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Abstract: With the growing concern about decreasing CO2 emissions, renewable energy sources
are being vastly integrated in the energy systems worldwide. This will bring new challenges to the
network operators, which will need to find sources of flexibility to cope with the variable-output
nature of these technologies. Demand response and multi-energy systems are being widely studied
and considered as a promising solution to mitigate possible problems that may occur in the
energy systems due to the large-scale integration of renewables. In this work, an optimal model
to manage the resources and loads within residential and commercial buildings was developed,
considering consumers preferences, electrical network restrictions and CO2 emissions. The flexibility
that these buildings can provide was analyzed and quantified. Additionally, it was shown how this
model can be used to solve technical problems in electrical networks, comparing the performance
of two scenarios of flexibility provision: flexibility obtained only from electrical loads vs. flexibility
obtained from multi-energy loads. It was proved that multi-energy systems bring more options
of flexibility, as they can rely on non-electrical resources to supply the same energy needs and
thus relieve the electrical network. It was also found that commercial buildings can offer more
flexibility during the day, while residential buildings can offer more during the morning and evening.
Nonetheless, Multi-Energy System (MES) buildings end up having higher CO2 emissions due to a
higher consumption of natural gas.

Keywords: CO2 emissions; commercial buildings; flexibility quantification; flexibility optimization;
HVAC systems; multi-energy systems; network operation; residential buildings

1. Introduction

1.1. Motivation and Aim

The growing worldwide concern with global warming is leading to the implementation of
crosscutting policies to reduce greenhouse gas emissions, in particular in the transport and electricity
and heat generation sectors, which produced two-thirds of the world’s CO2 emissions in 2016 [1].

The increasing pressure to reduce CO2 emissions in these sectors is leading policy-makers to
incentivize the adoption of emissions-free technologies, such as electrical vehicles (EVs) and renewable
energy sources [2]. Despite the evident environmental benefits that these technologies yield, they also
pose new challenges to network operators, which are facing higher uncertainties due to the volatile
behavior of renewable energy technologies.

As a consequence, the network operation paradigm has been changing in the last decades,
relying increasingly in flexibility provided by generation and demand side assets. As the integration
of renewables is expected to boost in the coming years, it is of utmost importance to find new ways of
increasing energy systems flexibility.
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The increased flexibility needs of future energy systems can primarily be satisfied at the demand
side, where the integration of different energy systems (electricity, heat and gas) will be one of the most
promising options to deliver additional flexibility while keeping the user comfort level and avoiding
service disruption. Multi-Energy Systems (MES) can help in increasing the penetration of renewable
energy sources (RES) due to the possibility of switching between energy sources and large-scale heat
and gas storage systems, which are, in general, cheaper than electricity storage technologies, such as
Li-ion batteries [3].

1.2. Literature Review

MES are able to integrate different energy vectors through the use of resources that can
transform one energy vector to another in order to meet the energy requirements of the system.
The concept of Energy Hub (EH) is being vastly used in the literature to model this kind of systems [4].
Nonetheless, the EH can be used to model any type of building, even those that only use electricity.
EHs are able to model the interactions between production, delivery and consumption of different
energy vectors through a conversion matrix. Electricity, heat, cooling, gas or hydrogen are some of
the vectors that can be integrated within the EH concept. It also considers the efficiency and other
characteristics of the resources present in the hub. A standardized matrix model for the MES was
developed in [5] in order to facilitate the modeling, integration and optimization of these systems.
Later, a linear method was presented in [6], which does not use dispatch factors and thus reduces the
complexity of the problem.

The main advantages foreseen for MES is the flexibility that these systems are able to provide
to the operation of energy systems. Several works focus on the use of different type of resources like
virtual storage by heating/cooling sources, technologies like combined heat and power (CHP) [7],
fuel cells (FC) [8], power-to-gas (P2G) [9], microgrids [10], fuel stations [11] or parking lots [12] in
order to study the advantages that their operation can bring to the energy systems. This flexibility
can be used to help increasing renewables integration [3,13], solving technical problems in electricity
networks [14] and decreasing CO2 emissions [15].

Other studies on flexibility focus on the characteristics that different types of buildings,
like commercial or residential, can offer to system operators or to aggregators. This is due to the
fact that this type of buildings have different demand profiles, with non-coincident peak consumption
periods, and use different types of heating and cooling resources. Commercial buildings usually have
heating, ventilation and air conditioning (HVAC) systems to increase workers and visitors’ comfort
levels and thus are able to provide both heating and cooling energy. This is an important source of
flexibility since it encompass different energy vectors and has a high degree of controllability, namely
through the temperature set-point and fans speed. These systems can be controlled through demand
response (DR) programs as presented in [16] and can participate in electricity markets, as studied
in [17]. Although the majority of the residential buildings do not have centralized HVAC systems to
control space temperature evenly, they usually have individual thermostats to define temperature
set-points for each room. This way, these systems are also able to provide flexibility to system operators
or aggregators, as show in [18,19].

In [18,19] it is also described an home energy management system. This system is responsible for
acquiring and processing the required data from appliances and managing flexible loads, as well as
establishing communication between the aggregator, users and appliances. The main functionalities
of the home energy management system will be used in this work under the name of energy hub
management system (EHMS), which will be responsible for controlling the resources of the EH.

System operators and aggregators are also able to use more flexibility from energy system by
controlling other loads, like water heating [20], lighting [21] or even refrigeration systems [22] present
in some type of commercial and residential buildings, through DR programs. The flexibility provided
by EVs and its benefits to the electrical network is also vastly studied in the literature under the concept
of V2G, as in [23].
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1.3. Contributions and Advantages of the Proposed Model

This paper proposes an innovative approach to optimize the flexibility provided by multi-energy
residential and commercial buildings with the aim of solving technical problems in electricity networks
operation. The model generally contributes to increase networks robustness and may be used by
system operators to increase the quality of service indexes. It aims at minimizing costs, considering
the prices of energy, the costs of using DR programs and the costs of CO2 emissions, while keeping the
network operating within the specified technical limits.

The proposed model considers different sources of flexibility from residential and commercial
buildings. This flexibility comes from changing the flexible load patterns or by managing the
resources within the buildings. The flexible loads include thermal loads, like space heating
and cooling, water heating or refrigeration systems, and also other loads, like EVs or lighting.
Space heating and cooling is assumed to be controlled through temperature set-points defined for
centralized HVAC systems and thermostats. Although only some type of resources are used in this
work, such as electric boilers (EB), gas boilers (GB), CHPs, air conditioners (AC) and heat pumps
(HP), the proposed model is prepared to include other resources like P2G or combined cooling, heat
and power (CCHP). The studies performed look forward to a future where these technologies are
widely used, since although these resources and their combinations are not extensively used nowadays,
the situation may change in the coming years as the costs of these technologies have been showing a
clear decreasing trend.

The optimization problem used assumes that consumers provide the parameters necessary for
its resolution, like temperature ranges, lighting levels or EVs charging needs. The optimization
problem differs from [7–10,14,16–23] by allowing the participation of different sources of load
flexibility (e.g., PVs, EVs, HVAC systems, thermal loads, lighting) in DR programs and by considering
the constraints imposed by the consumers needs and by the technical characteristics of the
electrical network.

In the literature, the models developed for HVAC systems considering thermal models are
usually non-linear models [24,25] or quadratic [26]. In order to linearize these models, some works
use a sequential linearization approach [17] or assume a linear model with parameters calculated
using regression methods [16]. A new linear model for HVAC systems was developed in this work.
This linear model differs from the other linearized models by discretizing the air flow rate supply
variable. This way, the approach for the linearization of the models is simpler as it does not require to
be done individually for each building.

With this model, the authors studied and compared the flexibility that can be provided by
buildings to electrical network operators considering two scenarios: the buildings only have electrical
loads (only-electrical buildings) and the buildings have loads that consume different types of energy
(MES buildings). In the literature there are several studies regarding the advantages of MES, but this
study specifically compares the same buildings with two different structures: one purely electrified and
other with MES. Electrification and MES are two different perspectives of looking into future scenarios
of the power systems development. They have aroused great interest in the scientific community and
this study offers a new level of comparison of both of them.

Furthermore, the flexibility offered by commercial and residential buildings is studied and
compared. There are several works in the literature that study the flexibility that commercial [16,17]
and residential [18,19] buildings are able to offer to network operators or aggregators but these works
only focus on each type of buildings individually. Commercial and residential buildings have different
patterns of consumption which may reflect the availability of flexibility in different times of the day.
In this work, it was considered the operation of both type of buildings and the flexibility that each
building is able to provide was compared.

The proposed approach was applied to a case study that includes an electrical network with
technical problems. The results achieved show how the model manages the flexibility from the
resources available to overcome the identified technical problems. In addition to the global flexibility
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quantification, the contribution of different flexible resources was also analyzed. The importance
of a detailed model to explore every source of flexibility within buildings in order to mitigate any
problem present in power networks is thus highlighted.

Lastly, an annual analysis of the different cases was also performed with emphasis on the costs,
energy consumed and CO2 emissions.

1.4. Paper Organization

The rest of the paper is organized as follows: Section 2 explains the problem and the model
developed in this study; in Section 3, the mathematical model of the proposed approach is presented;
Section 4 provides the case studies and numerical results; finally, Section 5 presents the main findings
of the work developed.

2. Problem and Model Description

This work focus on the flexibility that can be provided by residential and commercial buildings
to a system operator. This flexibility is obtained by changing the resources’ point of operation.
The buildings’ flexibility will be quantified and analyzed for two scenarios: when they have resources
that only use electricity and when they have multi-energy resources. The model developed allows
the system operator to optimize the flexibility of the buildings’ resources through a DR-based
program in order to solve network technical problems. Therefore, the model assumes that the system
operator is able to control the resources and loads of the EHs by communicating with their EH
management system.

2.1. System Operator

The system operator is responsible to satisfy the energy needs of the consumers, while maintaining
the network operating within the predefined technical limits. When the network is operating in normal
conditions, systems operators may use the clients’ flexibility to minimize operating costs (OPEX) or
to maximize RES integration. When technical problems occur, flexibility may be used to solve them.
Of course that consumers should be paid for the flexibility provided. The cost of this DR-based service
is assumed to be established in a contract set between the system operator and the consumer.

The consumers present in the network are commercial and residential buildings. They are
represented by EHs and it is assumed that they have an EHMS integrated. The EHMS is responsible
for the control of all the assets within the EH, to fulfill the consumers’ load requirements and optimize
the EH. When needed, the system operator communicates with the EHMSs to request the delivery
of flexibility.

EHs are connected to the electrical network in a certain point and they consume or inject electricity
in that same point. This way, the system operator is able to manage the consumption or injection of
electricity in that point by by using the flexibility of the EHs. When needed, the system operator orders
the resources to decrease or increase the consumption of one energy vector or change the load patterns
through the DR program, always taking into account the limits predefined by the client.

2.2. Energy Hub

EHs represent commercial and residential buildings and they are formed by input and output
energy points, conversion technologies, storage systems and different types of loads (Figure 1).

The input energy points considered are the electricity consumed from the electrical network and
from local PVs and the gas consumed from the gas network. The output point is the electricity injected
into the electrical network.

Conversion technologies can transform one type of energy to another and storage systems can
store energy to be used in another time.

The loads to be satisfied include electricity, gas, heating and cooling loads. They can be inflexible
(e.g., electrical equipment and cookers) or flexible (lighting, space heating and cooling, water heating,
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refrigeration and EVs). Inflexible loads have to be completely satisfied while flexible loads can be
modified, according to the flexible limits imposed by the consumers, in order to optimize the EH.

Figure 1. Example of an energy hub scheme.

2.3. Energy Hub Management System

As previously explained, an EHMS is responsible for controlling the assets of the EH in order
to fulfill the requirements of the consumers. They are also responsible to communicate with the
system operator to inform their energy needs and their availability to participate in the DR program.
These requirements are initially set in the EHMS and they involve defining different restrictions and
flexibility levels for each type of load. The definition of requirements for each type of load, resources
and storage system is explained in the following paragraphs. A scheme of the EHMS is presented in
Figure 2. This concept was adapted from [27] and extended for the application in an EH.

The space heating and cooling temperature requirements for each space are initially
communicated by consumers to the EHMS and the actual temperature of each room is calculated
by the EHMS using a thermal model. The HVAC systems control the heating and cooling power of
commercial buildings and thermostats control the heating and cooling power of residential buildings.
These systems are responsible for activating the necessary resources to provide the cooling and heating
power according to the temperature requirements of the consumers and the actual room temperature
calculated by the EHMS.

The consumers communicate the temperature for water heating and refrigeration and the
range of acceptable temperatures (i.e., their temperature flexibility) to the EHMS. Water heating
and refrigeration loads are also defined by thermodynamic models and calculated by the EHMS.
Electric equipment, lighting and gas cooking loads are defined according to the profiles sent by the
consumers. Lighting in commercial buildings has a flexibility range that is also defined by the clients.

The restrictions of EVs are defined by the consumers and they involve defining the hours when
the EVs will connect and disconnect from the EH and the state-of-charge (SOC) desired at the moment
of disconnection.

Storage systems, PVs and other conversion resources have no requirements and can be managed
as better fits the EHMS. The only limits imposed are related with their technical characteristics.
In summary, the inputs that the consumers need to provide to configure the EHMS are the following:
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• Spaces temperature set points and flexibility bands;
• Hot water temperature and flexibility band;
• Refrigeration systems temperatures and flexibility bands;
• Profiles of electrical equipment, lighting and cooking;
• Lighting flexibility bands;
• EVs connection and disconnection hours;
• Final SOC of the EVs.

These inputs need to be provided only once. After that, the consumer may provide new inputs if
he wants to reconfigure the EHMS.

With all this information, the EHMS will calculate the energy required by the EH and manage
the resources, storage systems and flexible loads in order to satisfy all the requirements imposed by
the consumers.

Figure 2. Energy hub management system scheme, adapted from [27].

3. Model Constraints

The model developed in this work and presented in this section has the goal of optimizing the
costs of the resources present in the network in order to fulfill all technical requirements from the
network and from the resources.

3.1. Objective Function

The objective function in Equation (1) considers the costs of buying electricity as seen in
Equation (2) and gas in Equation (3), the costs of DR in Equation (4), the profit of selling electricity in
Equation (5), the costs of CO2 emissions (6) and penalization costs for voltage violations in Equation
(7). The costs of DR consider the modification of the profile of lighting and temperature of rooms,
water and refrigeration systems.

Cost = Costelectricity + Costgas + CostDR − Costsold + CostCO2
+ Costviol (1)

Costelectricity = ∑
j

∑
t

Iw
j,t.π

elec
t , ∀j ∈ {EB} (2)
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Costgas = ∑
j

∑
t

Ig
j,t.π

gas
t , ∀j ∈ {EB} (3)

CostDR = ∑
j

∑
t
(ΘDR,room,− + ΘDR,room,+

i,t+1 + ΘDR,water,−
i,t+1 + ΘDR,water,+

i,t+1

+ΘDR,re f r,−
i,t+1 + ΘDR,re f r,+

i,t+1 + PDR,light,−
i,t+1 + PDR,light,+

i,t+1 ).πDR
t , ∀j ∈ {EB}

(4)

Costsold = ∑
j

∑
t

Ow
j,t.π

sold
t , ∀j ∈ {EB} (5)

CostCO2
= ∑

j
∑

t
(Iw

j,t.π
CO2,elec
t + Ig

j,t.π
CO2,gas
t ), ∀j ∈ {EB} (6)

Costviol = ∑
j

∑
t

Vviol
j,t .πviol

t , ∀j ∈ {EB} (7)

The objective function is subjected to operational network constraints which are presented in the
following subsections.

3.2. Network Constraints

In this section, the operation of an electrical network is presented. Some of the variables presented
are linked with the variables of the EH modeling in Section 3.3, as it will be discussed.

3.2.1. Power Flow Constraints

The considered network is a radial distribution network. A branch power flow model
(DistFlow) [28,29] was considered and modeled through Equations (8)–(13).

Pi,j = Pj + ∑kj−kPj,k + ri,j.I
2i,j , ∀i, j ∈ {NL} (8)

Qi,j = Qj + ∑
kj−k

Qj,k + xi,j.I2
i,j, ∀i, j ∈ {NL} (9)

V2
j = V2

i − 2.(ri,j.Pi,j + xi,j.Qi,j) + (r2
i,j + x2

i,j).I
2
i,j, ∀i, j ∈ {NL} (10)

Vj <= Vj <= Vj, ∀j ∈ {NB} (11)

Ii,j <= Ii,j <= Ii,j, ∀i, j ∈ {NB} (12)

I2
i,j.V

2
i = P2

i,j + Q2
i,j, ∀i, j ∈ {NL} (13)

The mathematical formulation presented above is non-linear and non-convex. This formulation
was simplified using a linear version of the DistFlow, the LinDistFlow [30,31] in Equations (14)–(17).
In this linear approximation, the branch loss terms (r2

i,j + x2
i,j).I

2
i,j were neglected. This is possible

if it is assumed that the line losses are much smaller than the branch power terms Pi,j and Qi,j.
Voltages are also nearly balanced and (Vi −V0)

2 ≈ 0. These assumptions will lead to the expression
V2

i ≈ −V2
0 + 2.V0.Vi. The substitution of this term in Equation (10) leads to Equation (16). Differently

from the DC-power flow, this model considers lines resistance and models active and reactive power
flow. Variable Vviol

j represents a voltage violation and it is used to allow the problem to converge even

when a solution with all the voltages inside the allowable limits (lower limit—Vj ; upper limit—Vj)
does not exist. This value has a high penalization in the objective function.

Pi,j = Pj + ∑
kj−k

Pj,k, ∀i, j ∈ {NL} (14)

Qi,j = Qj + ∑
kj−k

Qj,k, ∀i, j ∈ {NL} (15)
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Vj = Vi −
ri,j.Pi,j + xi,j.Qi,j

V0
, ∀i, j ∈ {NL} (16)

Vj −Vviol
j <= Vj <= Vj, ∀j ∈ {NB} (17)

The power flow was calculated for each instant t. It should be mentioned that this model can only
be applied in radial networks.

Equation (18) defines that the power Pj in each bus is related with the power of all EHs in that
bus. The calculation of the power Iw

n,t for each EH is presented in Section 3.3.

Pj = ∑
n

Iw
n,t ∀n ∈ {EH j}, ∀j ∈ {NB}, (18)

3.2.2. Generator Units Constraints

Equations (19) and (20) define the limits of PV and wind generators.

Pwind
t,n <= Pwind

t,n <= Pwind
t,n , ∀n ∈ {NW} (19)

PPV
t,n <= PPV

t,n <= PPV
t,n , ∀n ∈ {NPV} (20)

3.3. Energy Hub Modelling Constraints

In this section, the operation for an EH is presented. Some of the variables are linked with the
variables of the network modelling in Section 3.2 and of the resources modelling in Section 3.4, as it
will be explained.

3.3.1. Load

Equations (21)–(24) represent the consumption of each type of load. The load of each energy
vector is equal to the sum of the energy coming from the energy network, storage systems or the
converters i generating that energy vector.

Lw
t = ∑

i
Ei,load

t , ∀i ∈ {Nw, Sw, Cw, EV} (21)

Lh
t = ∑

i
Ei,load

t , ∀i ∈ {Sh, Ch} (22)

Lc
t = ∑

i
Ei,load

t , ∀i ∈ {Sc, Cc} (23)

Lg
t = ∑

i
Ei,load

t , ∀i ∈ {Ng} (24)

The electrical load Lw
t is equal to the sum of the electricity needed for EVs, HVAC systems,

refrigeration systems, electrical equipment and lighting, as seen in Equation (25). The heating load
Lh

t is equal to the sum of the heat needed to supply the heating for spaces and water as seen in
Equation (26). The cooling load Lc

t is equal to the sum of the cooling needs for space cooling as seen in
Equation (27). The gas load Lg

t is equal to the sum of gas needed for cooking as seen in Equation (28).

Lw
t = ∑

n
PEV,cha

n,t + ∑
i

P f an
i,t + Pre f r

i,t + Pequip
i,t + Plight

i,t , ∀i ∈ {R}, ∀n ∈ {EV} (25)

Lh
t = ∑

i
Ph,resources

i,t + Pwater
i,t , ∀i ∈ {R} (26)

Lc
t = ∑

i
Pc,resources

i,t , ∀i ∈ {R} (27)
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Lg
t = ∑

i
Pcook

i,t , ∀i ∈ {R} (28)

3.3.2. Energy Hub Inputs

Equation (29) and (30) represents the energy inputs of each EH. Each energy input is equal to the
sum of the energy that goes from the energy network to the storage systems, loads and converters i
that consume that energy vector.

Iw
t = ∑

i
Enet,i

t , ∀i ∈ {Lw, Sw, Cw, EV} (29)

Ig
t = ∑

i
Enet,i

t , ∀i ∈ {Lg, Cg} (30)

3.3.3. Energy Hub Outputs

Equations (31) represents the electrical output of each EH, i.e., the electricity sold to the network.
The energy output is equal to the sum of the energy that goes from the EVs, storage systems or
converters i generating electricity to the electrical network.

Ow
t = ∑

i
Ei,net

t , ∀i ∈ {Sw, Cw, EV} (31)

3.3.4. Energy Converters and Storage Systems Input

Equations (32)–(35) represent the energy inputs of each type of storage system or converter inside
the EH. The energy input of each system j is equal to the sum of the energy that goes from the network,
storage systems or converter i generating that energy vector to that system.

Ej,in
t = ∑

i
Ei,j

t , ∀i ∈ {Nw, Sc, Gw}, j ∈ {Sc, Cw} (32)

Ej,in
t = ∑

i
Ei,j

t , ∀i ∈ {Nh, Sc, Gh}, j ∈ {Sc, Ch} (33)

Ej,in
t = ∑

i
Ei,j

t , ∀i ∈ {Sc, Gc}, j ∈ {Sc, Cc} (34)

Ej,in
t = ∑

i
Ei,j

t , ∀i ∈ {Ng}, j ∈ {Cg} (35)

Equation (36) represent the limits of the energy inputs of each storage system or converter j.

0 <= Ej,input
t <= Pj, ∀j ∈ {S, C} (36)

3.3.5. Energy Resources Output

Equations (37) to (39) represent the output of the storage systems or resources present in the
EH. The output of each system is the sum of energy that goes from that system i to the network,
storage system, load or resource j that consumes that energy vector. It should be noted that the
electricity sold to the electrical network is considered in Equation (37).

Ei,out
t = ∑

i
Ei,j

t , ∀i ∈ {Sw, Gw}, j ∈ {Nw, Sw, Lw, Cw} (37)

Ei,out
t = ∑

i
Ei,j

t , ∀i ∈ {Sh, Gh}, j ∈ {Sh, Lh, Ch} (38)
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Ei,out
t = ∑

i
Ei,j

t , ∀i ∈ {Sc, Gc}, j ∈ {Sc, Lc, Cc} (39)

3.4. Load, EVs, Storage and PV Contraints

In this section the constraints of the different loads, EVs, storage systems and PVs are presented.
As mentioned, some of the variables are linked with the variables from the energy huh modelling in
Section 3.3. In Table A1 of Appendix A, it is synthesized the values of the main parameters used in the
models presented in this section.

3.4.1. Thermal Model

The temperature in a room is calculated by Equation (40) [19]. Equation (41) set the temperature
at which the room has to be, taking into account the temperature set by the consumer Θ̂room

i,t and
the temperature changes due to the participation in the DR program. Equations (42) and (43) define

the limits imposed by the consumers for the increase Θ̂
DR,room,+
i,t+1 and decrease Θ̂

DR,room,−
i,t+1 of the

temperature in a room for the participation in the DR program.

Θroom
i,t+1 = βt.Θroom

i,t + (1− βt)(ΘO
t + Ri.(Ph

i,t − Pc
i,j,t + PIn f

i,t )) + li,t, ∀i ∈ {R} (40)

Θroom
i,t = Θ̂room

i,t −ΘDR,room,−
i,t+1 + ΘDR,room,+

i,t+1 , ∀i ∈ {R} (41)

0 <= ΘDR,room,−
i,t+1 ,<= Θ̂

DR,room,−
i,t+1 , ∀i ∈ {R} (42)

0 <= ΘDR,room,+
i,t+1 <= Θ̂

DR,room,+
i,t+1 ∀i ∈ {R} (43)

Equation (44) defines the infiltration rate present in the rooms [32].

PIn f
i,t =

ACHi.vi.CVair.(ΘO
i −Θroom

i,t+1)

3600
, ∀i ∈ {R} (44)

In order to calculate the energy necessary for the cooling and heating needs, it is necessary to
define first the thermal parameters for each room. Equation (45) defines the thermal resistance [33,34].

Ri =
Xi

ki.Awall
i

, ∀i ∈ {R} (45)

The thermal reactance is calculated by using the heat capacity from the air in the room and from
the walls. For the sake of simplicity, the outside walls and windows parameters were not considered
in this study. The heat capacity contribution of the materials inside the room were not considered as
well. Equation (46) defines the thermal reactance [35].

Ci = CVair.vi + cwall .Awall
i .Xi.di, ∀i ∈ {R} (46)

Parameters ACHi, vi, Xi, ki, Awall
i , cwall

i and di were assumed according to the information
from [36].

3.4.2. HVAC System

Commercial buildings have an HVAC system installed. Their typical configuration is represented
in Figure 3. The cooling coil provides the cooling power and the heating coils in each room provide
the heating power. There is a supply fan which moves the cooling or heating air throughout the entire
system. For each room there is also an individual variable air volume (VAV) box connected to the
HVAC system, which regulates the temperature inside a room.
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Figure 3. Scheme of a heating, ventilation and air conditioning (HVAC) system [37].

Equations (47)–(50) define the cooling and heating power provided by the respective coils [16].

Pc,coil
i,t = Pc

i,t, ∀i ∈ {R} (47)

Ph,coil
i,t = Ph

i,t, ∀i ∈ {R} (48)

Pc,coil
i,t = cair.mi,t.(Θroom

i,t −ΘC,c
t ), ∀i ∈ {R} (49)

Ph,coil
i,t = cair.mi,t.(Θ

C,h
t −Θroom

i,t ), ∀i ∈ {R} (50)

The coils are air-water heat exchangers and Equations (51) and (52) define the power needed
to power the cooling and heating coils [26], respectively, from the heating and cooling resources of
the EH.

Pc,resources
i,t =

Pc,coil
i,t

ηc,coil .COPc,coil , ∀i ∈ {R} (51)

Ph,resources
i,t =

Ph,coil
i,t

ηh,coil .COPh,coil , ∀i ∈ {R} (52)

The relationship between the fan power and the airflow is between a quadratic and a cubic
function, depending on the fan system [33]. This behavior is explained by the fan needing more power
to compensate the leakage in the system, when an increase in airflow is necessary. In this work, it was
assumed that the fan system model used is the same as the one presented in [16], as it is a model
for commercial buildings. This model is defined in Equation (53) and it is applied to the commercial
buildings considered in this work. The values of b1, b2, b3 and b4 are taken from the same reference.
Nonetheless, if the required data was available, they could be identified using several techniques,
including the ordinary least squares technique [25].

P f an
t = b1.m3

t + b2.m2
t + b3.mt + b4 (53)

The total airflow supplied by the fan system is equal to the summation of the individual airflow
of each room as seen in Equation (54).

mt = ∑
i

mi,t, ∀i ∈ {R} (54)

The value of ηh and ηc is 0.98 and the value of COPh and COPc is 5.92. The discharge air cooling
temperature ΘC,c

t is set to 12.5 ◦C and the discharge air heating temperature ΘC,h
t is set to 50 ◦C.

The values to calculate the fan power are the following: b1 = 2.57 × 10−12, b2 = −4.45 × 10−9,
b3 = 1.46× 10−4 and b4 = 4.71× 10−3. Each fan has a limit of 20,000 cfm.

Equation (49) present a non-linearity between two continuous variables mi,t and Θroom
i,t .

Variable mi,t was discretized by assuming binary variables b f an
j,i,t that are multiplied by a small value
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of 100 cfm. This way, the problem can optimize the supply air flow rate with a rate of 100 cfm.
By assuming a maximum of 20,000 cfm for a fan, there would exist 200 new binary variables. This
would increase the complexity of the problem. Thus, instead of increasing the values by 100 each time,
the supply air flow rate can be increase by 100, 200, 300, 400, 2000, 3000, 4000 and 10,000 cfm. This way,
the problem can still look for solutions between 0 and 20000 cfm while needing only 8 new binary
variables. This linearity is present in Equation (55).

mi,t = ∑
n

bn
i,t.m

n, ∀n ∈ {M}, ∀i ∈ {R} (55)

Nonetheless, with the discretization of mi,t there is still a non-linearity due to the multiplication
of the binary variables bn

i,t and Θroom
i,t . This non-linearity can be solved by replacing that multiplication

by a new continuous variable yi,t, as represented in Equation (56), and by adding the restrictions
represented by Equations (57)–(60).

yi,t = bn
i,t.Θ

room
i,t , ∀i ∈ {R}, ∀n ∈ {M} (56)

yi,t <= bn
i,t.Θ

room
i,t , ∀i ∈ {R}, ∀n ∈ {M} (57)

yi,t <= Θroom
i,t , ∀i ∈ {R} (58)

yi,t >= Θroom
i,t −Θroom

i,t .(1− bn
i,t), ∀i ∈ {R}, ∀n ∈ {M} (59)

yi,t >= 0, ∀i ∈ {R} (60)

With the discretization of mi,t, Equation (53) also presents several non-linearities due to the
multiplication of several binary variables. It was considered an additional binary variable y that
replaces the multiplication of the two binary variables. In Equations (61)–(63) it is presented a general
approach for the linearization of all these non-linearities.

y <= b1 (61)

y <= b2 (62)

y >= b1 + b2 − 1 (63)

3.4.3. Thermostats

Contrary to the HVAC systems, thermostats used in residential buildings control directly the
heating and cooling resources according to the thermal model defined in Equation (40). This way,
Pc

it and Ph
i,t are the power needs that are requested from the heating and cooling converters as seen in

Equations (64) and (65).
Pc,resources

i,t = Pc
i,t, ∀i ∈ {R} (64)

Ph,resources
i,t = Ph

i,t, ∀i ∈ {R} (65)

3.4.4. Water Heating

The power necessary to heat the water to the required temperature is presented in
Equation (66) [20]. The required temperature of the water is calculated according to the temperature
defined by the consumer Θ̂water

i,t and the changes from the DR program as seen in Equation (67).

The consumers also define the temperature limits of the DR program Θ̂
DR,water,−
i,t+1 and Θ̂

DR,water,+
i,t+1 ,

as present in Equations (68) and (69).

Pwater
i,t = cw.mi.(Θwater

i,t −Θwater,i
j ), ∀i ∈ {R} (66)
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Θwater
i,t = Θ̂water

i,t −ΘDR,water,−
i,t + ΘDR,water,+

i,t , ∀i ∈ {R} (67)

0 <= ΘDR,water,−
i,t+1 ,<= Θ̂

DR,water,−
i,t+1 , ∀i ∈ {R} (68)

0 <= ΘDR,water,+
i,t+1 <= Θ̂

DR,water,+
i,t+1 , ∀i ∈ {R} (69)

The value of cw is 4.18 J/g·◦C (considering water at 18 C◦) and initial temperature Θwater,i
j is set to

15 ◦C in Winter. The mass of water mi is defined according to the water consumption profile.

3.4.5. Refrigeration

The model used in this work to represent a refrigerator is represented in
Equations (70) and (71) [22]. The required temperature of the refrigeration system is calculated
according to the temperature defined by the consumer Θ̂re f r

i,t and the changes from the DR program (72).

The consumers also define the temperature limits of the DR program Θ̂
DR,re f r,−
i,t+1 and Θ̂

DR,re f r,+
i,t+1 as

present in Equations (73) and (74).

Θre f r
t+1 = εiΘ

re f r
i,t + (1− εi).(Θroom

i,t − COPre f r.
Pre f r

i,t

a
) + lt, ∀i ∈ {R} (70)

εi = e
−∆t.a
mcap , ∀i ∈ {R} (71)

Θre f r
i,t = Θ̂re f r

i,t −ΘDR,re f r,−
i,t + ΘDR,re f r,+

i,t , ∀i ∈ {R} (72)

0 <= ΘDR,re f r,−
i,t+1 ,<= Θ̂

DR,re f r,−
i,t+1 , ∀i ∈ {R} (73)

0 <= ΘDR,re f r,+
i,t+1 <= Θ̂

DR,re f r,+
i,t+1 , ∀i ∈ {R} (74)

The coefficient of performance COPre f r was assumed to be 3 and the insulation a was assumed to
be 15 kJ/◦C for residential systems and 850 kJ/◦C for supermarket systems.

3.4.6. Other Loads

The power necessary to supply energy to cooking and other electrical equipment, according to
their load profiles, is defined in Equations (75) and (76).

Pequip
i,t = Lequip

i,t , ∀i ∈ {R} (75)

Pcook
i,t = Lcook

i,t , ∀i ∈ {R} (76)

The power necessary to supply energy for lighting is defined in Equation (77), which already takes
into account the changes due to the participation in the DR program. This participation is constrained

by the limits imposed by the consumers P̂
DR,light,−
i,t+1 and P̂

DR,light,+
i,t+1 , as seen in Equations (78) and (79).

Plight
i,t = Llight

i,t − PDR,light,−
i,t + PDR,light,+

i,t , ∀i ∈ {R} (77)

0 <= PDR,light,−
i,t+1 ,<= P̂

DR,light,−
i,t+1 , ∀i ∈ {R} (78)

0 <= PDR,light,+
i,t+1 <= P̂

DR,light,+
i,t+1 , ∀i ∈ {R} (79)
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3.4.7. Electric Vehicles

The operation of EVs is defined by constraints (80)–(85). Equation (80) defines the state-of-charge
(SOC) of the EV. Equation (81) represents the limit of the EV SOC. Equations (82) and (83) set the range
for charging and discharging power.

SOCEV
n,t+1 = SOCEV

n,t + PEV,cha
n,t .ηEV,cha

n −
PEV,dis

n,t

ηEV,dis
n

, ∀i ∈ {EV} (80)

SOCEV
n,t <= SOCEV

n,t <= SOCEV
n,t , ∀i ∈ {EV} (81)

0 <= PEV,cha
n,t <= bEV,cha

n,t .PEV,cha
n,t , ∀i ∈ {EV} (82)

0 <= PEV,dis
n,t <= bEV,dis

n,t .PEV,dis
n,t , ∀i ∈ {EV} (83)

Equation (84) assures that EVs do not charge and discharge at the same time.

bEV,cha
n,t + bEV,dis

n,t <= 1, ∀i ∈ {EV} (84)

EVs have to be charged according to the consumer preferences. Consumers should define the

hour of day (HD) that an EV should be charged and the minimum state-of-charge required ŜOC
EV

,
taking into account the limits of charging. This is defined in Equation (85).

SOCEV
n,HD >= ŜOC

EV
, ∀i ∈ {EV} (85)

It should be noted that the sum of the charging power of all EVs is the same as the variable
EEV,input

t used to model the EH in Section 3.3.4. Similarly, the sum of the discharging power of all EVs
is the same variable as EEV,output

t used in Section 3.3.5. This is presented in Equations (86) and (87).

EEV,in
t = ∑

n
PEV,cha

n,t , ∀i ∈ {EV} (86)

EEV,out
t = ∑

n
PEV,dis

n,t , ∀i ∈ {EV} (87)

3.4.8. Storage Systems

The operation of storage units installed in the EH is defined by constraints (88)–(92). Equation (88)
defines the SOC of the storage system. Equation (89) represents the storage limit capacity.
Equations (90) and (91) set the range for charging and discharging power.

SOCsto
n,t+1 = SOCsto

n,t + Psto,cha
n,t .ηsto,cha

n −
Psto,dis

n,t

ηsto,dis
n

, ∀n ∈ {S} (88)

SOCsto
n,t <= SOCsto

n,t <= SOCsto
n,t , ∀n ∈ {S} (89)

0 <= Psto,cha
n,t <= bsto,cha

n,t .Psto,cha
n,t , ∀n ∈ {S} (90)

0 <= Psto,dis
n,t <= bsto,dis

n,t .Psto,dis
n,t , ∀n ∈ {NS} (91)

As storage system cannot charge or discharge at the same time, Equation (92) defines
this constraint.

bsto,cha
n,t + bsto,dis

n,t <= 1, ∀n ∈ {S} (92)
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Again, it should be noted that the sum of the charging power of all storage devices is the same
as the variable Ei,input

t , ∀i ∈ {S} used to model the EH in Section 3.3.4. Similarly, the sum of
the discharging power of all storage devices is the same variable as Ei,output

t , ∀i ∈ {S} used in
Section 3.3.5. This is presented in Equations (93) and (94).

Ei,in
t = Psto,cha

n,t , ∀i, n ∈ {S} (93)

Ei,out
t = Psto,dis

n,t , ∀i, n ∈ {S} (94)

3.4.9. PVs

Equation (95) defines the power generated by a PV.

PPV
t <= PPV

t <= PPV
t (95)

4. Case Study and Results

4.1. Case Study Description

Figure 4 presents the network used as a test case. It is a modified IEEE 37 node test feeder with
penetration of wind and solar energy. There is 2.85 MW of wind generation at bus 3, 9, 10, 14 and 20,
and 1 MW of solar generation installed at bus 4 and 20.

Figure 4. Adapted IEEE 37 node test feeder.

This network has several loads, including residential buildings, commercial buildings, an hospital,
warehouses, medium and small offices and a supermarket. The location and number of buildings
in the network is presented in Table 1. This table also presents the type of loads of these
buildings, besides space heating and cooling, lighting and electrical equipment. The supermarket
has 10 refrigeration systems, while the residential buildings only have 1 system each. Refrigeration
systems have a maximum power of 5 kW for supermarkets and 1 kW for residential buildings.

These buildings are represented by the models shown in Sections 2 and 3. They are supplied by
the electrical network, the gas grid and by local PVs. The technical restrictions of the gas grid were not
considered in this study.
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Table 1. Information of the buildings in the network.

Buildings Bus Number of Buildings Other Loads

Residential 5, 8, 9, 16, 18, 19 10, 5, 5, 5, 5, 5 Refrigeration, Water
Small Office 12, 14 5, 5 Water

Medium Office 3, 11 1, 1 Water
Warehouse 17, 21 1, 1 -

Supermarket 20 1 Refrigeration, Water
Hospital 7 1 Water

The resources assumed for each case, i.e., only electrical buildings and MES buildings,
are presented in Table 2. All the buildings also have heat storage systems installed. The efficiency of
EB is 0.95, GB is 0.9 and the efficiency of CHP for electricity is 0.35 and for heat is 0.45. The efficiency
of heating storage systems is 0.88. The COP of both HP and AC systems is 3.45.

Table 2. Maximum power of resources: only electrical buildings vs. Multi-Energy System
(MES) buildings.

Resources (kWh)

Buildings Electrical MES
EB HP AC GB CHP HP AC

Residential 1 1 1 1 - 1 1
Small Office 10 - 5 5 10 - 5

Medium Office 100 - 75 50 100 - 75
Warehouse 50 50 50 50 - 50 50

Supermarket - 100 50 - 50 50 50
Hospital 200 - 100 100 300 - 100

In every building, 10% of the occupants have an EV. EVs have a charging and discharging power
limit of 10 kW and an efficiency of 0.9. The battery capacity of these vehicles varies between 35 kWh
and 100 kWh.

PVs are installed in every building: 10 kW in small offices, 50 kW in medium offices, 20 kW in
warehouses, 20 kW in the supermarket and 200 kW in the hospital. The systems’ efficiency is 0.227.

The parameters and profiles of each building are taken from [36]. The assumptions for the
parameters of the models were already presented in Section 3.

The wind and PV generation profiles are presented in Figure 5 and they were taken from [38],
for the day 7 January 2019. The outside temperature is presented in Figure 6 and was taken
from [38] for the same day. The average monthly wind and PV generation profiles are presented in
Figures A1 and A2 in the Appendix B and they were calculated with the information taken from [38]
for the years 2017 and 2018. The average monthly outside temperature is presented in Figure A3 in the
Appendix B and was calculated from the information taken from [38] for the years 2017 and 2018.

Figure 5. Profiles of solar and wind generation.
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Figure 6. Profiles of outside temperature.

In Figure 7, the prices of electricity and gas are shown. They were taken from ENTSO-E [39] and
from the MIBGAS platform [40], respectively, for the day 7 January 2019. The price of the electricity
sold to the grid was assumed to be 0.5 of the electricity price in order to enforce self-consumption
and avoid injection into the grid. The average monthly electricity and gas prices are presented in
Figures A4 and A5 in the Appendix B and they were calculated with the information from [39] and [40],
respectively, for the years 2017 and 2018.

Figure 7. Electricity and gas prices.

The price of DR services related with temperatures flexibility was assumed to be 0.5 e/◦C.
This figure was assumed for the purpose of this work, as no supporting reference was found in the
literature. Although it is outside the scope of this work, it is a very interesting topic that should be
further studied in a dedicated work.

The price of each voltage violations was assumed to be very high to force the optimisation model
to give priority to the resolution of these technical problems. This value was set to 10,000,000 e.

The cost of the CO2 emissions from the natural gas is calculated by considering the average
market price of CO2 emissions and a factor representing the total emissions per MWh of natural gas
consumed. The CO2 emissions market price considered was 25 e/tonCO2 for every month and it was
taken from [41], whereas the emission factor was set to 0.2 tonCO2/MWh and it was taken from [42].
This means that the CO2 emissions cost for natural gas was set to 5 e/MWh for the entire year.

The cost of the CO2 emissions from electricity is calculated as follows:

• First, the percentage of coal and natural gas in the electricity generation mix is determined,
defining a daily profile for each of these resources;

• Then, the daily profiles are multiplied by the CO2 emissions market price for that day and by
a factor representing the total emissions of each resource per MWh of generated electricity.
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The daily profiles of coal and natural gas in the electricity generation mix were calculated with
the information from [43] for the years 2016, 2017 and 2018 and are presented in Figures A6 and A7 of
Appendix B. The emission factors per MWh of electricity generated for coal and natural gas were set
to 1 tonCO2/MWh and 0.41 tonCO2/MWh and they were taken from [44]. The average monthly cost
of the CO2 emissions from the electricity generated is presented in Figure A8 of Appendix B.

The cost of the CO2 emissions, for both electricity and natural gas, will not have a significant
impact in the results as they are much lower than electricity and gas prices.

The optimization problem described in the previous sections is a mixed-integer linear
programming problem (MILP) and was solved with pycharm [45], using the CPLEX optimizer in
a core i7, 3.5 GHz PC.

4.2. Results

In this section it is studied how the flexibility provided by the different buildings can be used to
solve voltage problems that may appear in the network. To this end, the following cases were created:

• Only electrical buildings without optimization (no DR);
• Only electrical buildings with optimization (with DR);
• MES buildings without optimization (no DR);
• MES buildings with optimization (with DR).

With these cases it will be possible to study and compare the flexibility provided by electrical
and MES buildings and by residential and commercial buildings, as well as their annual costs,
energy consumption and CO2 emissions.

The organization of this section is as follows:

• In Section 4.2.1, grid technical problems occurring in 7 January 2019 are analyzed;
• In Section 4.2.2, the daily load profiles of the proposed cases are studied;
• In Sections 4.2.3 and 4.2.4, the flexibility that only-electrical vs. MES buildings and commercial vs.

residential buildings are able to offer for that day is analyzed;
• In Section 4.2.5, it is studied how the flexibility provided by the different resources and loads are

used to mitigate voltage problems;
• Finally, Section 4.2.6 presents the annual results for energy consumption, CO2 emissions and costs.

4.2.1. Grid Technical Problems

In this section it is presented the technical results of the network on the 7 January 2019.
The voltages in all buses at peak hour and the voltages at bus 20 during all day are presented
and analyzed.

In Figure 8 it is presented the voltages in every bus of the network at 6h. It is possible to observe
that buses 18, 19, 20 and 21 present undervoltage problems in the scenario with “electrical buildings
without optimization”, while in the scenario with “electrical buildings with optimization” only bus
20 presents a slight undervoltage problem. The other scenarios do not present this type of problems.
These problems occur due to the fact that these buses have high consumption of electricity at this hour,
as it will be analyzed in Section 4.2.2, and also because they are the farthest from the feeding point,
as it is possible to observe in Figure 4.

Figure 9 shows the daily profile of the voltages in bus 20. It is possible to observe that severe
voltage problems occur in the “electrical buildings without optimization” scenario. Buses 18, 19 and 21
also reveal similar undervoltage problems. The importance of DR programs is easily perceptible in
the “electrical buildings with optimization” scenario, as almost all undervoltage problems cease to
exist. Nevertheless, there are still some minor problems in buses 20 and 21. In both MES scenarios,
with and without DR, no voltage problems occur. Even without using the DR program, the system
was never with technical problems as part of the MES buildings consumption relies on other energy
vectors besides electricity.
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Figure 8. Voltages in the buses at 6 h (peak hour).

Figure 9. Voltages during the day at bus 20.

In total, in the scenario with electrical buildings without optimization, there were 54 cases of
undervoltage affecting 4 buses, while in the scenario with electrical buildings with optimization there
were 14 cases affecting 2 buses. This means that flexibility activation through DR programs reduce the
number of undervoltage problems by 74%.

4.2.2. Daily Load Diagrams

In this section it is presented the electricity and gas consumed in the network during the day of
7 January 2019. The changes in the load due to the participation in DR programs are analyzed.

In Figure 10 it is presented the electrical consumption in the network. It is possible to observe that
without optimization, the case with “only electrical” buildings consumes more electricity than the case
with MES buildings. The peak consumption at 6h in the scenario with electrical buildings without
optimization is due to the fact that electricity prices are cheaper at this hour and clients start heating
the spaces, especially in commercial buildings. This higher consumption of electricity causes several
voltage problems in the network, as it was seen in the previous section.
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Figure 10. Power consumed in the network.

The utilization of flexibility to solve the referred problems impose changes to the daily load
profiles. It is possible to observe that the main changes occur in the scenario with only electrical
buildings with optimization as this case presents several voltage problems during the entire day.
This way, the electrical load was decreased in this case.

In the cases without optimization, the peak load is 85% lower in the scenario MES buildings in
comparison with the scenario only electrical buildings; comparing the same cases with optimization, it
is observable that the peak load is reduced by 67%.

Figure 11 shows the overall gas consumption in the network. The peak consumption is at 7 h as
most of the buildings with gas also start heating their spaces at this hour.

Figure 11. Gas consumed in the network.

4.2.3. Flexibility of Only Electrical and MES Buildings

In this section, the flexibility that electrical and MES buildings are able to offer is analyzed
and quantified. The minimum and maximum flexibility represents the minimum and maximum
consumption that each building is able to consume at each hour.

Figure 12 presents the minimum and maximum flexibility (red lines) that the buildings are capable
of providing in the only electrical and MES scenarios. Eventually, this flexibility may be activated if
proper DR-based programs are implemented.
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Figure 12. Total flexibility offered by electrical and MES buildings.

The most important conclusion to retain is that buildings have the capability to provide
a significant band of flexibility that may be very important to system operators, as they can use
it to solve low voltage and/or branches’ overload problems in distribution networks, as it will be seen
in Section 4.2.1.

Although the electrical buildings scenario have a larger flexibility band, their minimum limit is
slightly higher as all the loads rely entirely on electricity. In the MES scenario, the flexibility band is
generally straighter since there are less loads that use electricity. However, in this case, the overall
buildings’ consumption is lower than in the only electrical scenario, what may be an interesting
situation for system operators since networks utilization will be lower.

It is possible to observe that only electrical buildings have major modifications in their profiles
during the first 7 h of the day. This happens to avoid higher peaks of consumption at 7 h,
when buildings start heating their spaces. Buildings accumulate heat in the previous hours decreasing
their energy needs at 7 h. This is also shown in Section 4.2.5.

In average, the total minimum consumption of MES buildings is 40% lower than electrical
buildings while the maximum consumption is 37% lower.

4.2.4. Flexibility of Residential and Commercial Buildings

In this section, the flexibility that residential and commercial buildings are able to offer is analyzed
and quantified.

In Figure 13 it is presented the range of flexibility of residential and commercial buildings. It is
possible to observe that commercial buildings have a higher range of flexibility than residential
buildings. They have a higher flexibility during the day as they are intensively used during these
periods, with a higher number of appliances and loads connected and capable of increasing or
decreasing their energy consumption. Air heating/cooling and water heating are good examples of
loads that are a great source of flexibility in these periods.

Residential buildings have higher flexibility after 16h and during the night. This happens since
residential buildings do not usually have EVs connected between 8 h–16 h, which are a significant
source of flexibility. Additionally, the utilization of other residential equipment (e.g., heating and
cooling) is also reduced during this period, contributing to decrease the flexibility margin.

It is possible to observe that the main modifications in the load profiles with the activation of
flexibility occurred in the case with “only electrical” buildings, to both residential and commercial
buildings. Nonetheless, the flexibility utilization has a higher impact in residential buildings during
the first 7 h of the day.
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Figure 13. Total flexibility offered by residential and commercial buildings.

4.2.5. Impact on the Daily Load Profiles of Flexible Loads

The flexibility that buildings are able to offer comes essentially from using resources that consume
gas instead of electricity and from DR programs. DR programs are capable of changing the load
patterns of lighting, refrigeration, water heating and space heating. In this section, it is analyzed the
flexibility that each source of flexibility is able to provide to the system operator. This highlights the
importance of considering every possible source of flexibility within a building.

Figure 14 shows the lighting consumption in a supermarket. The lighting systems can be decreased
by 10% in relation to their initial value.

It is possible to observe a decrease in the lighting consumption in the scenario electrical buildings
with optimization. This is the only scenario where the DR program was activated for lighting. In the
MES scenarios, changes in the lighting consumption patterns did not happen (i.e., DR programs were
not activated) since all the network problems detected were solved by replacing part of the electricity
consumption by gas. This is the reason why the series of the scenarios electrical buildings without
optimization, MES buildings without optimization and MES buildings with optimization overlap.

Figure 14. Power consumed for lighting in the supermarket.
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In Figure 15 it is presented the temperature and the energy consumed for space heating in a room
of the supermarket. Each type of building and each room has its own temperature requirements and
different schedules of the HVAC system. In order to simplify the analysis of the results, only the
requirements for the temperature of a room in a supermarket are presented, although the requirements
for the other buildings are similar:

• HVAC system is always “on”;
• Between 6 h and 23 h:

– The temperature set-point is 21 ◦C;
– The temperature can vary between 15 ◦C and 25 ◦C.

• Between 0 h and 6 h and after 23 h:

– There is no set-point;
– The temperature can vary between 15 ◦C and 25 ◦C.

As Figure 15 shows, the temperature requirements were met in all the scenarios. It is possible to
observe that the case electrical buildings with optimization was the only case where flexibility of the
space temperature was used. In this case, the DR program was activated and the temperature in the
room decreased below the set-point but remained inside the allowed interval. This happened since
the DR program was activated and the energy consumed for heating this room was decreased to zero.
In the other scenarios, the temperature strictly followed the set-point defined.

Figure 15. Temperature and power consumed for heating in the main room of the supermarket.

It is also possible to observe that between 0 h and 6 h and after 23 h, in all scenarios,
the temperature was different from 21 ◦C due to the absence of set-point.

Figure 16 shows the temperature profile of the refrigeration systems of the supermarket as well
as the respective power profile (the series of the scenarios without optimization are overlapped).
The temperature requirements of all refrigeration systems present in this network are the following:

• The temperature is set to −5◦C for the entire day;
• The temperature can vary between −6 ◦C and −3 ◦C by using the DR program.

More flexibility was used in the scenario electrical buildings with optimization, as the temperature
increases due to the reduction of the power consumption to provide flexibility to the grid.

In the scenario MES buildings with optimization, the system operator did not request any
flexibility. However, some flexibility was used to decrease energy costs at the expense of a slightly
higher temperature in the refrigeration system. An example of the flexibility utilization for this purpose
is shown in Figure 16, where more power was consumed between 5–7 h to decrease temperature,
as the energy cost in this period was lower.
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Figure 16. Temperature and power consumed by the refrigeration systems of the supermarket.

In the other scenarios the temperature is the same as the set-point as the DR program is not
available and their series are overlapped.

Figure 17 presents the water temperature in the hospital at bus 13 and the respective power
consumption. The water temperature requirements for all buildings present in the network are
the following:

• The temperature is set to 49 ◦C for the entire day;
• The temperature can vary between 44 ◦C and 54 ◦C by using the DR program.

As it is possible to observe, the scenario electrical buildings with optimization was the only case
where there was a decrease in the water temperature, with the correspondent power decrease to
provide flexibility to the grid.

It is important to notice that the power necessary to heat the water depends on the set-point of the
water temperature, which is a flexible value, and the water volume consumed, which is not flexible
and it is set by the consumer. This way, the flexibility provided by heating the water is provided only
by changing the water temperature and not the used volume.

Figure 17. Temperature and power consumed for heating the water in a hospital.

In Figures 18 and 19 it is presented the charging and discharging of EVs in a residence and a
medium size office. It is possible to observe that the charging and discharging patterns in the scenario
with electrical buildings with optimization differ from both MES buildings scenarios and the scenario
with electrical buildings without optimization. This reflects the utilization of EVs flexibility to mitigate
the undervoltage problems in the network.
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Figure 18. Electrical vehicles (EVs) charging power in a medium size office.

Figure 19. EVs discharging power in a medium size office.

Figure 20 presents the electricity and heat production profiles of the CHP unit in the supermarket.
As it is possible to observe, there is a peak at 7 h. Comparing these figures with Figure 10, it is possible
to observe that the supermarket consumes much less electricity from the network at this hour and relies
more on the gas network and the CHP unit for the provision of electricity and heat. This is because gas
prices are lower than electricity prices and by consuming less electricity the power network is not so
overload and its limits are more relaxed.

Figure 20. Provision of heat and electricity by the combined heat and power (CHP) unit of
the supermarket.



Energies 2020, 13, 2704 26 of 35

4.2.6. Annual Results

In this section, it is first presented the annual consumption of electricity and gas as well as the
annual emissions of CO2. After, the costs of buying electricity and gas, the costs of the emitted CO2

and the costs of using DR programs are presented. The results obtained in this section allow the
generalization of the results presented in the previous sections.

From Figure 21 and Table 3 it is possible to observe that the cases with only electrical buildings
consume naturally more electricity than the cases with MES buildings. In total, the electricity consumed
in the case with MES buildings without optimization is 33% lower than the case with only electrical
buildings, while in the cases with optimization it is 30% lower. The utilization of flexibility (in the
scenario with optimization) decreases the consumption of electricity by 6% in the only-electrical
buildings cases, while in the MES buildings it only decreases 1%. This happens since in the cases
with only electrical buildings, DR program are activated more often due to the technical problems in
the network.

The gas consumption is very low in only electrical buildings cases, as the gas is only used for
cooking in residential buildings. In the cases with MES buildings, more gas is used during the winter
as it is the main source of heating.
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Figure 21. Annual consumption of electricity and gas.

Table 3. Annual consumption of electricity and gas in each scenario.

Case Electricity (MWh) Gas (MWh)

Electrical without optimization 5035 3
Electrical with optimization 4750 3
MES without optimization 3372 2028

MES with optimization 3328 1904

In Figure 22 the annual emissions of CO2 for each case are presented. It is possible to observe
that MES buildings have naturally higher emissions than only electrical buildings. Although they
consume less electricity, the gas consumption is much higher which makes CO2 emissions higher. It is
also possible to observe that the cases with optimization have lower emissions as they also consume
less energy due to the activation of downward flexibility. These results show that DR programs can
have an impact on the CO2 emissions from buildings.

In total, only electrical buildings have 40% and 44% lower emissions of CO2 than MES buildings
in the cases without optimization and with optimization, respectively. DR programs (i.e., optimization
scenarios) lowered the emissions of CO2 by 6% in the case with only electrical buildings and 4% in the
case with MES buildings.

The costs of electricity and gas consumption, emissions of CO2 and DR programs are presented in
In Figure 23. As expected from the previous results, the costs of electricity are higher in the cases with
only electrical buildings as more electricity is consumed than in the MES buildings cases. The costs
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of gas and CO2 emissions are higher in the MES buildings scenarios. The case with only electrical
buildings with optimization has the higher costs related with flexibility activation (DR programs),
as this is the case that presents more technical problems in the electrical network.
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Figure 22. Annual emission of CO2.

It is also possible to observe that the total costs at the end-of the year are lower in the case
with MES buildings with optimization, as they consume less electricity that have higher prices when
compared to natural gas.

In total, without optimization, the annual costs of electricity in the cases with only electrical
buildings are 32% higher than the cases with MES buildings, the CO2 costs are 40% lower and the total
annual costs are 10% higher. With optimization, the annual electricity costs are 29% higher, the costs of
CO2 emissions are 44% lower and the total annual costs are 29% higher.
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Figure 23. Annual costs of electricity, gas, CO2 emissions and DR programs.

5. Conclusions

This work presented a model to optimize energy consumption in buildings, aiming at minimizing
costs while satisfying the technical constraints of the power network. The model developed is capable
of controlling a wide variety of loads (thermal loads, lighting, EVs, PVs, etc.) taking into account the
flexibility that their owners are willing to provide. This flexibility can be used for technical matters,
i.e., to improve networks operation, or for economic purposes, i.e., decrease overall energy cost,
including CO2 costs. A novel linearized model for the HVAC system was also developed in this work,
decreasing the complexity of the problem. The model was used with a test network to quantify and
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compare the capability of only electrical buildings and MES buildings, both commercial and residential,
to offer flexibility. Annual costs, energy consumption and CO2 emissions were also studied.

Analyzing the grid technical problems for the day 7 January 2019, in the scenarios with only
electrical buildings, there are a number of undervoltage problems detected in the network and they
cannot be entirely solved even when flexibility is activated through DR programs. These stressful
operating conditions are not verified in the MES scenarios, where no technical problems were detected.
In the only electrical buildings scenarios, the voltage problems detected were greatly reduced after the
activation of the DR program—the number of buses with voltages below 0.9 p.u. was reduced from 54
to 14, representing a 74% reduction. The flexibility provided in the DR scenario was obtained from
electrical and thermal loads, which can offer flexibility through thermal storage, lightings, EVs or CHP
units and thus contribute to reduce the power absorbed from the grid. It is thus possible to conclude
that DR programs are an important tool for system operators as they can enable important changes in
the load profiles to avoid voltage problems or overloaded branches.

As expected, it is in the MES scenarios that electricity consumption is lower. One of the outcomes
of this study is the quantification of the network load reduction that can be achieved in the MES
scenarios in comparison with the only electrical buildings scenarios. In average, in the scenarios
without DR, the load is 85% lower during the peak hour while in the scenarios with DR it is 67%
lower. In the only electrical scenarios, the DR program was capable of reducing the peak load by 55%,
although it was not enough to mitigate all voltage problems.

With lower electricity consumption, it is not surprising that buildings can reach lower absolute
values of consumed power in MES buildings scenarios. In the comparison between commercial and
residential buildings, the former revealed overall wider ranges of flexibility. Commercial buildings can
generally provide more flexibility during the day, especially in the MES scenarios, while residential
buildings are more flexible during the night and late afternoon.

The last outcome from this work is related with the annual costs, energy consumption and CO2

emissions. It was concluded that MES consume ca. 33% less electricity, although they consume more
gas. This way, annual energy costs are lower when considering MES buildings, presenting a reduction
of ca. 32% in electricity costs and ca. 10% in total costs. In the cases with only electrical buildings,
system operators need to solve technical problems through the activation of flexibility. This will
increase total energy costs by ca. 25%, although the number of technical problems will be decreased by
74%. It was also concluded that only electrical buildings have ca. 44% and 40% lower emissions of
CO2, with and without optimization, respectively. This is due to the fact that MES buildings consume
more natural gas, while only electrical buildings depend strictly on electricity. If the mix of electricity
generation is highly based on renewable sources, the emissions of CO2 by consuming electricity will
be lower than if consuming natural gas. The annual results follow the trend of the results obtained for
the day 7 January 2019.

Future work should address the integration of the restrictions of the gas network and the models
of shiftable loads, such as washing machines and dryers. Other energy vectors could also be integrated,
like hydrogen or district heating. The utilization of the flexibility provided by MES buildings in
energy markets, trough multi-energy aggregators, should also be studied. Other points to be taken in
consideration and that should be further studied are the fixed costs in the consumer ’s tariffs and the
costs of DR programs. For planning purposes, investment costs should also be a matter of study.
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Abbreviations

Parameters and Variables
P Active power [kWh]
Q Reactive power [kVar]
I Current [A]
V Voltage [V]
v Volume [m3]
r Resistance [Ω]
R Thermal resistance [◦C/kW]
x Reactance [Ω]
X Thickness of the walls [m]
Θ Temperature of the room [◦C]
β Thermal constant (β = e

−∆t
CR )

ACH Infiltration rate [air changes per hour—ACH]
l Heat gain and losses [◦C]
C Thermal capacitance [kWh/◦C]
c Specific heat capacity [J/g·◦C]
CV Volumetric heat capacity [kJ/m3·◦C]
k Thermal conductivity of the material [kW/m·◦C]
A Area [m2]
a Insulation [kWh/◦C]
d Density of the materials of the walls [g/m3]
m Supply air flow rate [cfm, cubic feet per minute]
η Efficiency [%]
COP Coefficient of performance
ε System inertia
L Load
b Binary variable
SOC State-of-charge
E Energy flow between resources [kWh]
I Energy input of the energy hub [kWh]
O Energy output of the energy hub [kWh]
π Price [e/kWh] or [e/◦C]
Cost Cost [e]
Subscripts
t Time interval
i, j, k Item belonging to a set
t Time interval
0 Initial time
wind Wind generator
PV PV generator
O Outside
h Heating vector
c Cooling vector
g Gas vector
w Electricity vector
C Discharge
consumer Consumer
DR Demand response
+,− Increase, decrease
air Air
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Superscripts
In f Infiltration
wall Wall
coil Coil
f an Fan
water Water
re f r Refrigeration system
equip Electrical equipment
cook Cooking
light Lighting
in Input
out Output
EV Electrical vehicle
stot Storage system
net Network
ch Charging
dis Discharging
net Network
viol Voltage violation
CO2 Carbon dioxide
Sets
NL Electrical network load
NB Electrical network bus
NW Electrical network wind generator
NPV Electrical network PV
R Energy hub room
N Energy hub network
C Energy hub converter
S Energy hub storage
L Energy hub load
EV Energy hub EV
PV Energy hub PV
M Fan supply air flow values ε

Symbolŝ Parameter defined by consumer
, Maximum, minimum

Appendix A. Parameters of the Models

Table A1. Summary of the parameters used in the models presented in Section 3.4.

Parameter Description Value

cair Specific heat capacity of air 1.09 J/g·◦C
ηh,coil Efficiency of heating coil 0.98
ηc,coil Efficiency of cooling coil 0.98

COPh,coil COP of heating coil 3.45
COPc,coil COP of cooling coil 4.45

ΘC,c
t Discharging cooling air temperature 12.5 ◦C

ΘC,h
t Discharging heating air temperature 50 ◦C

b1 Parameter 1 of the fan model 2.57× 10−12

b2 Parameter 2 of the fan model −4.45× 10−9

b3 Parameter 3 of the fan model 1.46× 10−4

b4 Parameter 4 of the fan model 4.71× 10−3

cw Specific heat capacity of water 4.18 J/g·◦C
Θwater,i

j Initial temperature of water 15 ◦C
COPre f r COP of refrigeration systems 3

a (Residential) Insulation of residential refrigeration systems 15 kJ/◦C
a (Supermarket) Insulation of supermarket refrigeration systems 850 kJ/◦C
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Appendix B. Average Values Per Month
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Figure A1. Average daily wind generation profiles, per month.
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Figure A2. Average daily PV generation profiles, per month.
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Figure A3. Average daily temperature profiles, per month.
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Figure A4. Average daily electricity prices, per month.
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Figure A5. Average gas prices, per month.

0

0.25

0.5

0.75

1

0 6 12 18 24

P
ro

fi
le

Time (hour)

Jan Feb Mar Apr May Jun

Jul Aug Set Oct Nov Dez

Figure A6. Average daily profile of electricity generation from coal, per month.
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Figure A7. Average daily profile of electricity generation from natural gas, per month.
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Figure A8. Average daily CO2 prices for electricity consumed, per month.
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