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Abstract: In this paper, a non-contact degradation evaluation method for insulated gate bipolar
transistor (IGBT) modules is proposed based on eddy current pulsed thermography approach.
In non-contact heat excitation procedures, a high-power induction heater is introduced to generate
heat excitation in IGBT modules. The thermographs of the whole temperature mapping are
recorded non-invasively by an IR camera. As a result, the joint degradation of IGBT modules can
be evaluated by the transient thermal response curves derived from the recorded thermographs.
Firstly, the non-destructive evaluation principle of the eddy current pulsed thermography (ECPT)
system for an IGBT module with a heat sink is introduced. A 3D simulation module is built with
physical parameters in ANSYS simulations, and then thermal propagation behavior considering the
degradation impact is investigated. An experimental ECPT system is set up to verify the effectiveness
of the proposed method. The experimental results show that the delay time to peak temperature can
be extracted and treated as an effective indicative feature of joint degradation.

Keywords: eddy current pulsed thermography (ECPT); joint degradation; non-contact evaluation;
transient thermal response curves

1. Introduction

With continuous innovation and development of power semiconductor techniques, the insulated
gate bipolar transistors (IGBTs) are representative of a fully controlled electronic device, which is
widely used in motor drives, renewable energy generation systems, etc. [1,2]. The main trends of
modern IGBT modules are higher switching frequency, smaller chip footprint, and higher operating
temperature [3]. These trends challenge the reliability design of IGBT modules.

Based on the classic bathtub curve of failure rate of power devices over their lifetime, the failure
period consists of three main stages: early failure, middle random failure, and the wear-out failure
period [4]. In the first two stages, the failure factors are mainly concerned with manufacturing (e.g.,
edge emitter design) and unexpected excessive stress (e.g., short circuit current). Owing to the features
of slowing propagation and aging regularity, wear-out failure is most likely to be monitored and
predicted during long term service [5].

Since joint degradation failures are affected by the internal thermal stress (due to power loss)
and external temperature changes, these failures are of academic and industrial interests. In terms
of power conversion systems, typical joint degradation failures include delamination and random
voids, particularly in the solder and thermal grease layer [6,7]. Generally, the main reasons for joint
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degradation failures are mismatched coefficients of thermal expansion (CTE) and dry-out of the thermal
grease [8,9]. Joint degradation failure is a significant long-term failure mode and negatively impacts
the effective connection area between layers and the thermal emission path. As a result, the maximum
operating temperature and peak output power decline after a long-running period [10].

Traditional detection methods for joint degradation are mainly based on monitoring the degradation
of sensitive electrical parameters (DSEPs) and junction temperature (Tj). Parameter variation caused by
degradation can be reflected and extracted from external electrical parameters. An inspected IGBT module
in a power circuit can be taken as a resistor-inductor-capacitor (RLC) network during switching transitions,
where the equivalent RLC network is dependent on the joint conditions of the multilayer structure. It has
been reported that collector voltage vce,on under small current [11–13] and low order harmonics of the
output voltage [14] are effective DSEPs for RLC degradation detection. However, additional auxiliary and
sampling circuits for DSEPs measurement are needed during testing.

The surface Tj measurement is a more direct way of degradation detection. Degradation failures
like delamination, cracks and voids can worsen heat emission ability. The measured Tj increases with
degradation under the same test conditions. In general, the accurate Tj measurement methods are
mainly divided into the temperature sensitive electrical parameter (TSEP) methods [15,16] and optical
methods [17,18]. For the TSEP method, high accuracy Tj can be extracted non-invasively. However,
every TSEP needs a delicate calibration procedure and relevant calibration circuits. Furthermore,
inside the package, parasitic parameter changes caused by the aging effects, introduce measurement
errors. The advantage of an IR camera is the possibility to obtain the global temperature of the power
device. Nevertheless, the accuracy of an IR camera is affected by the emissivity of the chip surface.
In order to get more accurate results, the silica gel within the inspected IGBT module should be
removed, and thermal black paint needs to be deposited on the chip surface [19].

As mentioned, the two critical steps in degradation detection are the excitation process and the
measurement process. However, the excitation and measuring processes are mostly physical contact
methods. These physical contact methods are limited by field-environment and maintenance time.
The ideal defect identification method should ensure the normal operation is not interrupted.

Recently, the idea of non-destructive and non-contact evaluation test methods for field application
has been reported [20,21]. This paper proposes a non-contact test method for joint degradation
detection, based on an eddy current pulsed thermography (ECPT) technique. Because of the high
conductivity of the metal elements in the heat-sink, copper, and solder, the inspected IGBT module can
be non-contact heated by using an inductor heater. Then, the global thermography can be recorded
by an IR camera and analyzed by pulsed thermography (PT) technique. As a result, the degradation
process characteristics can be extracted and evaluated from pulse thermal transient response curves.

This paper is organized as follows. In Section 2, the thermal resistor-capacitor (RC) network
degradation in IGBT modules is analyzed. In Section 3, the ECPT system operational principle and
defect identification method is proposed to evaluate the thermal RC network defect. In Section 4,
an ECPT platform is built for simulation and experimental verification. The last section summarizes
the conclusions drawn from the investigation.

2. Thermal RC Network Degradation and Detection

2.1. Characteristic of Degradation in an IGBT Module

The emerging base-plate free module is studied in this section. Because it is free from base plate,
it can save cost and reduce the thermal resistance. In Figure 1, the cross-section of a base-plate free
module with heat-sink is shown. The IGBT module consists of several layers of different materials,
and the silicon chip and baseplate are soldered together by the so-called direct bonded copper (DBC)
method. In order to obtain better heat conduction, it is necessary to add a thin and even layer of
thermal grease between the IGBT module and the heat sink.
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Figure 2. Joint characteristic degradation in multi-layer structure: (a) defect free connection; (b) rough 
surfaces with gradation defect. 

2.2. Degradation Thermal Modeling 

IGBT model thermal behavior can be determined by geometrical and physical approaches as 
follow: 

 = ⋅
 = ⋅ ⋅ ⋅
 = ⋅

/ ( )th H th A

th H A

th th th

R d λ S
C c ρ d S
τ R C

 (1) 

in which Rth and Cth are the associated thermal resistance and thermal capacitance of each layer. dH 
and SA are the thickness and cross-section area of each layer. In order to obtain the values of Rth and 
Cth, the material property of each layer, like thermal conductivity λth, specific heat c, and material 
density ρ, are necessary. τth is the thermal time constant of a layer. 

The studied module is SK75GB12T4T from Semikron, where the layout of the unpackaged IGBT 
module is seen in Figure 3. There are four 75 A silicon chips (T1, T2 are IGBT dies and D1, D2 are diode 
dies) soldered onto two copper plates with different areas. The transparent encapsulation (silicone 
gel) on top of the chips can protect from moisture, powder, and besmirch in the operation and it also 
provides electrical insulation. Because of its position in the outermost layer and the relatively small 
thermal conductivity of silicone gel (0.2 W/m·K), the encapsulation is not considered in the following 

Figure 1. Cross-sectional view of base-plate free insulated gate bipolar transistor (IGBT) module with a
heat-sink: (a) Aluminum metallization, (b) Chip, (c) Bond wire, (d) Copper pad, (e) Solder, (f) Ceramic
subtracts, (g) Thermal grease, and (h) Heat-sink.

Operational IGBT modules suffer from various thermal stresses, not only internal power losses but
also external temperature cycling. The identified lifetime limiting degradation failures are associated
with the solder joints. Also, dry-out failure mechanisms are associated with the thermal grease
layer [22]. The most common characteristic degradations with delamination are internal random voids
in the multi-layer structure, as illustrated in Figure 2.
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Figure 2. Joint characteristic degradation in multi-layer structure: (a) defect free connection; (b) rough
surfaces with gradation defect.

Owing to the accumulative thermo-mechanical stresses of power and thermal cycling, the outmost
corner is the most stressed region [23]. The identified lifetime limiting delamination is expected to
start at the corners and then spread along the entire boundary. More seriously, they will continue to
enlarge with continued operation cycling. In general, this degradation reduces the effective connection
area between two layers and can be represented by lumped thermal RC network parameters [24].

2.2. Degradation Thermal Modeling

IGBT model thermal behavior can be determined by geometrical and physical approaches as follow:
Rth = dH/(λth · SA)

Cth = c · ρ · dH · SA
τth = Rth ·Cth

(1)

in which Rth and Cth are the associated thermal resistance and thermal capacitance of each layer. dH and
SA are the thickness and cross-section area of each layer. In order to obtain the values of Rth and Cth,
the material property of each layer, like thermal conductivity λth, specific heat c, and material density
ρ, are necessary. τth is the thermal time constant of a layer.

The studied module is SK75GB12T4T from Semikron, where the layout of the unpackaged IGBT
module is seen in Figure 3. There are four 75 A silicon chips (T1, T2 are IGBT dies and D1, D2 are diode
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dies) soldered onto two copper plates with different areas. The transparent encapsulation (silicone
gel) on top of the chips can protect from moisture, powder, and besmirch in the operation and it also
provides electrical insulation. Because of its position in the outermost layer and the relatively small
thermal conductivity of silicone gel (0.2 W/m·K), the encapsulation is not considered in the following
simulations. As a result, the thermal network degradation caused by the encapsulation layer is ignored,
and almost all the temperature mapping changes can be attributed to the solder layer degradation in
this work.
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Figure 3. Image of the IGBT module under study.

The properties and thickness of each module layer and the thermal grease are listed in Table 1,
which mainly refer to the manual [25] obtained from the official website of Semikron.

Table 1. Layer thickness and material properties of IGBT in simulation.

Designation and
Material

Thickness
(µm)

Density
(kg/m3)

Thermal Conductivity
(W/m·K)

Specific Heat
Capacity (J/kg·K)

Silicon chip 300 2330 148 712
Die attach solder 50 7400 57 226
Up copper layer 300 8960 390 390
Ceramic-Al2O3 700 3780 24 830

Down copper layer 300 8960 390 390
Thermal grease 50 2000 0.67 300

The RC thermal network values can be calculated by the lumped RC thermal method. Hence,
since most of the heat flows to the heat-sink, the studied module can be built as a one-dimensional
model. The thermal RC network values are altered after long term service. The variable valued thermal
RC network, considering the delamination degradation factors, is plotted in Figure 4, where the major
degradation parts are considered to be the Die-DBC solder and the thermal grease layer. The RC
networks are corresponding to the definitions shown in Figure 1 and the values are extracted from the
material properties. The effective interface area decreases with increased fatigue damage accumulation.
The thermal capacitance is related to material volume, whilst thermal resistance is related to the
interface area between layers. For joint degradation like delamination and random voids, the change
in thermal capacitance is significantly less than the thermal resistance change.

In Figure 5, the thermal time constant under different connection area of the thermal grease layer
and die-attach solder layer, are plotted. The thermal time constant increases with the reduction in
the connection area. The thermal time constant of thermal grease is higher than that of the die-attach
solder layer.
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Figure 4. Equivalent non-constant thermal resistor-capacitor (RC) network considering the
degradation effect.

Energies 2020, 13, x FOR PEER REVIEW 5 of 14 

 

 
Figure 4. Equivalent non-constant thermal resistor-capacitor (RC) network considering the 
degradation effect. 

In Figure 5, the thermal time constant under different connection area of the thermal grease layer 
and die-attach solder layer, are plotted. The thermal time constant increases with the reduction in the 
connection area. The thermal time constant of thermal grease is higher than that of the die-attach 
solder layer. 

As a result, the thermal time constant of the complete thermal RC network increases with joint 
degradation. Accordingly, the transient thermal response curves of the inspected die are varied with 
the different degradation stages. As long as the temperature propagation of inspected die can be 
extracted and compared with the intact die, the aging degree of thermal RC networks can be detected. 

  

(a) (b) 
 

Figure 5. Thermal time constant under different connection area: (a) reduction of thermal grease area 
and (b) reduction of die-attach connection area. 

3. ECPT Based Non-Contact Detection of Thermal RC Network Degradation 

3.1. Thermography Technologies 

The thermal propagation rate is changed by the deformation and metamorphism in the multi-
layer structure. Thermography technology has been gradually applied in electronics devices in recent 
years. Pulse thermography (PT), lock-in thermography (LIT), and the pulse-phase thermography 
(PPT) are proposed as the effective algorithms for the analysis of transient thermal response [26–28]. 
A comprehensive comparison of these techniques has been analyzed in terms of transient thermal 
response in [29]. The thermography analysis methods have been applied to the failure detection in 
electronics packaging like the printed circuit boards (PCBs), cracks in the coppers and random voids 

Rth1=0.0029(K/W)
Cth1=0.0251(J/W)
Rth2=0.0015(K/W)
Cth2=0.5242(J/W)
Rth3=0.0194(K/W)
Cth3=3.2943(J/W)
Rth4=0.0005(K/W)
Cth4=1.5725(J/W)
Rth5=0.0498 (K/W)
Cth5=0.0450 (J/W)

(100% Connection)
Thermal 
grease

Ps

Tc

Ceramic 
subtracts

Solder 
Die-DBC

Copper

Rth1

Cth1 Cth2 Cth3 Cth4 Cth5

Rth2 Rth3 Rth4 Rth5

Tj

Troom

Copper

Reduction trends of effective connection area

         
 

 

 

 

        

Figure 5. Thermal time constant under different connection area: (a) reduction of thermal grease area
and (b) reduction of die-attach connection area.

As a result, the thermal time constant of the complete thermal RC network increases with joint
degradation. Accordingly, the transient thermal response curves of the inspected die are varied with
the different degradation stages. As long as the temperature propagation of inspected die can be
extracted and compared with the intact die, the aging degree of thermal RC networks can be detected.

3. ECPT Based Non-Contact Detection of Thermal RC Network Degradation

3.1. Thermography Technologies

The thermal propagation rate is changed by the deformation and metamorphism in the multi-layer
structure. Thermography technology has been gradually applied in electronics devices in recent
years. Pulse thermography (PT), lock-in thermography (LIT), and the pulse-phase thermography
(PPT) are proposed as the effective algorithms for the analysis of transient thermal response [26–28].
A comprehensive comparison of these techniques has been analyzed in terms of transient thermal
response in [29]. The thermography analysis methods have been applied to the failure detection in
electronics packaging like the printed circuit boards (PCBs), cracks in the coppers and random voids in
soldered metal-oxide-semiconductor field effect transistors (MOSFETs) [29–31]. In this work, a fast
degradation detection method based on the combination of inductive eddy current heating and the PT
technique is studied.
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3.2. Operation Principle of ECPT System

The eddy current pulsed thermography (ECPT) system is shown in Figure 6, where the four main
parts are: non-contact inductive excitation source, IGBT based power converter, infrared camera for
temperature map measurement, and data processing.
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IGBT modules.

In power converter systems, the heat-sink material is mainly aluminum alloy. The heat sink
volume is significantly more than the volume of the metal layers (copper and solder layers) in an
IGBT module. When the inspected IGBT sample is placed above the excitation coil, most induced heat
power (Ph) comes from beneath the module assembly. In practice, Ph is related to material property
and induction heater parameters and is governed by:

Ph ∝ Ie
2

√
µ f
σ

, σ =
σ0

1 + α(T − T0)
(2)

where Ie is the high-frequency coil excitation current, f is the alternating current (AC) frequency,
µ is the permeability of material under test, electrical conductivity σ is the temperature-dependent
parameter, and σ0 is the conductivity of material at temperature T0 and α is the temperature coefficient
of resistivity [27]. The applied AC frequency is related to the heating power and the material property
of the sample.

The excitation power generated by the induction heater is a series of high, fixed frequency AC
pulses and is controlled by adjusting the frequency and duration of AC. The duration of high-frequency
AC and the recording time are both controlled and triggered synchronously by the pulse generator.
The induced eddy currents and corresponding resistive heat Q are induced into the conductive
material of the inspected sample. Finally, the whole thermography is captured and the transient
temperature response of the key area is extracted by the relevant software and MATLAB. The recorded
thermal videos are then processed for visualization and post-processing, including defect identification,
and electrical/thermal feature parameters extraction.

3.3. Heat Conduction Analysis

During the AC excitation period, the Joule heating and heat diffusion progress simultaneously.
When the AC excitation finishes, the heat diffusion process dominates the transient temperature
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response. In general, the heat flow in each layer, considering the Joule heating and heat diffusion
processes, are given by:

∂T
∂t

=
λth
ρc

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 ) +

λth
ρc

q(x, y, z, t) (3)

where T = T (x, y, z, t) is the temperature distribution, and q (x, y, z, t) is the internal heat generation
per unit volume. As a result of joint degradation, the thermography of transient thermal response
curves would be distorted compared with the intact inspected sample.

4. Finite Element Simulation and Experimental Results

4.1. Simulation Models and Analysis

The corresponding 3D model of the studied IGBT with heat-sink, in the Solid Works environment,
is shown in Figure 7. The physical parameters and thickness of each layer in the ANSYS simulation
module are listed in Table 1. The ANSYS simulation environment is usually used to evaluate
the electrothermal effects and safe operating temperatures for power modules, providing critical
design guidelines.
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Figure 7. 3D simulation module of inspected IGBT with heat-sink.

In the proposed ECPT method, the eddy current heat induced is mainly accumulated at the
bottom of the module, then transferred to the top surface. Therefore, because of its large thermal
mass, the heat sink is assigned to be a heat source, imposed by the pulsed internal heat, in simulations.
Then, the related simulation parameters and boundary conditions of the ANSYS program are set
as follows: initial ambient temperature is 25 ◦C, convection coefficient (baseplate downside face) is
5 × 10−6 W/mm2

·
◦C, the internal heat generation is set to 5 × 108 W/m3, and the pulse heat flux is a

square wave for 200 ms.
In this simulation, the degradation change is modeled by decreasing the area of thermal grease

(effectively increasing the resistance associated with grease drying). By this means, the thermal path
between the top die and heat-sink becomes worse as the thermal grease area decreases. The average
junction temperature of diode D1 (TjD1) is observed. The transient thermal response of TjD1 can be
extracted for degradation detection. Figure 8a, shows three varying degrees of thermal grease layer
area, and the related temperature distribution at 1 s with a 100% connection condition is shown in
Figure 8b.
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The temperature map of the cross-sectional IGBT module, considering a 70% thermal grease area,
is shown in Figure 9. Since there is an edge disconnection between the heat-sink and the bottom of
the IGBT module, the thermal path at this edge region is the worst path across the cross-sectional.
Accordingly, the highest temperature appears at the edges of the bottom.
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In Figure 10, the transient response curve of Tj for different connection areas is plotted. The peak
junction temperature at 70% connection, Tjp1 is 33.6 ◦C, which is slightly lower than at 100% connection,
Tjp2 34.4 ◦C. However, the delay time to the peak temperature Td1 with a 70% connection is about 1.9 s
longer than with 100% connection Td2. The peak die temperature is mainly determined by the specific
heat capacity and density of the materials. In the simulation, the thermal grease volume decreases
with the connection area. So, this reducing substance part can be ignored compared with the IGBT
module volume. Hence, the peak Tjp1 is slightly lower than Tjp2 at the end of the thermal transient
pulse. Although reducing substance can be ignored during the aging process, the thermal path is
significantly changed.

Consequently, the delay time to the peak temperature under pulsed heat power is a better indicator
than peak temperature, to evaluate thermal network degradation.
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Figure 10. Comparison of Tj response curves with varying thermal grease area.

4.2. Experimental Result and Discussion

The theoretical analysis of the proposed detection method is assessed by the ECPT system shown
in Figure 11.
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Figure 11. Configuration of the experimental ECPT system.

The specifications of the proposed ECPT system are shown in Table 2. The induction heating
source is Easyheat 224 from Cheltenham Induction Heating, Ltd., Cheltenham, UK, which provides a
maximum excitation power of 2.4 kW with an excitation frequency range of 140–400 kHz. The AC
excitation frequency chosen in the experiment is 145 kHz. A FLIR SC655 IR camera is used for recording
thermal videos with a maximum IR resolution of 640 × 480 on a 7.5–14.0 µm InSb detector and transmits
them to PC. Then, the temperature information can be easily extracted through the FLIR ResearchIR
software provided by FLIR Systems, Inc. (Wilsonville, OR, USA).

Table 2. ECPT system specifications.

Parameters Value Parameters Value

Inspected IGBT module SK75GB12T4T Recording duration 60 s
Induction heating source 2.4 kW Infrared (IR) camera FLIR SC655

Heating duration 200 ms Frame rate of IR camera 25
Excitation current frequency 140–400 kHz Ambient temperature 22 ◦C

The thermal propagation within the IGBT module, with the 50 s of recording time tR, is plotted in
Figure 12. After short term heat excitation (200 ms), the heat begins to transfer from the bottom to the
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surface of the die. Then, the surface temperature stabilizes. Once the average temperature of the observed
surface reaches its maximum temperature, the inspected average Tj starts to decline exponentially.
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Figure 12. Thermal propagation of the inspected IGBT module with an IR camera.

In order to simulate thermal resistance degradation between die and heat-sink, the thermal grease
area between the heat sink and IGBT bottom is spread as in Figure 13. The thermal grease area is
reduced from 100% to 70% as the effective connection area shrinks from the edge toward the center
(drying starts from the edges). The volume of thermal grease is about 0.12 cm3, and the whole bottom
area is about 15.0 cm2. Therefore, the thickness of thermal grease is approximately 80 µm when the
grease is evenly wiped on the bottom for a 100% connection.
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Figure 13. Configuration of thermal grease with different area.

Because of lift-off impact and an unfixed location under the coil, the test results under the
same conditions are similar, but not identical [27]. Therefore, each test result is repeated 10 times.
The resulting thermal transient response curves with three connection areas in 100 s recording time
are demonstrated in Figure 14. It is demonstrated that the measured Tj rises more slowly than the
simulations shown in Figure 10. The difference is likely to come from the thickness and ruggedness of the
practical thermal grease, which could increase the thermal resistance and make heat conduction worse.

The peak temperature of the inspected area declines slightly with decreasing connection area.
The delay time to the peak temperature also extends with area reduction. In Figure 14, the trends of an
increasing time constant are plotted in 4 s sampling (100 frames).

The maximum temperature increment ∆Tj and the corresponding delay time to the peak
temperature Tjp with different connection area are plotted in Figure 15. According to the previous
analysis, there is a corresponding relationship between the effective connection area and the joint
degradation degree. Thus, it is studied that Figure 15a,b illustrates the relationships between ∆Tj and
the degradation degree and between Tjp and the degradation degree, respectively.
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Since different connection areas distort the thermal conduction path differently, the peak
temperature increment and delay time corresponding to different connection areas in Figure 15
show obvious differences. This means the peak temperature increment and the delay time can
be extracted as two indicators for thermal degradation detection. However, due to good linearity
and sensitivity, the peak temperature delay time is a better indicator. Of course, a calibration test
between the temperature measurement and the sample module with given aging degrees is required.
Then, the multidimensional database for the studied IGBT module can be built for the following
aging evaluation.

4.3. Comparison and Analysis

The detailed comparison between the degradation of sensitive electrical parameters based method
and the ECPT method is presented in Table 3. The proposed ECTP method offers a non-contact heating
approach, by using an induction heater. Compared with conventional heating methods, heat energy
could not be accurately controlled like with a direct current (DC) power supply. In terms of a TSEP
detection method, the measured die temperature is an average of the whole inspected power device.
However, overall temperature mapping can be captured by an IR camera, but the sample rate is lower
than for the TSEP method. Therefore, the thermal propagation time of the inspected module should be
determined appropriately.

During field operation, the prognostic procedure should be as simple as possible to avoid
dismantling of the converter system. As a result, being a non-contact heating and temperature
measurement approach, the proposed ECPT system is an efficient degradation detection method for
power converter systems.
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Table 3. Comparison between electrical parameters based method and ECPT method.

Parameters Electrical Parameters Based Method Proposed ECPT Method

Heat incentive The heat energy is supplied by power
source, and it is an active heat method.

The heat energy is induced by the
eddy current in the metal. It is a
positive heat method.

Temperature measurement

The chip and module temperature are
measured by some temperature
sensitive electrical parameters (TSEP)
or thermal couples.

The chip and module temperature
can be captured by an infrared
camera at one time.

Calibration
It is necessary to calibrate the
relationships between electrical
parameters and temperature.

Automatic calibration in IR
camera system.

Operation
The heat excitation and temperature
measurement process should be in
contact with inspected objects.

The heat excitation and
temperature measurement process
are carried out by a
non-contact method.

5. Conclusions

In this paper, an eddy current pulsed thermography system has been used for IGBT degradation
detection. ECPT offers a non-contact heating approach by exciting the eddy current within the metals
of the inspected IGBT module. An IR camera is used for overall temperature measurement.

The degradation defect induced by accumulative thermal-mechanical stresses was discussed.
The most common degradation characteristic is decreased effective connection area between two
layers. As a result, the thermal emission path of IGBT based power converter deteriorates with joint
degradation. The thermal time constant of the power converter increases with effective connection
area reduction. This joint degradation can be reflected by the changes in the transient thermal
response curves.

A 3-D IGBT module was established in the ANSYS simulation environment.
Accumulative degradation is fulfilled by decreasing the effective connection area of the thermal
grease from 100% to 70%.

Maximum temperature increment and delay rise time can be extracted as two effective indicators
for degradation detection. The peak temperature increment of the inspected chip declines with
decreasing connection area. However, the delay time to peak temperature is prolonged with decreasing
connection area. The results can be used for IGBT module defect detection, and further quantitative
experiments and analysis are to be carried out.
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