluation of all the operating (parked versus rotating blades) and climate conditions
(different sea states with their occurrences) is fundamental to obtain reliable estimations of the
annual fatigue damage. This is evidenced by the large difference obtained by the damage evaluated
by different conditions;

• due to the concurrent contribution of both bending and axial strains, and both elastic and plastic
strains to the total strains used for damage evaluation, the fatigue damage evaluated for the cable
is strongly dependent on the location along the cable development where the analysis is focused,
which means that evaluating the fatigue damage in different locations along the cable is crucial
for the analysis.

All the above general considerations suggest that the development of reliable advanced tools for
fatigue damage calculation, like the one presented in this paper, which can include non-linearities
of the structural behaviours, statistics of the climatology at the site, complex dynamic behaviours
of rotating blades and aero-hydrodynamics under large displacements, is an important topic for the
reliable evaluation of the fatigue of electrical cables, something that is a design weakness in floating
offshore wind turbine systems.

Further developments for the research are under development and include:

• consideration of the effects of irregular sea states;
• refinement of the wind action and the fluid-structure interaction model by a two way-coupling

between the two codes used for the analysis, with the inclusion of aerodynamic damping;
• refinement of the electrical cable modeling (currently modeled as an equivalent homogeneous

element);
• exploration of more complex dynamic configuration of the electrical cable (modeling of more than

one turbine, different cable layouts).
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Appendix A

Table A1. Structural properties of the model [25].

Description Unit

Gravitational acceleration (m/s2) 9.80665
Hub mass (kg) 56780

Hub inertia about rotor axis [3 blades] or teeter axis [2 blades] (kg m2) 115926
Generator inertia about HSS (kg m2) 534.116

Nacelle mass (kg) 240000
Nacelle inertia about yaw axis (kg m2) 60789.2 × 106

Yaw bearing mass (kg) 0
Platform mass (kg) 7.46633 × 106

Platform inertia for roll tilt rotation about the platform CM (kg m2) 4.22923 × 109

Platform inertia for pitch tilt rotation about the platform CM (kg m2) 4.22923 × 109

Platform inertia for yaw rotation about the platform CM (kg m2) 1.6423 × 108

Table A2. Hydrodynamic properties of the model [25].

Description Unit

Water density (kg/m3) 1025
Water depth (meters) 320

Displaced volume of water when the platform is in its undisplaced position (m3) 8029.21
Incident wave kinematics model Regular

Analysis time for incident wave calculations (s) 3630
Time step for incident wave calculations 0.25

Significant wave height of incident waves (meters) 6
Peak-spectral period of incident waves 10

Range of wave directions(degrees) 90
Wave Type Stokes 2nd-order wave theory

Low frequency cutoff used in the summation frequencies (rad/s) 0.1
High frequency cutoff used in the summation frequencies (rad/s) 1.9132

Current profile model No Current
Analysis time for wave (s) 2000

Time step for wave (s) 0.0125
Additional linear damping in surge N/(m/s) 100,000
Additional linear damping in sway N/(m/s) 100,000
Additional linear damping in heave N/(m/s) 130,000

Additional linear damping in yaw Nm(rad/s) 13,000,000
Hydrostatic restoring in heave (N/m) 332,941
Hydrostatic restoring in roll (Nm/rad) −4,999,180,000

Hydrostatic restoring in pitch (Nm/rad) −4,999,180,000

Table A3. Mooring line properties of the model [25].

Description Unit

The mass per unit length of the line (kg/m) 77.7066
The line stiffness, product of elasticity modulus and cross-sectional area (N) 384.243 × 106

Diameter (m) 0.09
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