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Abstract: In recent years, the Oil & Gas industry has been subjected to a progressive electrification
process aiming to comply with global environmental requirements on CO2 emissions reduction.
High-power electric motors fed by Variable Frequency Drives (VFDs) have replaced gas turbines
as drivers for gas compression applications. In Liquefied Natural Gas (LNG) plants, unexpected
downturns could be experienced in case of high torsional vibrations of power generations units.
These torsional vibrations derive from the interaction among turbine-generator (TG) units and VFDs
and are known as Sub-Synchronous Torsional Interactions (SSTIs). SSTIs can lead to instability
when the overall electromechanical system lacks sufficient damping. In this scenario, electrical
damping assessment is fundamental in order to ensure stability and reliable operation of an LNG
plant. Negative electrical damping is strictly related to the negative incremental resistance behavior
of the power converters and it is influenced by the converter’s control system. In this paper, a real
case study based on Thyristor Variable Frequency Drives (TVFDs) is considered. Ad hoc dynamic
models of the power converters and of the TG unit are developed and combined in order to provide
an accurate estimation of the electrical damping. It is demonstrated that the electrical damping is
affected by variations of the main control system parameters and how the use of a simplified model
instead of an ad hoc model can impact the stability evaluation.

Keywords: thyristor variable frequency drives; electrical generators; LNG plants; small-signal
modeling; stability analysis; electrical damping estimation

1. Introduction

The energy industry is today accelerating the transition to a low-carbon future to meet global
environmental requirements. In this context, a more efficient operation of Oil & Gas plants is essential,
and this cannot overlook a structured electrification process. With specific reference to the midstream
segment, large electric motors fed by Variable Frequency Drives (VFDs) are thus more and more
adopted in lieu of heavy-duty Gas Turbines (GTs) as drivers for gas compression applications, typically
powered by local electrical grids. In this scenario, considering the power size of Liquefied Natural
Gas (LNG) plants, Thyristor Variable Frequency Drives (TVFDs) are often adopted [1]. A preliminary
study about the interactions among Turbine-Generator (TG) units and TVFDs in island-operated grids
is presented in [2]. The aim is to identify proper plant operations without unexpected downturns due
to excessive torsional vibrations of the power generation units. The torsional vibrations, derived from
TG and TVFD interactions, are known as Sub-Synchronous Torsional Interactions (SSTIs) [3,4]. In LNG
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plants, the SSTI phenomena represent a challenge for the power system stability and could overcome
the admissible fatigue life limits of TG shaft-lines.

Limited literature has been published about SSTI phenomena in LNG plants [5–8]. Differently,
numerous studies can be found on SSTI for High Voltage Direct Current (HVDC) applications [9–13].
In this context, SSTI is categorized as the evolution of the Sub-Synchronous Resonance (SSR)
phenomenon [14–18]. In [19–21], the plant torsional stability in the presence of SSR phenomena
is assessed by means of eigenvalues and eigenvectors. Oscillatory stability is verified if all the torsional
modes have positive damping.

In [3,22], it is demonstrated how power converters can modify the damping of TG units modes.
The analysis is provided in the case of a stiff network, but it has to be highlighted that LNG plants are
typically island-operated grids where large TVFDs are fed by a few TG units. In [23], a similar analysis
is provided for an island-operated grid.

VFDs can operate in various frequency regions as electrical circuits with negative resistance.
Depending on the control system, this operation can be verified in the region corresponding to the TG
sub-synchronous frequencies. Negative resistance implies negative electrical damping, but the electrical
damping contributes to the overall damping of the combined electromechanical system. If negative
electrical damping is measured around the TG torsional natural frequencies (TNFs), instability can be
verified [3,24].

Commonly in the LNG industry, accurate models of the power converters are generally not
included in the overall plant stability analysis. The power conversion stage is taken into account through
an average model where only the passive components of the circuits are considered, as in [13,25]. On the
contrary, independent of the specific application, small-signal analysis allows us to achieve dynamic
models of the power system for fair stability assessment in the case of weak grids [26,27]. In this
paper, an ad-hoc state-space dynamic model of a combined electromechanical system is developed.
A TG shaft-line lumped parameter model is obtained using the modal analysis theory described
in [28,29] in order to identify the Torsional Natural Frequencies (TNFs) and the mechanical damping
relative to these frequencies. Small-signal analysis is used to determine a detailed dynamic state-space
model of the TVFD and of the electrical generator with the aim to provide an accurate evaluation of
the electrical damping of an LNG plant. The dynamic state-space model of the TVFD reproduces
exactly the real operation of the power conversion stage in the time domain and the power electronics
devices commutation.

Comparing the dynamic state-space model with a simplified average mode, it is possible to
demonstrate that the use of a simplified model of the TVFD leads to underrate the current oscillations
due to the SSTI phenomena and, as a consequence, it could impact the stability assessment.

The rest of the paper is organized as follows: in Section 2 the considered case study is presented;
in Section 3 the sub-synchronous torsional interaction phenomena are discussed; Section 4 deals
with the dynamic state-space model of the TVFD, while Section 5 deals with the TG unit model;
the combined electromechanical model is shown in Section 6, the electrical damping assessment and
some stability considerations are presented in the same section; finally Section 7 concludes the paper
with some remarks.

2. Case Study

VFDs for LNG applications can be based on thyristors or IGBTs. In the case of very high power
plants, the power conversion stage is generally based on thyristors. Starting from a real industrial
LNG plant, the considered case study is presented in Figure 1. Looking at the LNG plant, a gas turbine
generator unit is connected to the Point of Common Coupling (PCC). The PCC is connected to a
synchronous Motor (M) and to a lumped load. The synchronous motor is supplied by a TVFD. M is
connected to a compression train and it acts as starter and helper motor, allowing the start-up of the
entire train and providing additional power when required by the gas process. The compression train
is composed of two Centrifugal Compressor (CCs) and a GT as in [1]. The TVFD shown in Figure 1 is
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composed of two Line-Commutated-Converters (LCCs). The LCCs are based on 6-pulse H-Bridges.
The first stage of each LCC is a line-commutated-rectifier (LCR) operating at the grid frequency fn.
The second stage of each LCC is a Load-Commutated-Inverter (LCI) whose fundamental frequency is
the motor frequency fm. In the considered power stage, the firing angle of each LCR is controlled by a
current control loop; differently it is assumed that the firing angles of the LCIs are constant. The main
parameters of the TG unit and of the TVFD are reported in Table 1.
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Figure 1. Liquefied Natural Gas (LNG) plant configuration.

Table 1. TG and TVFD parameters.

Electrical Parameters Value Unit

TG rated power 44 MVA
TG rated line to line voltage 11 KV

TG rated frequency 50 Hz
TG 1st TNF 9.2 Hz

Synchronous generator stator resistance (Ra) 0.0024 pu
Synchronous generator field and damper circuit resistances (R′f d, R′kd and R′kq) 0.0006, 0.04, 0.02 pu

Synchronous generator d-q axes magnetizing inductance (Lad and Laq) 1.63, 0.81 pu
Synchronous generator winding leakage inductance (Ll) 0.1 pu

Synchronous generator field and damper circuit inductances (L′f d, L′kd and L′kq) 0.14, 0.08, 0.14 pu
TVFD rated power (An) 17.4 MVA
TVFD rated voltage (vn) 4.75 kV

Grid frequency 50 Hz
Grid line to line voltage (vdq) 1 pu

DC-links resistance (RDC) 0.0057 pu
DC-links inductance (LDC) 0.8480 pu

DC-links mutual inductance (Lm) −0.5088 pu

Controller Parameter Value Unit

Current controller proportional gain Kp 0.22 pu
Current controller integral time constant 0.025 s

PLL Cut-off frequency 1.4 Hz
AVR filter parameters (Kr,Tr) 197,188 pu
AVR proportional gain KAVRP 0.12 pu

AVR integral time constant TAVRI 8 s
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3. Sub-Synchronous Torsional Interaction Phenomena

TG units connected to a stiff electrical grid are typically unaffected by transient events acting on
the grid (e.g., load steps or large motor start-up). Differently, in island-operated grids, an electrical
disturbance might have enough energy to propagate through the grid, becoming a mechanical excitation
for the turbine-generator shaft [4,5].

Figure 2 shows a simplified representation of the SSTI onset where current disturbances ∆i are
transformed into air gap torque disturbances ∆TAGT for the electrical TG. In the case of transient
events, such as load variation or motor start-up, other disturbances (denoted as ∆TT) occur and their
interaction with the air gap torque disturbances ∆TAGT creates the overall torque disturbances ∆T.
Torque disturbances imply torsional speed oscillations ∆ω of the TG units. Finally, torsional oscillations
provide voltage oscillations in the grid denoted as ∆vPCC. The VFD connected between the PCC of the
grid and the Motor (M) transforms the voltage variations (at its input) in current variations ∆i (at its
output). The loop resulting from the described phenomena can be stable when the torsional vibrations
on the TG unit naturally damp following the transient event. The loop can be unstable when such
vibrations keep increasing over time with insufficient or negative damping [9,11].
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Figure 2. Sub-Synchronous Torsional Interaction (SSTI) Phenomena Onset.

The overall damping of each TG unit supplying an island-operated grid is the sum of the shaft-line
inherent mechanical damping plus the electrical damping resulting from the above-mentioned
electro-mechanical loop [24]. Denoted as ξe( fn), the electrical damping at a certain Torsional Natural
Frequency (TNF) fn, ξe depends on the air gap torque oscillation at the same TNF (∆TAGT( fn)) and the
corresponding speed oscillation (∆ω( fn)):

ξe( fn) = −Re
{

∆TAGT( fn)
∆ω( fn)

}
(1)

The mechanical damping is passive, and it depends on the sole characteristic of the turbine-generator
shaft line [28]. The mechanical damping is a positive number at all frequencies [28,29]. Differently,
the electrical damping ξe can be positive or negative and, in the last condition, it decreases the overall
damping. Negative electrical damping is due to the negative incremental resistance behavior of the
power converter’s impedance and it is influenced by the converter’s control structure [3]. Instability
is achieved when the amplitude of the electrical damping is negative and its value is greater than
the mechanical damping value. According to the Nyquist criterion, the closed-loop system shown in
Figure 2 is asymptotically stable only in the case where the overall damping is positive.

4. Model and Control of the Thyristor Variable Frequency Drive

In this section, the small-signal dynamic model of the TVFD is provided. Figure 3 presents only
the first power conversion stage of the overall TVFD, supplied by a step-up transformer with two
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secondary windings. The overall TVFD is composed of two branches whose DC-links are connected
through a mutual inductance Lm. In each branch, there is an LCR. The LCRs are assumed to be equal,
and the DC-links can be modeled considering their resistance RDC and inductance LDC connected in
series and taking into account the mutual coupling. The power conversion stage shown in Figure 3
operates on the whole as a 12-pulse rectifier. The voltages V′DCi

and V′′DCi
denote the DC-link output

voltages and the input voltages of the LCIs which represent the second power conversion stage of the
overall TVFD (Figure 1).
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Figure 3. First power conversion stage of the overall thyristor variable frequency drive (TVFD).

The control system of the first power conversion stage of the overall TFVD is represented in
Figure 4. The overall power provided by the system is regulated by controlling the current by means of
two PI controllers, one for each LCR. The PI controllers determine the firing angles of the LCRs denoted
as α’ for the first LCR and α” for the second LCR. Besides, two Phase-Locked Loops (PLLs) have to
guarantee the synchronization with the grid voltages [30,31]. As a consequence, the firing angles
provided to the LCRs are the sum of α’ and α” plus αerr’ and αerr” which represent the contribution
of the PLLs. It has to be highlighted that the same PLL operations are affected by the grid voltage
fluctuations which are caused by the grid current variations. Besides, as described in the previous
section, it is assumed that the second power conversion stage, which consists of two LCIs, operates
with constant firing angles.
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4.1. Small-Signal Model of the AC/DC Power Conversion Stage

In [32], the small-signal model of a 6-pulse H-Bridge rectifier is presented. The same approach is
extended to develop the small-signal model of the AC/DC power conversion stage of the TVFD.

As described before, the AC/DC power conversion stage consists of two LCRs which operate
overall as a 12-pulse rectifier. Considering, for example, the commutation among the couples of
thyristors T′6, T′1 and T′1, T′2 for the first LCR and the couples T′′6 , T′′1 and T′′1 , T′′2 for the second LCR,
the operation of the 12-pulse rectifier can be divided into five stages. Considering the magnetic
coupling between the first and the second LCR, the equivalent circuit for each stage is shown in Figure 5.
The same analysis could be applied to all the other thyristors couples in the case of commutation to
describe the complete operation of the 12-pulse rectifier in a period of the supplying voltage.
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On the basis of the Kirchhoff laws and according to Figure 5a, when thyristors T6 and T1 of each
LCR are in conduction mode,

X1 =
[

i′DC i′′DC

]T
, (2)

d
dt

X1 = A1X1 + Babc1 ·

[
F1 · P(θ)

F1 · P(θ−π/6)

]
· vdq + BDC1 ·VDCi

, (3)

with
Q1 =

1
LDC2 + 4LDC · Ls − Lm2 + 4Ls2 ,

A1 = Q1 ·

[
−RDC · (LDC + 2Ls) Lm ·RDC

Lm ·RDC −RDC · (LDC + 2Ls)

]
,

Babc1 = Q1 ·

[
LDC+2Ls −Lm

−Lm LDC+2Ls

]
, BDC1 = Q1 ·

[
−(L DC+2LS) Lm

Lm −(L DC+2LS)

]
F1 =

[
1 −1 0

]
,

where the vector of the DC-link currents is indicated as X1; RDC, LDC, and Lm are, respectively,
the resistance and inductance of the DC-links and the mutual inductance; Ls is the equivalent grid
inductance which is a comprehensive form of the transformer inductance; iDC and VDCi

denote the
LCIs-side DC-link currents and DC-link voltage vector, respectively; vdq is the vector of the LCR-side
voltages in a d-q reference frame:

Denoting as P(θ) the Park transformation matrix, which allows us to transform the input voltages
v′a,b,c and v′′ a,b,c in vdq,

v′ab = F1 · P(θ) · vdq

v′′ ab = F1 · P(θ−π/6) · vdq

, with P(θ) =


cos(θ) − cos(θ)

cos
(
θ− 2

3π
)
− sin

(
θ− 2

3π
)

cos
(
θ+ 2

3π
)
− sin

(
θ+ 2

3π
)

, (4)

where θ is the Park angle.
Equation (3) is valid in the time range

(
t0 Φ

)
(Figure 5a), where t0 denotes the initial time

instant, and Φ is the turn-on time of thyristor T′2 of the first LCR.
When thyristor T′2 of the first LCR is turned on (Figure 5b), it is possible to define the vector X2:

X2 =
[

i′DC i′new i′′DC

]T
, (5)

d
dt

X2 = A2X22 + Babc2 ·

[
F2 · P(θ)

F1 · P(θ−π/6)

]
· vdq + BDC2 ·VDCi

, (6)

with
Q2 =

1
2LDC2 + 7LDC · Ls − 2Lm2 + 6Ls2 ,

A2 = Q2 ·


−2RDC · (L DC+2Ls) 0 2Lm ·RDC
−RDC · (L DC+2Ls) 0 Lm ·RDC

2Lm ·RDC 0 −RDC · (2L DC+3Ls)

,
Babc2 = Q2 ·


2LDC+4Ls LDC+2Ls −2Lm

LDC+2Ls
L2

DC+4LDC·Ls−L2
m+4L2

s
Ls

−Lm

−2Lm −Lm 2LDC+3Ls

,

Babc2 = Q2 ·


2LDC+4Ls LDC+2Ls −2Lm

LDC+2Ls
L2

DC+4LDC·Ls−L2
m+4L2

s
Ls

−Lm

−2Lm −Lm 2LDC+3Ls

.
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Equation (6) describes the converter operation during the second stage of Figure 5b and it is valid
in the time range

(
Φ σ

)
. At the instant σT′6 is completely turned off.

Later, after the completed turn-off of T′6, the equations describing the circuit in Figure 5c are:

X3 =
[

i′DC i′′DC

]
, (7)

d
dt

X3 = A1X3 + Babc1 ·

[
F3 · P(θ)

F1 · P(θ−π/6)

]
· vdq + BDC1 ·VDCi

, with F3 =
[

1 0 −1
]

(8)

Equation (8) is valid in the third stage of the operation and in particular in the time range
(
σ β

)
where β is the turn-on time of thyristor T′′2 of the second LCR.

Successively, in the fourth stage, the equations describing the operation of the circuit (Figure 5d) are:

X4 =
[

i′DC i′′DC i′′new

]T
, (9)

d
dt

X4 = A4X4 + Babc4 ·

[
F3 · P(θ)

F2 · P(θ−π/6)

]
· vdq + BDC4 ·VDCi

, (10)

with

A4 = Q2 ·


−RDC · (2L DC+3Ls) 2Lm ·RDC 0

2Lm ·RDC −RDC · (L DC+2Ls) 0
Lm ·RDC −RDC · (L DC+2Ls) 0

,
Babc4 = Q2 ·


2LDC+3Ls −2Lm −Lm

−2Lm 2LDC+4Ls LDC+2Ls

−2Lm LDC+2Ls
L2

DC+4LDC·Ls−L2
m+4L2

s
Ls

,
BDC4 = Q2 ·


−(2L DC+3Ls) 2Lm

2Lm −(2L DC+4Ls)

Lm −(L DC+2Ls)

.
Equation (10) describes the AC/DC power conversion stage in the time range

(
β η

)
where T′′6

is completely turned off at the instant indicated as η.
Finally, when the thyristor T′′6 of the second LCR is completely turned off (Figure 5e), the vector

X5 can be defined and it results
X5 =

[
i′DC i′′DC

]
, (11)

d
dt

X5 = A1X5 + Babc1 ·

[
F3 · P(θ)

F3 · P(θ−π/6)

]
· vdq + BDC1 ·VDCi

. (12)

Equation (12) describes the AC/DC power conversion stage operation in the time range
(
η t1

)
where t1 denotes the end of the fifth stage.

In conclusion, it is possible to calculate:

X2(Φ) = K1X1(Φ), X3(σ) = K2X2(σ), X4(β) = K3X3(β), X5(η) = K4X4(η) (13)

with

K1 =


1 0
0 0
0 1

, K2 =

 Ls+LDC
2Ls+LDC

Ls
2Ls+LDC

0
0 0 1

, K3 =


1 0
0 1
0 0

, K4 =

 0 0 1
Ls+LDC

2Ls+LDC

Ls
2Ls+LDC

0

.
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From Equations (3), (6), (8), (10) and (12), it is possible to define i′DC and i′′DC as a function of the
initial conditions and of the external inputs:

X1(Φ) = eA1(Φ−t0) ·X1(t0) +

∫ Φ

t0

eA1(Φ−τ)
(
Babc1 ·

[
T1 · P(θ)

T1 · P(θ−π/6)

]
· vdq + BDC1 ·VDCi

)
· dτ, (14)

X2(σ) = eA2(σ−Φ)
·X2(Φ) +

∫ σ

Φ
eA2(σ−τ)

(
Babc2 ·

[
T2 · P(θ)

T1 · P(θ−π/6)

]
· vdq + BDC2 ·VDCi

)
· dτ, (15)

X3(β) = eA1(β−σ) ·X3(σ) +

∫ β

σ
eA1(β−τ)

(
Babc1 ·

[
T3 · P(θ)

T1 · P(θ−π/6)

]
· vdq + BDC1 ·VDCi

)
· dτ, (16)

X4(η) = eA4(η−β) ·X4(β) +

∫ η

β
eA2(η−τ)

(
Babc4 ·

[
T3 · P(θ)

T2 · P(θ−π/6)

]
· vdq + BDC4 ·VDCi

)
· dτ, (17)

X5(t1) = eA1(t1−η) ·X5(η) +

∫ t1

η
eA1(t1−τ)

(
Babc1 ·

[
T3 · P(θ)

T3 · P(θ−π/6)

]
· vdq + BDC1 ·VDCi

)
· dτ. (18)

Since i′DC and i′′DC are non-linear, small-signal linearization can be applied around the steady-state
operating point. For example, Equation (18) can be rewritten, and the currents can be expressed in
order to point out the dependency on the firing angles’ small perturbations ∆α’ and ∆α”. This results in

∆X5(t1) =
δX5(t1)

δX1(t0)
· ∆X1(t0) +

δX5(t1)

δvdq
· ∆vdq +

δX5(t1)

δVDCi

· ∆VDCi
+
δX5(t1)

δα
· ∆α, (19)

with ∆α =
[

∆α′ ∆α′′
]T

.
It is known that π/3 is the period of the currents i′DC and i′′DC; hence, it is possible to generalize

∆X5(k + 1) =
δX5(t1)

δX1(t0)
· ∆X1(k) +

δX5(t1)

δvdq
· ∆vdq +

δX5(t1)

δVDCi

· ∆VDCi
+
δX5(t1)

δα
· ∆α. (20)

Equation (20) can be converted as follows:

d
dt

∆iDC = ASS−LCC · ∆iDC + B1SS−LCC · ∆vdq + B2SS−LCC · ∆VDCi
+ B3SS−LCC · ∆α, (21)

where the matrixes contained in Equation (21) are defined as follows:

ASS−LCC =
1

∆T
ln

(
δX5(t1)

δX1(t0)

)
, (22)

B1SS−LCC =

(
δX5(t1)

δX1(t0)
− 1

)−1

·ASS−LCC ·
δX5(t1)

δvdq
,

B2SS−LCC =

(
δX5(t1)

δX1(t0)
− 1

)−1

·ASS−LCC ·
δX5(t1)

δVDCi

,

B3SS−LCC =

(
δX5(t1)

δX1(t0)
− 1

)−1

·ASS−LCC ·
δX5(t1)

δα
.

(23)
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In order to obtain a classic state-space representation, the small-signal perturbations of the currents
∆idq and ∆iDC are set as outputs of the overall system. Hence,

d
dt ∆iDC = ASS−LCC · ∆iDC +

[
B1SS−LCC B2SS−LCC B3SS−LCC

]
·

[
∆vdq ∆VDCi

∆α
]T ∆iDC

∆idq

 = CSS−LCC ·∆iDC

, (24)

where CSS−LCC =

[
1 0
0 1

T1 · P(θ) T1 · P(θ)
]T

.

Including also the action of the PLLs in the small-signal linearized model, the closed-loop
state-space model can be expressed by: d

dt ∆iDC = ASS−PCS · ∆iDC + BSS−PCS ·
[

∆vdq ∆VDCi

]T

∆idq = CSS−PCS · ∆iDC
. (25)

Hence, Figure 4 can be replaced by Figure 6 including the provided state-space dynamic model of
the AC/DC power conversion stage in the overall control loop.
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Figure 6. Control system and TVFD first power conversion stage model based on small-signal
linearization and state-space representation.

4.2. Model Validation of the AC/DC Power Conversion Stage

Considering the electrical parameters of the power conversion stage reported in Table 1,
the small-signal model of the TVFD AC/DC power conversion stage is assessed and compared
with a simplified model. Figure 7 shows the simplified equivalent circuit of the TVFD AC/DC power
conversion stage, where the dynamic behavior of the converters and the commutation process is
neglected. The circuit represents an average model of the AC/DC power conversion stage where only
the DC-links of the LCRs are modeled and the 12-pulse rectifier is considered through the average
voltage provided by the two LCRs denoted as V′DCr and V′′DCr.

Starting from the simplified circuit shown in Figure 7, a state-space representation similar to
Equation (25) can be obtained.
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Figure 7. Simplified equivalent circuit of the TVFD AC/DC power stage.

The small-signal dynamic model discussed in the previous section, the simplified average model
and a simulation time-varying model based on PLECS (Piecewise Linear Electrical Circuit Simulation)
software (4.3.2 version) have been compared. The PLECS simulation platform is used in the Simulink
environment. The PLECS model reproduces exactly the real operation of the AC/DC power conversion
stage in the time domain and the thyristors commutation on the basis of the power electronic devices
datasheet implementation.

The current variations ∆idq due to voltage variations have been analyzed since they are strictly
related to the electrical damping estimation. Voltage variations ∆vnoise (at frequencies defined as fnoise)
have been applied as inputs of the different models. The frequencies of interest are in the range
(0–60 Hz) which includes the first TNF of the TG unit. The measurements of ∆idq are fundamental
in order to test the effectiveness of the proposed AC/DC power conversion model. As an example,
Figure 8 reports the d-axis current variations ∆id(related to the primary side of the transformer) in the
case of voltage variations set at 5 Hz and 10 Hz. It can be noticed that the current waveforms provided
by the small-signal dynamic model, the simplified average model, and the simulation PLECS model
are all in phase but the currents have different amplitudes. As expected, the PLECS current waveforms
reproduce the real currents affected by the thyristors switching.
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The effects of the same voltage variations at 5 Hz and 10 Hz are considered in Figure 9, where
the results are presented in the frequency domain. In reference to the same figure, Fast Fourier
Transform (FFT) has been adopted to discern the different frequency components. It is possible to
observe how the PLECS model and the small-signal dynamic model provide exactly the same current
variations. Differently, the simplified average model underrates the amplitude of the current variations.
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This demonstrates that the small-signal dynamic model is preferable to the simplified average model
in order to obtain a fair assessment of the impact of the SSTI phenomena.
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5. Model and Control of the Turbine-Generator Unit

Starting from the synchronous machine model presented in [2], a combined electromechanical
model of the TG is developed in order to be compatible with the state-space representation of the
TVFD presented in Section 4.1.

In the considered case study, the shaft-line mechanical behavior is described by a lumped model
of the GT coupled to the synchronous generator through a mechanical gearbox. The synchronous
generator air-gap torque can be calculated as a function of currents and fluxes in a d-q reference frame.
The excitation circuit is controlled by an Automatic Voltage Regulator (AVR) as shown in Figure 10.
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5.1. Small-Signal Model of the Synchronous Generator

The shaft-line model has several degrees of freedom (DOFs), as discussed in [28,29]. In this paper
a simplified approach is preferred and three DOFs are associated with the shaft-line: the first represents
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the whole GT, the second represents the gearbox, and the third represents the whole synchronous
generator (Figure 11).
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Newton’s second law allows us to obtain the motion differential equation of a multi-mass system:

d
dt

∆XTMM =

[
−J−1

·D −J−1
·K

1 0

]
· ∆XTMM +

[
J−1
· T

0

]
, (26)

with

J =


J1 0 0
0 J2 0
0 0 J3

, D =


−D1 +D1 0
D1 −(D1 + D2) D2

0 D2 −D2

, K =


−K1 K1 0
K1 −K2 0
0 K2 0

,
where the vector ∆XTMM =

[ ·

∆δ1
·

∆δ2
·

∆δ3 ∆δ1 − ∆δ2 ∆δ2 − ∆δ3 ∆δ3

]T
is defined as the

torsional mechanical model vector, δ =
[
δ1 δ2 δ3

]T
is the three DOF rotor position vector,

T =
[

Ttur 0 −TAGT
]

is the vector of the torques applied to the shaft-line (composed of the turbine
torque Ttur and the generator torque TAGT), J is the inertia diagonal matrix, K is the stiffness tri-diagonal
matrix and D is the damping tri-diagonal matrix.

Considering a d-q reference frame rotating at the rotor frequency ωR, the d-q circuits of the
synchronous generator are presented in Figure 12.
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The stator currents iSd and iSq and the flux linkages ψad and ψaq can be defined as:
iSd = 1

D ·

(
Lq ·

(
ω · L′′ad ·

(
ψ f d
L′f d

+
ψkd
L′kd

)
− vPCCq

)
−

(
(Rnet + Ra) ·

(
ω · L′′aq ·

ψkq
L′kd
− vPCCd

)))
iSq =

1
D ·

(
(Rnet + Ra) ·

(
ω · L′′ad ·

(
ψ f d
L′f d

+
ψkd
L′kd

)
− vPCCq

)
−

(
Ld ·

(
ω · L′′aq ·

ψkq
L′kq
− vPCCd

))) , (27)

with
L′′ad =

1
1/Lad + 1/L f d + 1/Lkd

, L′′aq =
1

1/Laq + 1/Lkq
,

Ld = Lnet +ω ·
(
L′′ad + Ll

)
, Lq = Lnet +ω ·

(
L′′aq + Ll

)
,

D = (Rnet + Ra)
2 + Xq ·Xd,
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ψad = L′′ad ·

−iSd +
ψ f d

L′f d
+
ψkd

L′kd

, ψaq = L′′ ad ·

−iSq +
ψkq

L′kq

, (28)

where ω is the stator voltage pulsation, vPCCd and vPCCq are the d-q axes grid voltages, Ψfd is the field
winding flux linkage, Ψkd and Ψkq are the d-q axes amortisseur winding flux linkages, Rnet and Xnet

are the respective resistance and the reactance of the step-up transformer connecting the generator to
the PCC; Ra is the stator resistance; Rfd, Rkd and Rkq are the field and ammortisseur circuit resistances
referring to the stator side; Lad and Laq are the d-q axes magnetizing inductances, L1 is the stator
winding leakage inductance; Lfd, Lkd and Lkq are the field and damper circuit inductances referring to
the stator side.

The air-gap torque TAGT can be calculated as:

TAGT = ψad · iSq −ψaq · iSd, (29)

In order to simplify the analysis, a new common reference frame R-I can be introduced.
The synchronous machine d-q reference frame and the R-I reference frame are shown in Figure 13.
Hence, the machine stator currents can be expressed in the new R-I common reference frame as:[

iSd
iSq

]
=

[
sin(γ) − cos(γ)
cos(γ) sin(γ)

]
·

[
iR
iI

]
, (30)

where γ is defined as shown in Figure 13.
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Denoting as δ3 the rotor angle, Equations (27)–(29) can be linearized around the initial conditions
characterized by the initial rotor position δ30 , initial rotor fluxes ψad0 and ψaq0 , initial current vector
iRI0

, initial voltage vector vPCC0
, and initial field voltage e f d0 :[

IR1 IR2

II1 II2

]
· ∆iRI +

[
IR3

II3

]
·

·

∆δ3 +

[
IR4 IR5 IR6 IR7

II4 II5 II6 II7

]
·

 ∆δ3

∆ψ

+ [
IR8 IR9

II8 II9

]
· ∆vPCC = 0, (31)

where the coefficients are derived in Appendix A.
The small-signal model of the circuit shown in Figure 10 is described by the following equation:

d
dt

∆ψ =

−


R′f d 0 0

0 R′kd 0
0 0 R′kq

 ·


∆i f d
∆ikd
∆ikq

+


(
R′f d/Lad

)
·

(
−KAVRP −KAVRI

∫
dt

)
· ∆VAVR

0
0


 ·ωR, (32)
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where ∆ψ =
[

∆ψ f d ∆ψkd ∆ψkq
]T

is the rotor flux perturbation vector.
The derivative of ∆ψ f d depends on the field voltage that in Equation (32) is taken into account

through the action of the AVR.
The model of the considered AVR is shown in Figure 14. As in [2], it is composed of a voltage

transducer (whose proportional gain and time constant are Kr and Tr, respectively) and by a PI controller
(whose proportional gain and integral time constant are KAVRP and TAVRi, respectively).
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The grid voltage magnitude variation can be expressed as

∆|VPCC| = K1AVR · ∆VPCCR + K2AVR · ∆VPCCI , (33)

with

K1AVR =
VPCCd0

|VPCC|0
· sin

(
δ30

)
+

VPCCq0

|VPCC|0
· cos

(
δ30

)
,

K2AVR = −
VPCCd0

|VPCC|0
· cos

(
δ30

)
+

VPCCq0

|VPCC|0
· sin

(
δ30

)
.

The derivative of the transducer voltage can be calculated as

d
dt

∆VAVR =
1
Tr
·

(
Kr ·

(
K1AVR · ∆VPCCR + K2AVR · ∆VPCCI

)
− ∆VAVR

)
. (34)

The state-space electromechanical model of the TG can be obtained combining Equations (26), (32)

and (34) and defining the space vector as ∆XGT =
[

∆XTMM ∆ψ
∫

∆VAVR ∆VAVR
]T

:



d
dt ∆XGT =


ASM11 ASM12 [0]
ASM21 ASM22 ASM23

ASM31 [0] ASM33

 · ∆XGT +


B1
[0]
[0]

 · ∆Ttur +


B2
B3
B4

 ·
[

∆vPCC
∆iRI

]

∆iRI =

[
IR1 IR2

II1 II2

]−1

·

−
[

IR3 IR4 IR5 IR6 IR7

II3 II4 II5 II6 II7

]
·


∆

.
δ3

∆δ3

∆ψ

−
[

IR8 IR9

II8 II9

]
· ∆vPCC


. (35)

In conclusion, the TG eigenvalue calculation is based on the matrix ASM eigenvalue determination.
The real part of eigenvalues provides information of the overall damping including both the mechanical
and the electrical contribution.

5.2. Model Validation of the Synchronous Generator

Independent of the causes, SSTIs lead to generator shaft torsional vibrations. The overall damping
of the TG unit is given by the sum of the shaft-line inherent mechanical damping and the electrical
damping. Considering Figures 10 and 11, the torsional torque on the gas turbine is taken into account to
evaluate the damping. Thanks to the modal analysis, the torsional natural frequencies of the shaft-line
and the damping related to these frequencies can be identified.

In Table 2, the TG torsional mechanical model parameters are reported.
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Table 2. TG torsional mechanical model parameters.

Torsional Mechanical Model Parameters Value Unit

Interties coefficients (J1,J2 and J3) 9.166, 1.461, 2.764 pu
Stiffness coefficients (K1 and K2) 135.273, 27.235 pu
Damper coefficients (D1 and D2) 4.894, 0.985 pu

With reference to the data of Tables 1 and 2, the state-space electromechanical model of the TG
has been assessed through a comparison with a simulation time-varying model based on PLECS
software (4.3.2 version). Simulation results are related to rated conditions. The results provided by the
time-varying model have been used in order to verify the accuracy of the small-signal model defined
in Equation (35). In particular, the impulse response of the PLECS simulation model has been analyzed
in the frequency domain to determine the damping related to each torsional frequency. The achieved
information was compared with frequencies and damping obtained through the eigenvalue analysis of
the matrix ASM in the state-space model (Equation (35)).

Fourier transform-based approaches are not suitable for this frequency domain study since
the torsional torque signals are typically affected by time-varying components. Differently, Prony
analysis is widely used to test the power system’s transient behavior [33–36]. Prony analysis can
accurately identify growing or decaying components of signals where there is no prior knowledge of
the frequencies. Indeed, each signal y(t) can be defined as:

y(t) =
∑N

k=1
Ak · eσk · cos(ωk + Θk), with k = 1, 2, 3, . . . , N. (36)

where Ak is the magnitude, σk is the damping factor, ωk is the pulsation, and Θk is the phase angle.
The greatest advantage of Prony analysis is the ability to identify the damping factor of each mode

since each exponential component in Equation (36) represents a unique mode of the original signal
y(t). As a consequence, transient harmonics can be identified accurately.

In Figure 15, the TG is excited by a torsional impulse with magnitude 1 pu and duration 10−4 s.
The complete torque transient behavior calculated by the state-space TG model is shown in the upper
side of Figure 15, while the comparison between the torque provided by the simulation PLECS model
and the torque fitting using the Prony series are reported on the lower side of Figure 15 considering a
time range (0–2) s.
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The torque waveform depends on the natural frequency and the damping factor of the first
torsional mode. The post processing analysis, through Prony series, allows us to fit the real torque
signal with an optimal approximation, as highlighted in Figure 15. The natural frequency and the
damping factor estimated through Prony series are: f1TNF = 9.19, ξ1TNF = 0.0036.

Considering the TG state-space model, the overall damping factor can be evaluated by the
eigenvalues of the matrix ASM, remembering that ASM is the matrix which multiplies the state vector
in Equation (35). Table 3 reports the eigenvalues corresponding to the oscillatory mode of the matrix.
Focusing on the first torsional model, the natural frequency is equal to 9.2047 Hz while the damping
factor is equal to 0.0035.

Table 3. Eigenvalues of the TG state-space model.

Eigenvalues Frequency [Hz] Damping Factor [pu]

−0.2021 ± 57.8346i 9.20 0.0035
−2.2685 ± 198.2778i 31.56 0.0114

Comparing the results provided by the state-space model and the simulation of the PLECS model
processed through Prony series, it can be concluded that the frequency of the first torsional mode is
estimated with an error less than 5%, while the overall damping factor is estimated with an error less
than 3%. Hence, the accuracy of the proposed state-space electromechanical model is proved.

6. Damping Assessment and Stability Considerations

In the previous sections, both the state-space model of the TVFD and of the TG unit are represented
in the following form: { d

dt ∆xi = Ai · ∆xi + Bi · ∆vi
∆ii = Ci · ∆xi + Di · ∆vi

, (37)

where ∆xi represents the variations of the state variables of the TVFD and of the TG unit,∆ii is the
vector of the current perturbations, and ∆vi is the vector of the voltage perturbations.

In order to achieve the overall electromechanical model of the LNG plant, all voltages and currents
have been measured in a common reference frame. For this purpose, the reference frame R-I rotating
at the synchronous generator speed (Figure 13) is used as a common reference frame.

Denoting as ∆iGT the current provided by the TG unit and as ∆iPCS the AC current of the TVFD,
the currents vectors can be defined as:

∆iPCC =
[

∆iGT ∆iPCS

]T
, (38)

with
∆iGT = −∆iRI, ∆iPCS = −∆idq.

Considering the simplified scheme of the LNG plant shown in Figure 2, the overall state-space
model can be obtained combining Equations (25) and (35):

d
dt

[
∆XGT
∆iDC

]
=

[
ASM + BSM ·CSM [0]

[0] ASS−PCS

]
·

[
∆XGT
∆iDC

]
+

[
BSM + BSM ·DSM

BSS−PCS

]
· ∆vPCC[

∆iGT
∆iPCS

]
=

[
CSM [0]
[0] CSS−PCS

]
·

[
∆XGT
∆iDC

]
+

[
DSM
[0]

]
· ∆vPCC

, (39)
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with
BSM =

[
B1 B2 B3

]T
,

CSM = −

[
IR1 IR2

II1 II2

]−1

·

[
0 0 IR3 0 0 IR4 IR5 IR6 IR7 0 0
0 0 II3 0 0 II4 II5 II6 II7 0 0

]
,

DSM = −

[
IR1 IR2

II1 II2

]−1

·

[
IR8 IR9

II8 II9

]
.

Hence, the PCC node equation is:

∆iPCC = YPCC · ∆vPCC, (40)

Finally, the LNG plant model can be rearranged as:

∆vPCC =

(
YPCC −

[
DSM
[0]

])−1

·

[
CSM [0]
[0] CSS−PCS

]
·

[
∆XGT
∆iDC

]
, (41)

d
dt

[
∆XGT
∆iDC

]
= AWPN ·

[
∆XGT
∆iDC

]
, (42)

with

AWPN =

[
ASM + BSM ·CSM [0]
[0] ASS−PCS

]
+[

BSM + BSM ·DSM
BSS−PCS

]
·

(
YPCC −

[
DSM
[0]

])−1

·

[
CSM [0]
[0] CSS−PCS

]

6.1. Electrical Damping Assessment

The LNG plant eigenvalue calculations provide information about the stability of the overall
power system. The LNG plant eigenvalue calculations are based on determination of the matrix AWPN

eigenvalues. Each pair of complex eigenvalues corresponds to an oscillatory mode. The real part of
the eigenvalues provides information of the overall damping including both the mechanical and the
electrical damping. The imaginary component provides information about the oscillation frequency.
Denoting as λi the i-th complex-conjugate pair of eigenvalues at a frequency ωi:

λi = σi ± jωi. (43)

The oscillatory mode is stable if the real part σi of the eigenvalue is negative. This implies that the
resulting TG shaft line oscillations damp naturally following a transient event in the grid. In particular,
the decay rate of the oscillation amplitude depends on the frequency fi and the real part σi:

fi = ωi/2π,

ξ( fi) = −σi/
√
σ2

i +ω2
i ,

(44)

where ξ(fi) denotes the overall damping.
If ξ(fi) is negative, the oscillations at frequency fi keep increasing over time. As defined in [24],

the overall damping can be divided into two contributions:

ξ( fi) = ξm( fi) + ξe( fi). (45)

Denoting as ξm(fi) the mechanical contribution to the overall damping ξ(fi), the mechanical
damping can be evaluated through the modal analysis as described in [28,29]. ξm(fi) is always positive;
hence, the overall damping ξ(fi) can be negative only if the electrical damping contribution ξe(fi)
is negative. The mechanical damping at frequency fi can be calculated by the coefficients D1 and
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D2 reported in Table 2. Differently, Equation (45) allows us to calculate the electrical damping ξe(fi)
by subtraction.

In the considered case study, the electrical damping ξe(fi) and the eigenvalues of the matrix AWPN

depend on the synchronous generator, the TVFD, and their control system. Considering the data
reported in Tables 1 and 2, the mechanical damping ξm(TNF1◦) and ξm(TNF2◦) related to the first and
to the second TNFs can be derived (Table 4).

Table 4. TG mechanical damping at the first and the second TNFs.

Mechanical Damping Factor Value [pu]

ξm(TNF1) 0.0033
ξm(TNF2) 0.0114

Looking at Equations (42) and (44), the overall damping ξ(TNFs) is assessed by the eigenvalues of
the matrix AWPN, and the electrical damping ξe(TNFs) is calculated as a consequence.

6.2. Stability Evaluation

The parameter variation of the LCR’s current controller and of the PLL controllers influences
the electric damping ξe(TNFs). Starting from the control parameters reported in Table 5, the current
controller and PLL controller proportional gains have been varied successively.

Table 5. Current controller and PLL controller parameters.

Parameter Value Unit

Proportional gain (current controller) 0.06 pu
Integral constant (current controller) 0.025 s

Proportional gain (PLL controller) 10 pu
Integral constant (current controller) 0.33 s

In Figure 16, the proportional gain of the LCR’s PI controllers is increased up to 0.7 pu while the
integral time constant is kept constant. There is a decrease of the electrical damping ξe(TNF1◦) related
to the first TNF, which leads the LNG plant to instability in the case the proportional gain is greater than
0.1. The worst case is verified when Kp = 0.22 pu. In this condition, the electrical damping absolute
value is the highest and, as a consequence, the overall damping ξ(TNF1◦) is negative. For Kp < 0.1,
the overall damping ξ(TNF1◦) is positive and the system is stable.
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Considering the application of a torque impulse to the TG shaft at t = 0.5 s, the overall
electro-mechanical system is perturbed. In Figure 17, two different conditions are analyzed: in the
first case, Kp = 0.22, in the second case, Kp = 0.06. It can be observed that in the first case, the alternating
component of the shaft torque increases progressively, while in the second case, the shaft torque
decreases over time.
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Considering the reference frame shown in Figure 13, the TG model and the power conversion
stage model described by Equations (35) and (25), respectively, can be rearranged as:{ d

dt ∆XGT = [ASM + BSM ·CSM] · ∆XGT + [BSM + BSM ·DSM] · ∆vPCCR

∆iGTR = CSM · ∆XGT + DSM · ∆vPCCR

, (46)

{ d
dt ∆iDC = ASS−PCS · ∆iDC + BSS−PCS · ∆vPCCR

∆iPCSR = CSS−PCS · ∆iDC
, (47)

where the voltage variation ∆vPCCR is selected as input, and the current variations ∆iGTR and ∆iPCSR

are selected as output.
In Figures 18 and 19, the Bode diagrams of the systems described in Equations (46) and (48)

are shown.
Looking at Figure 18, it can be observed that, considering different values of Kp, the magnitudes

are very similar in the frequencies range of interest. As a consequence, the variations of the currents
drained by the power conversion stage at the PCC ∆iPCSR are not suggestive of instability conditions.
Differently the Bode phase plots related to the first TNF are indicative of instability. In the case
ξe(TNF1◦) is positive or zero, the current variations ∆iPCSR exhibit around 90◦ of lag with respect to the
voltage variation ∆vPCCR .

Considering the TG model (Equation (46)), it can be noticed that the variations of the currents
injected in the PCC ∆iGTR are around 10◦with respect to voltage variation ∆vPCCR (Figure 19). Observing
Figures 18 and 19 and considering Kp = 0.03 pu, it can be concluded that the currents at the PCC
related to the TG and to the power conversion stage have a phase shift greater than 90 degrees. In this
condition, positive electrical damping is guaranteed. The phase shift between the currents decreases
in the other cases, ξe(TNF1◦) presents negative values, and the electro-mechanical system leads to
instability conditions.
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In conclusion, the study of the overall model defined in Equation (42) is necessary in order to
provide proper stability assessment.

In Figure 20, the proportional gain of the PLL controller is varied while the PLL integral time
constant is considered constant. In the case the proportional gain is greater than 17, there is a decrease
of the electrical damping ξe(TNF1◦) related to the first TNF, which leads the LNG plant to instability.
This is confirmed by the results provided in Figure 21 when the proportion gain of the PLL controllers
is assumed equal to 7 in the first case and equal to 30 in the second case. In the first case, ξe(TNF1◦) is
positive, and the torque oscillation damps naturally; in the second case, the torque oscillation increases
over time, and the LNG plant is unstable.
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7. Conclusions

Commonly for the LNG plants, stability analysis is developed, neglecting a detailed model of the
power converters. In this paper, it is pointed out that stability evaluation provided in the case of a
simplified model of the power conversion stage can be misleading. It can impact the effectiveness
of the results and, as a consequence, the operation of the LNG plant. Small-signal analysis is used
to determine a detailed dynamic state-space model of the TVFD and of the electrical generator with
the aim to provide an accurate evaluation of the electrical damping of the LNG plant. It is proved
that the use of simplified models can affect the estimation of the electrical disturbances due to the
SSTI phenomena. The impact of the main control parameters variations on the electrical damping
assessment is finally investigated.
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Appendix A

Assuming linear magnetic conditions, based on the small-signal linearization, it is possible
to define

δ3 = δ30 + ∆δ3, (A1)

ψad = ψad0 + ∆ψad and ψaq = ψaq0 + ∆ψaq, (A2)

iRI = iRI0
+ ∆iRI, (A3)

vPCC = vPCC0
+ ∆vPCC, (A4)

e f d = e f d0 + ∆e f d, (A5)

where δ30 is the initial rotor position, ψad0 and ψaq0 are the initial rotor fluxes, iRI0
is the initial current

vector in the R-I frame, vPCC0
is the initial voltage vector, and e f d0 is the initial field voltage.

Considering the relation between the common reference frame R-I and the individual synchronous
machine reference frame defined in Equation (30), the variations of the currents iSdq

and of the voltage
vPCCdq

can be expressed as:

∆iSd = sin
(
δ30

)
· ∆iR − cos

(
δ30

)
· ∆iI +

(
cos

(
δ30

)
· iR0 + sin

(
δ30

)
· iI0

)
· ∆δ3

∆iSq = cos
(
δ30

)
· ∆iR + sin

(
δ30

)
· ∆iI +

(
− sin

(
δ30

)
· iR0 + cos

(
δ30

)
· iI0

)
· ∆δ3

, (A6)

∆vPCCd = sin
(
δ30

)
· ∆vPCCR − cos

(
δ30

)
· ∆vPCCI +

(
cos

(
δ30

)
· vPCCR0 + sin

(
δ30

)
· vPCCI0

)
· ∆δ3

∆vPCCq = cos
(
δ30

)
· ∆vPCCR + sin

(
δ30

)
· ∆vPCCI −

(
sin

(
δ30

)
· vPCCR0 − cos

(
δ30

)
· vPCCI0

)
· ∆δ3

. (A7)

Neglecting the constant terms and the variations with order higher than the first:[
IR1 IR2

II1 II2

]
· ∆iRI +

[
IR3

II3

]
·

·

∆δ3 +

[
IR4 IR5 IR6 IR7

II4 II5 II6 II7

]
·

 ∆δ3

∆ψ

+ [
IR8 IR9

II8 II9

]
· ∆vPCC = 0, (A8)

where defining the coefficients:

Acoe f = L′′ad ·

(
ψ f d0

L f d
+
ψkd0

Lkd

)
, (A9)

Bcoe f = L′′aq ·
ψkq0

Lkq
, (A10)

Ccoe f = −
1

D2 ·
(
Xnet ·

(
L′′ad + L′′aq + 2Ll

)
+ 2 ·

(
L′′ad + Ll

)
·

(
L′′aq + Ll

))
. (A11)

The matrix elements are:
IR1 = − sin

(
δ30

)
, (A12)

IR2 = cos
(
δ30

)
, (A13)

II1 = − cos
(
δ30

)
, (A14)

II2 = − sin
(
δ30

)
, (A15)

IR3 = Ccoe f ·

(
Lq ·

(
L′′ad ·

(
ψ f d0
L f d

+
ψkd0
Lkd

)
− vPCCq0

)
− (Rnet + Ra) ·

(
L′′aq ·

ψkq0
Lkq
− vPCCd0

))
+

1
D ·

(
Acoe f · Lq − Bcoe f · (Rnet + Ra) +

(
L′′aq + Ll

)
·

(
L′′ad ·

(
ψ f d0
L f d

+
ψkd0
Lkd

)
− vPCCq0

)) , (A16)

II3 = Ccoe f ·

(
(Rnet + Ra) ·

(
L′′ad ·

(
ψ f d0
L f d

+
ψkd0
Lkd

)
− vPCCq0

)
− Ld ·

(
L′′aq ·

ψkq0
Lkq
− vPCCd0

))
+

1
D ·

(
Acoe f · (Rnet + Ra) − Bcoe f · Ld +

(
L′′ad + Ll

)
·

(
L′′aq ·

ψkq0
Lkq
− vPCCd0

)) , (A17)
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IR4 = −
(
cos

(
δ30

)
· iR0 + sin

(
δ30

)
· iI0

)
−

(
Lq ·

(
− sin

(
δ30

)
· vPCCR0 + cos

(
δ30

)
· vPCCI0

)
(Rnet + Ra) ·

(
cos

(
δ30

)
· vPCCR0 + sin

(
δ30

)
· vPCCI0

))
/D

, (A18)

IR5 =
Lq · L

′′

ad
D · L f d

, (A19)

IR6 =
Lq · L

′′

ad
D · Lkd

, (A20)

IR7 = −
(Rnet + Ra) · L

′′

aq

D · Lkq
, (A21)

II4 = −
(
− sin

(
δ30

)
· iR0 + cos

(
δ30

)
· iI0

)
+

(
Ld ·

(
cos

(
δ30

)
· vPCCR0 + sin

(
δ30

)
· vPCCI0

)
− (Rnet + Ra) ·

(
− sin

(
δ30

)
· vPCCR0 + cos

(
δ30

)
· vPCCI0

))
/D

, (A22)

Ii5 =
(Rnet + Ra) · L

′′

ad
D · L f d

, (A23)

IR6 =
(Rnet + Ra) · L

′′

ad
D · Lkd

, (A24)

IR7 =
Ld · L

′′

aq

D · Lkq
, (A25)

IR8 = −
Lq · cos

(
δ30

)
D

−

(Rnet + Ra) · sin
(
δ30

)
D

, (A26)

IR9 = −
Lq · sin

(
δ30

)
D

+
(Rnet + Ra) · cos

(
δ30

)
D

, (A27)

II8 = −
(Rnet + Ra) · cos

(
δ30

)
D

+
Ld · sin

(
δ30

)
D

, (A28)

II9 = −
(Rnet + Ra) · sin

(
δ30

)
D

−

Ld · cos
(
δ30

)
D

. (A29)

Equation (A7) defines the small perturbations of the stator currents in the reference frame R-I to
be included in the state-space model of the synchronous machine defined in Equation (35).

The matrixes that compose the turbo-generator model are derived from Equations (26)–(28) and
(32) considering the small-signal representation in Equations (A1)–(A5).

The coefficients of Equation (35) can be defined as follows:

ASM11 =



−(D1 + K∆ω−∆ω)/J1 D1/J1 0 −K1/J1 0 0
D1/J2 −(D1 + D2)/J2 D2/J2 K1/J2 −K2/J2 0

0 D2/J3 −D2/J3 0 K2/J3 K∆δ−∆ω/J3

ωR −ωR 0 0 0 0
0 ωR −ωR 0 0 0
0 0 0 0 0 0


, (A30)

ASM12 =



0 0 0
0 0 0

K∆Ψ f d−∆ω/J3 K∆Ψkd−∆ω/J3 K∆Ψkq−∆ω/J3

0 0 0
0 0 0
0 0 0


, (A31)
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ASM21 =


0 0 0 0 0 −

(
cos

(
δ30

)
· iR0 + sin

(
δ30

)
· iI0

)
·

R f d·ωR·L′′ ad
L f d

0 0 0 0 0 −

(
cos

(
δ30

)
· iR0 + sin

(
δ30

)
· iI0

)
·

Rkd·ωR·L
′′

ad
Ldd

0 0 0 0 0 −

(
− sin

(
δ30

)
· iR0 + cos

(
δ30

)
· iI0

)
·

Rkq·ωR·L
′′

aq
Lkq

, (A32)

ASM22 =


−

R f d·ωR·(1−L′′ad/L f d)
L f d

R f d·ωR·L
′′

ad
L f d·Lkd

0
Rkd·ωR·L

′′

ad
L f d·Lkd

−
Rkd·ωR·(1−L′′ ad/Lkd)

Lkd
0

0 0 −
Rkq·ωR·(1−L′′aq/Lkq)

Lkq

, (A33)

ASM23 =


−

R f d·KAVRP ·ωR
TAVRI ·Lad

−
R f d·KAVRP ·ωR

Lad

0 0
0 0

, (A34)

ASM31 =

 0 0 0 0 0 0
0 0 0 0 0 K3AVR

Tr

, (A35)

ASM33 =

[
0 1
0 −

1
TR

]
, (A36)

B1 =
[

1/J1 0 0 0 0 0
]T

, (A37)

B2 =

 [0]

0
0

(1/J3) ·
((

iSq0 · L
′′

ad +ψaq0

)
· sin

(
δ30

)
−

(
iSd0 · L

′′

aq +ψad0

)
· cos

(
δ30

))
(1/J3) ·

(
−

(
iSq0 · L

′′

ad +ψaq0

)
· cos

(
δ30

)
−

(
iSd0 · L

′′

aq +ψad0

)
· sin

(
δ30

)) [0]


T

, (A38)

B3 =


0 0 −

R f d·ωR
L f d

· L′′ad · sin
(
δ30

) R f d·ωR
L f d

· L′′ad · cos
(
δ30

)
0 0 −

Rkd·ωR
Lkd
· L′′ad · sin

(
δ30

) Rkd·ωR
Lkd
· L′′ad · cos

(
δ30

)
0 0 −

Rkq·ωR
Lkq
· L′′aq · cos

(
δ30

)
−

Rkq·ωR
Lkq
· L′′aq · sin

(
δ30

)
, (A39)

B4 =

 0 0 0 0
Kr·K1AVR

Tr

Kr·K2AVR
Tr

0 0

, (A40)

with
K∆ω−∆ω = −ψad0 · iSq0 +ψaq0 · iSd0 ,

K∆δ−∆ω =
(
cos

(
δ30

)
· iR0 + sin

(
δ30

)
· iI0

)
·

(
iSq0 · L

′′

ad +ψaq0

)
−(

− sin
(
δ30

)
· iR0 + cos

(
δ30

)
· iI0

)
·

(
iSd0 · L

′′

aq +ψad0

) ,

K∆Ψ f d−∆ω = −
iSq0 · L

′′

ad

L f d
,

K∆Ψkd−∆ω = −
iSq0 · L

′′

ad

Lkd
,

K∆Ψkq−∆ω = −
iSd0 · L

′′

aq

Lkq
.
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