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Abstract: Details about a fault’s progression, including the remaining-useful-lifetime (RUL), are key
features in monitoring, industrial operation and maintenance (O&M) planning. In order to avoid
increases in O&M costs through subjective human involvement and over-conservative control
strategies, this work presents models to estimate the RUL for wind turbine main bearing failures.
The prediction of the RUL is estimated from a likelihood function based on concepts from prognostics
and health management, and survival analysis. The RUL is estimated by training the model on
run-to-failure wind turbines, extracting a parametrization of a probability density function. In order to
ensure analytical moments, a Weibull distribution is assumed. Alongside the RUL model, the fault’s
progression is abstracted as discrete states following the bearing stages from damage detection,
through overtemperature warnings, to over overtemperature alarms and failure, and are integrated in
a separate assessment model. Assuming a naïve O&M plan (wind turbines are run as close to failure
as possible without regards for infrastructure or supply chain constrains), 67 non run-to-failure wind
turbines are assessed with respect to their early stopping, revealing the potential RUL lost. These are
turbines that have been stopped by the operator prior to their failure. On average it was found that
wind turbines are stopped 13 days prior to their failure, accumulating 786 days of potentially lost
operations across the 67 wind turbines.

Keywords: wind turbines; condition monitoring; inference; neural networks; remaining-useful-lifetime;
main bearing

1. Introduction

Health prognostics in asset assessment, including remaining-useful-lifetime (RUL) estimations,
are key elements in operation, and maintenance (O&M) strategies. This can help to increase production
and/or reduce O&M costs. As wind power is a leading renewable energy source, availability,
reliability, and lifetimes are taken incrementally into account by investors. In this work, we focus
on slow developing faults, which, when not addressed, can cause unwanted or unnecessary costly
downtime [1–8]. SPecifically, we will focus on (i) investigate main bearing monitoring, (ii) give a full
account of the underlying neural network (NN) approach presented by Herp et al. [9] on different
timescales, (iii) present how this ties into O&M efforts, and (iv) compare expected main bearing RUL
with model predictions. The later will give raise to a discussion on early stopping of wind turbines
and potential waste of RUL (when O&M planning requires to stop the wind turbine ahead of time).
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Models for assessing a systems current and future condition are often data-driven, and thus
different approaches can be used depending on the type of data at hand. Trappey at al. [10] uses
a combined statistical and NN approach, in which principal component analysis is used to extract
relevant features. A NN was trained with back-propagation on these features to learn and predict
the condition of power transformers. You et al. [11] addresses the use of NNs, by including temporal
dependencies, they propose a diagnostic approach for electrical car batteries through the utilization
of recurrent neural networks (RNN). On the other hand, Herp et al. [12] proposes a pure statistical
approach based on the history and descriptive statistics of the observed data, using a Gaussian process
to predict the future of bearing failure time-series in wind turbines. Hong et al. [13] similarly addresses
the problem of bearing monitoring by extracting features and using an approach combining NN with
self-organizing map approach to estimate the confidence of the bearing health states. In contrast
to the aforementioned, Si [14] proposed an approach based on the time-series stochastic properties.
Assuming an underlying driving Brownian motion, a closed-form predictive distribution for the time
it takes the signal to reach a threshold can be calculated. Medical research uses survival analysis to
understand the relations between patients’ clinical features and the effectiveness of treatment options.
Khan et al. [15] and others like Katzman et al. [16] have recently shown that prognostic and health
management, and NNs can be combined to outperform existing state-of-the-art survival analysis
models. A comprehensive overview of advances in RUL prediction can be found in Si et al. [17],
Chapter 1. For a summary on wind turbine monitoring techniques, we refer to Márquez [18].

Catering to the need of health prognostics, the details of the model proposed by Herp et al. [9] are
inspired by concepts of the above mentioned work. It adopts the closed-form approach by Si et al. [17]
by assuming the RUL can be quantified by a closed-form expression and embeds it in a NN, to make
confidence calculations of the predictions easier. A Weibull distribution has been chosen as a lifetime
distribution, since literature already has shown its use in connection with NNs [19–22]. In contrast to
Ranganath et al. [19] deep exponential families model, this work will limit itself to Weibull distribution’s
only. Yang et al. [23] and Aggarwal et al. [24] developed similar Weibull based NNs and RNNs,
respectively, but focus amongst others on different disciplines than wind turbine monitoring.

For the sake of completeness, we refer the interested reader to Herp et al. [9] for a comparative
study between different RUL estimation frameworks in empirical bearing fault prediction, as this
study will not be concerned with the topic.

This paper is organized as follows: In Section 2, the methods for the RUL estimation are described in
detail. The presented methodology is applied in Section 3 showing the potential gain from re-evaluating
early stopping. A discussion on the results and the underlying assumption are provided in Section 4.
The paper is closed by a final remark in Section 5.

2. Methodology

As this study is concerned with both the empirical estimation of the remaining-useful-lifetime
of main bearings and the assessment of early stopping, both topics will have a dedicated section
of their own. Even if treated separately here, we will later show that these methods are very
much intertwined when it comes to monitoring and operation of one or more wind turbines.
In Figure 1 we present how a monitoring and operation work flow might look like in order to
make educated decisions based on estimations of the RUL. Fault monitoring is embedded in a
back-end operations monitoring framework, which facilitates fault detection. We will not spend
more thoughts on fault detection in this work and assume that one of the many fault detection
approaches described in the literature can be applied. On a fault monitoring level, upon having
collected data regarding the fault-to-be, we can distinguish between three main strategies for later
decision making. (1) Assessing the situation at the time of detection, draw a conclusion and decide
on an O&M action. Options (2) and (3) are assessments over time, where the aforementioned option
derives a new assessment at given condition monitoring (CM) points spaced out over the time until
failure, and the latter provides an assessment at any given time. For the remainder of this work we
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refer to, (1) Initial Assessment , (2) Discrete Assessment, and (3) Continuous Assessment•, collectively, as
Empirical Remaining-Useful-Lifetime Estimation. The conclusion of the assessments is then facilitated
again in the Operations Monitoring, while actions are left outside the monitoring framework as they
are a matter of O&M management. In the conclusion step, one would estimate the benefit of continuing
or stopping operations. We refer to this as Assessment of Early Stopping.

Fault Detection:
Detecting abnormality in wind

turbine main bearings that
leads to component failure.

Operations Monitoring

Data Preparation:
Acquire necessary data

for fault assessment and
remaining-useful-lifetime prediction.

Fault Monitoring

One CM
point

Initial Assessment

CMt=1
point

Discrete Assessment

CMt=2
point

· · ·

CMt=S≤T
point

CMt
points for

t = 1, . . . , T

Continuous Assessment

Conclusion:
Interpreting the results
from the assessment(s).

Action(s):
The operator decides what action(s) to
take for its O&M management plan(s).

Figure 1. High-level workflow for remaining-useful-lifetime O&M management.

2.1. Data and Notation

This study is concerned with two types of data, time-series data and event data. The time-series
data are composed out of a subset of SCADA data and other health indicators, while the event data
contains an event description together with its start and stop time. Since a main bearing failure will
be investigated as a case study, the SCADA and event data are associated with the failure (including
events for the initial damage detection, failure warnings, and failure alarms) and stems from 132 wind
turbines of the same type, of which 35 are operated until failure.

Regarding the time-series data, we let {x1, . . . , xT} be a process of measurement vectors,
xt ∀ t = 1, . . . , T, containing measurements for m variables, i.e., xt = [x1, . . . , xm]>. Successive samples
on an interval a to b are denoted x[a,b]. The feature space available in this study is the same as used
by Bach-Andersen et al. [25] and Herp et al. [9], namely, active power, generator rpm, gear box oil
temperature, ambient temperature, wind speed, nacelle temperature, and a bearing health indicator.
Apart from the bearing health indicator, all features are sampled each 10 min as averages of the past
10 min interval. The bearing health indicator is based on energy bands in vibration spectra and is
provided as an event-based measurement. For the remainder of this work, the SCADA and health
indicator data are re-sampled to hourly timestamps. The time-series data are the foundation for the
predictive models described in Section 2.2 and employed in Section 3.

The event data are a set of discrete data points where we let E = {E1, . . . , EK} be the set of all
events Ek ∀ k = 1, . . . , K, and we let T = {1, . . . , t, . . . , T} be the time at which an event can occur in the
reference frame of the time-series data. An outtake of these data is shown in Table 1. Starting with the
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initial detection of the damage, hundreds of events are recorded until failure. The failure of the wind
turbine of Table 1 is indicated by the red vertical line (see graph), and the event associated with the
failure is bearing overtemperature alarm. Wind turbines for which this event is recorded are referred to as
run-to-failure wind turbines. These wind turbines also contain the event bearing temperature warning,
shown by the orange vertical line in Table 1. Other combinations of events, different from bearing
overtemperature warning and bearing overtemperature alarm, might likewise carry valuable information
between the initial detection of the damage and the wind turbine failure. Considering a chain of
successive and/or simultaneous events, the dependency between two sets of events El ⇒ El′ will be
defined by:

El ⇒ El′ l 6= l′ (1a)

El , El′ ⊆ E (1b)

El ∩ El′ 6= ∅. (1c)

Table 1. Binary Event Mapping: Example of mapping from recorded event data into a binary array for
identifying states, including bearing temperature warning (-) and bearing temperature alarm (-).

Event Start Time Stop Time

E21 12 October 2014, 09:59:01 13 October 2014, 10:12:43
E1 12 October 2014, 15:39:06 13 October 2014, 10:22:43
...

...
...

E3 19 October 2014, 02:22:00 19 October 2014, 13:00:00
E10 19 October 2014, 02:42:59 19 October 2014, 13:00:00

⇓
Events

Sample E1 E2 · · · Ek−1 Ek Ek+1 · · · EK

t− 2 0 0 · · · 0 1 0 · · · 1
t− 1 0 0 · · · 0 1 0 · · · 1

t 0 0 · · · 0 1 1 · · · 0
t + 1 0 0 · · · 0 0 1 · · · 0
t + 2 1 0 · · · 0 0 1 · · · 1

⇓
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The found sets Ek can then be used to establish a state as defined later on in Equation (15).
The found sets Ek can then be used to establish a state as defined later on in Equation (15).
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2.2. Empirical Remaining-Useful-Lifetime Estimation

As we are concerned with the time between detecting a failure and the failure itself, we let the
RUL be defined to be positive bound, i.e., RUL ∈ [0, ∞). Following the lead of probabilistic estimations
of the remaining-useful-lifetime in literature, this section provides the missing detailed account for the
underlying framework used in Herp et al. [9] for wind turbine bearing failure.

In this study, η(t) is referred to as the hazard function and H(t) is referred as to the cumulative
hazard function. Following textbooks on survival analysis [26], H(t) leads to a cumulative distribution
function for a positive random variable RUL:

P(RUL ≤ t) = 1− exp
(
−
∫ t

0
η(w)dw

)
= 1− e−H(t), (2)

and a probability density function:

P(t) = ∂

∂t
P(RUL ≤ t) =

∂

∂t

(
1− e−H(t)

)
= e−H(t)η(t). (3)

As a consequence, for each cumulative distribution function, P(RUL ≤ t), there exists H(t) such
that H(t) = − log(1− P(RUL ≤ t)). In terms of remaining-useful-lifetime, large values of the hazard
function indicate a higher chance of an failure to occur up to the current time, i.e., higher failure rate
in terms of fault prediction. For the remainder of the study, the focus will be on the right tail of the
distribution under consideration, which will define the RUL distribution [26]:

L(t) = 1− P(RUL ≤ t) = e−H(t). (4)

As the time it takes to observe the remaining-useful-lifetime is the remaining lifetime of the
wind turbine itself, the true remaining-useful-lifetime, ˆRUL, cannot be observed until it is too late.
This premise is known as censored observations in survival analysis [26]. Let RUL be some positive
random variable indicating the remaining-useful-lifetime. An observation of RUL is said to be censored
whenever it has been observed point wise. In this framework one might distinguish between true

ˆRUL and observed RUL. The true ˆRUL is always contained in the observation. When ˆRUL equals the
observed value, the process is referred to as non-censored. More specifically we distinguish between
(i): right censored data ∆ = 1, such that RUL is know to be above a threshold t (i.e., RUL ∈ (t, ∞)),
and (ii) non-censored ∆ = 0, when ˆRUL equals the observed value (i.e., RUL = t). Censoring the
remaining-useful-lifetime of wind turbine prohibits simply using the mean value of the already failed
wind turbines, as this will lead to underestimating the RUL.

A full mathematical proof of the following description can be found in Patti et al. [27]. In Figure 2
the censoring idea is illustrated: the parametrized probability density function tightens when the
failure is observed or is pushed beyond the current observed point, if the failure is censored.

Under the assumption of non-informative censoring [26], the likelihood reads:

L = P(t)∆P(RUL > t)1−∆ (5)

= P(t)∆L(t)1−∆ (6)

= e−∆H(t)η(t)∆e−(1−∆)H(t) (7)

= η(t)∆e−H(t). (8)

Thus, the log-likelihood can be written as:

logL = ∆ log η(t)− H(t). (9)
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Observed

Observed

Failure

Censored Failure

(a)

(b)

Figure 2. (a) Given the failure is observed (non-censored) it is desired to harden a distribution at the
time of failure. (b) A distribution is estimated based on the measurements up to time t. As the failure is
not observed yet (censored) the distribution is pushed beyond the point t into the unobserved future.

For non-censored and censored failures, the log-likelihood will always have a negative contribution
with increasing t, penalizing as time progresses. Following Herp et al. [9] we consider a Weibull
distribution, for its tractable properties, intuitive parametrization and use in other related studies [19–22]:

P(t) = α

β

(
t
β

)α−1
e−
(

t
β

)α

(10)

P(RUL ≤ t) = 1− e
(

t
β

)α

. (11)

Here, t ∈ [0, ∞), β ∈ (0, ∞), and α ∈ (0, ∞), where α and β are referred to as the scale and shape
of the distribution. Beside other features, such as analytic moments, the Weibull distribution has an
analytic hazard and cumulative hazard function, which can be obtained by Equations (2) and (3):

η(t) =
(

t
β

)α−1 α

β
. (12)

H(t) =
(

t
β

)α

(13)

The cost associated with the Weibull function is then given by Equation (9) and reads:

log(L) = ∆
(

α log
(

t
β

)
+ log(α)− log(t)

)
−
(

t
β

)α

. (14)

2.2.1. Initial Assessment

The initial assessment contains only one estimation of the remaining-useful-lifetime, based on the
descriptive statistics and maximizing the likelihood as described by Equation (14). Figure 3 shows the
Weibull model for run-to-failure wind turbines (bearing overtemperature alarm), wind turbines running
into bearing overtemperature warning, wind turbines excluded from the model construction (as they
do not run into any aforementioned event), are illustrated by their cumulative distribution as a scatter
plot (non-failing). For later comparison, a stopped by operator model is obtained for the non-failing
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wind turbines. Furthermore, the Kaplan-Meier [28] estimation (KM) is provided for reference, as it
makes no assumption with regard to the shape of the probability distribution.

0 100 200 300 400
RUL [Days]

0.0

0.2

0.4

0.6

0.8

1.0

1
 –

 c
d

f

KM

warning

stopped

alarm

non-failing

Figure 3. Initial Assessment: Comparison of different models up to different events including
the cumulative distribution over wind turbines not running into an event. For comparison the
Kaplan–Meier (KM) estimation is provided for the non-failing wind turbines, including confidence
bound. δ is the mismatch between a non run-to-failure (non-failing) wind turbine and the bearing
overtemperature alarm (alarm).

2.2.2. State Abstraction and Discrete Assessment

The same principle as in Figure 3 applies to the discrete assessment. However, in order to
perform the discrete assessment, condition monitoring (CM) points will need to be taken into account.
How these CM points are extracted is described in this section.

Between initial detection and failure of a damaged bearing, the bearing undergoes transitions
from a minor fatigue to advanced fatigue and damage. In combination with Equation (1), this section
addresses how to identify individual stages of the bearing fatigue to lay the foundation of the discrete
assessment later on.

Consider an event Ek or set of events Ek, from a library of events E = {E1, . . . , EK} (abstracted by
Equation (1)), linked to the operation of a wind turbine at time t, to be dependent on the data collected
up to time t and a hidden state variable s(t), s(t) representing the current state of the wind turbine.
The probability for Ek can be given by:

P(Ek | s(t), x[1,t]) =
P(Ek, s(t), x[1,t])

P(s(t) | x[1,t])P(x[1,t])
, (15)

further, Sm is referred to as the hidden states, defined by the separability of the process {x1, . . . , xT}
into S ≤ T states. The transition between those states is called state transition, where s(t) is the length
of the current state with samples x[SS ,t], with SS being the time of the last state transition. Following
Herp et al. [29,30] and Prescott Adam et al. [31], a state in a set of time-series can be abstracted by
considering only the maximum likelihood of P(s(t), x[1,t]), where

P(s(t), x[1,t]) = ∑
(st−1)

P(s(t) | s(t−1))︸ ︷︷ ︸
conditional prior

P(xt | s(t−1), x[1,t−1])︸ ︷︷ ︸
sample model

P(s(t−1), x[1,t−1]). (16)
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Here the conditional prior and sample model are implicit depending on known hyper-parameters
β = [βc, βm], where βc and βm are the parametrization of the conditional prior and the sample model.
Thus, P(s(t) | s(t−1)) ≡ P(s(t) | s(t−1), βc) and P(xt | s(t−1), x[1,t−1]) ≡ P(xt | s(t−1), x[1,t−1], βm).

Given the nature of the data we are seeking a sample model that addresses changes in the first
and second moment of the time-series. This is achieved by classifying each s(t) by the two moments
E[x] and E[x2]. Given sufficient statistics for each s(t), a posterior distribution for xt is given for the
iterative update [32,33]:

µt =
µ0κ0 +E[x[1,t]]

κ0 + t
, (17a)

κt =κ0 + 1, (17b)

αt =α0 + t, (17c)

ξt =
t

∑
j=1

(xj −E[x])2, (17d)

γt =γ0 +
1
2

ξt +
κ0t(E[x[1,t]]− µ0)

2

2(κ0 + t)
, (17e)

with µ0, κ0, α0, γ0 being the previous statistics. A Student’s t-distribution can then be used for the
posterior distribution [34] with ν degrees of freedom and µ and σ as mean and variance, it follows that:

P(xt | s(t−1), x(1,t−1)) = St2αt

(
µt,

γt

αt

κt + 1
κt

)
. (18)

The conditional prior is chosen as a hazard function, as motivated in Section 2.2, such that

P(s(t) | s(t−1)) =


η if s(t) = 1

1− η if s(t) = s(t−1) + 1
0 else

, (19)

here η is a hazard function of a geometric sequence and given by the elapsed time since the last
state transition:

η =
1

E[s(t)]
. (20)

For the remainder of this work, the algorithm is implemented with a supervised probability
update as proposed by Herp et al. [29].

In order to quantify states, a piecewise constant regression for finite state numbers is performed
on the cumulative probability state transitions:

P̂(t) =
S+1

∑
s=2

αsχAs(t), (21)

s.t.

arg max
αs ,χAs

(P(t)− P̂(t))2

length(As) ≥ 5

where αs is a real number, the states cumulative probability, and As the interval of the sth sate, i.e.,
[Sm−1, Sm), χAs is an indicator function that is 1 if t ∈ A, and 0 otherwise. The constraint on As comes
from the delay of detecting a new state.
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In detail, the state abstraction for the health indicator can be seen in Figure 4. From top to
bottom the health indicator for a wind turbine is shown in (a), (b) shows the log-likelihood for the
state transitions (gray-scale) and its maximum likelihood, (c) shows the state transition probability
density function and cumulative density function, in addition the abstracted states in accordance with
Equation (21) are provided.
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Figure 4. State Abstraction: (a) Wind turbine health indicator. (b) log-likelihood for state transition.
(c) Transition probability and states.

The state abstraction give us a measure for the length of each state. Given the time for each turbine
to any state transition, the RUL probabilities can be calculated equivalent to the initial assessment for
any combinations of state transitions. The implementation and results of this approach are discussed
in the case study of Section 3, providing the RUL probabilities from initial detection to any of the state
transition. Figure 10).

2.2.3. Continuous Assessment: RUL Recurrent Neural Network

We employ a recurrent neural network (RNN) for the continuous assessment for maximizing
the cost function given by Equation (14) at each t. In general, this is an optimization problem of
finding a function or distribution in the space of hazard function, F ∈ H, that maximizes the model’s
likelihood given historical data, x[1,t]. The space of all possible closed-from distributions in H is too
large to obtain solutions in an easy manner. Furthermore, as x[1,t] can contain any information at time t,
including information of the previous states [30] the optimization for all x is computational not feasible.
However, constraining the problem to a Weibull distribution and letting the Weibull distribution be
dependent on x[1,t], it then follows from Equations (12) and (13), as well as Equation (14) that:

arg max
α>0,β>0

logL(α, β, RUL, ∆, x[1,t]) =
t

∑
i=1

(
∆iα(x[1,i]) log

(
RUL

β(x[1,i])

)

+ ∆i

[
log
(

α(x[1,i])
)
− log(RUL)

]
−
(

RUL
β(x[1,i])

)α(x[1,i])
 (22)

This optimization is still not feasible, as for a large dataset, each parameter needs to be obtained
through consideration of all historic data. In the context of Figure 5, θ can be written as a vector
θ = [α, β]>. Omitting mathematical details on node level, which can be found in a wide range
of textbooks such as Goodfellow et al. [35], each node in Figure 5 outputs oi = g(xi, oi−1, ω0),
for i = 1, . . . , t, a function of the data xt, previous output oi−1, and the networks topology ω0.
The network’s output at each t will be of the form θ = m(xt, ot−1, ω) = [α, β]>, where m(·) is
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the mapping for the topology of the chosen RNN. Equation (22) is thus reduced to solving the gradient
by back-propagation for a set of optimal or suboptimal ω:

LSTM Node

...

LSTM Node

x1

xt

θ1

θt

o0

o1

ot−1

ot

Figure 5. Schematic drawing the recurrent neural network sequence: input feature, current, previous,
and future hidden states ot.

arg max
ω

logL(ω, RUL, ∆, x[1,t]) =
t

∑
i=1

(
∆i

[
αi log

(
RUL

βi

)
+ log(αi)− log(RUL)

]
−
(

RUL
βi

)αi
)

(23)

For the remainder of this study, we use a Long Short Term Memory (LSTM) RNN [35] and
maintain the topology, feature space, and optimization as in Herp et al. [9] (See Figure 6). The sequence
length is set to 7 days. An example on how predictions look like can be found in Figure 7, showing
the assumable ˆRUL and model prediction. The prediction is shown in terms of the first moment,
median, and arg max of the Weibull distribution at each time t. The distribution itself is illustrated as
shaded areas.

Dec Feb Apr Jun Aug Oct

Figure 6. Illustration of the RNN used to predict the RUL. Selected SCADA time-series are shown
as input [9].
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Figure 7. (a) Continuous prediction of RUL of a non run-to-failure wind turbine, compared to the
expected run-to-failure ˆRUL. (b) Mismatch between ˆRUL and the predictive distributions first moment,
median, and arg max.

3. Assessment of Early Stopping—A Bearing Failure Study

This section combines the afore mentioned methodology and applies it to 67 non run-to-failure
wind turbines. For each assessment, all turbines are investigated with respect to early stopping,
showing the lost remaining RUL after turbine operations were stopped. The remaining turbines are
used for model construction.

Consider the example of Figure 3 where models for the bearing overtemperature warning and bearing
overtemperature alarm are illustrated. Comparing each non run-to-failure wind turbine to any of the
event models shows a mismatch δ, which is defined as the distance between any given wind turbine
and the predictive models. This mismatch is interpreted as the lost remaining RUL.

Under continuous assessment, Figure 7 shows the mismatch between the presumably true ˆRUL
and the model prediction for a non run-to-failure wind turbine. In this case we consider an average
measure for each wind turbine:

D(turbine) ≡ 1
T

T

∑
t=1

δ
(turbine)
t , (24)

where

δ
(turbine)
t ≡ RUL(turbine)

t − ˆRUL(turbine)
t . (25)

D(turbine) will then be a measure of the specific turbine’s potential remaining RUL. In the following
we employ the methodology of this section in a case study of mean bearing failures.

When addressing whether or not to stop a wind turbine and perform maintenance is a topic on its
own. Many factors, e.g., weather condition, availability of equipment, spare parts, and manpower, have
to be taken into consideration when deciding and planing O&M tasks. In the following, we simplify
towards a pure time-based approach. Many wind turbines are stopped before they run into failure;
based on the proposed RUL estimations, the potential remaining time until failure can be estimated.
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3.1. Initial Assessment

Model construction can be facilitated up to different events, including bearing overtemperature
warning and bearing overtemperature alarm. For the wind turbines in this study, the respective models
are shown in Figure 3. Assuming that all turbines experience the same fault, the difference between the
two models (warning and alarm) should be an offset in the predictive horizon. However, variability in
environmental features and the bearing failure’s development can lead to changes of the time it takes
to undergo a state transition from the bearing overtemperature warning to the bearing overtemperature
alarm event. This is illustrated in Figure 8, labeled warning vs. alarm. The low curvature of
the graph indicates that the difference between the two models is relatively small, and relatively
constant throughout the RUL space. Given the limited number of wind turbines, that are operated
beyond RUL > 250 days and turbines that run into any event before RUL < 100 days, broader
confidence bounds can be observed in these RUL ranges. Besides the time between warning and alarm,
we can consider a model for the 67 non run-to-failure wind turbines, referred to as the stopped model
in Figure 3. A mismatch δ for this model with respect to the warning and alarm model is shown in
Figure 8. Comparing the models, turbines that have run 100 days, and were stopped too early would
have had 30 days left of operations until running into failure, i.e., the bearing overtemperature alarm.
Or if a more conservative stopping criterion is desired, 20 days until the bearing ovetemperature warning.
Variability in wind turbine operations leads to a point where the expected mismatch becomes negative;
in this regime, the wind turbine is operated at the right tail of the RUL probability curve of Figure 3.
An operator might interpret this as the time where the wind turbine has overextended the confidence
of continuing operations, when comparing to the ensemble of already failed turbines.

50 100 150 200 250 300 350 400
RUL [Days]

80

60

40

20

0

20

40

 [
D

a
y
s]

stopped vs. warning

stopped vs. alarm

warning vs. alarm

Figure 8. Comparison of initial assessment of RUL with the 67 wind turbines that did not run into
either bearing overtemperature events, bearing overtemperature warning, and bearing overtemperature alarm
models. 0.95 confidence bounds are provided.

The mismatch to failure over all individual wind turbines can be seen in Figure 9a as a histogram.
The largest mismatch is 57 days, while the smallest is −40 days. The mean value and median are
11 and 15 days, respectively. The bulk of turbines is concentrated in the quantiles between 3 and 23 days.
The combined mismatch accumulates to 782 days.
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Figure 9. Distribution over mismatch for the 67 wind turbines that did not run into either bearing
overtemperature events. (a) initial, (b) discrete, and (c) continuous assessment.
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3.2. Discrete Assessment

In its core, the discrete assessment with CM points at each state transition, is the same as the initial
assessment but applied at each CM point. As failure of a component can go through different stages,
the operator might want to re-evaluate when the component undergoes the next state transition.

The state detection and abstraction is performed as outlined in Section 2.2.2. As the bearing
failures in this case study are slowly developing faults, we impose a minimum state length of As ≥ 5
days, as seen in the constraint of Equation (21). This is done in order to prevent fast switching states in
case of random outliers.

In Figure 10, the the cumulative state lengths are shown for each turbine. For each state transition,
the RUL for that state is provided. This gives the operator information on when to expect the next state
transition of a damaged component. Remark: as the number of states increases, the models become
less defined as confidence bounds increase. This is caused by the limited sample size of turbines that
experience three or more states transitions.
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Figure 10. (a) Cumulative state length of wind turbines, including best linear fit. (b) RUL probability
based on the length between each state transition.

The expected RUL is obtained by comparing the wind turbine’s cumulative state length with the
state length of states for wind turbines abstracted with the event pattern El ⇒ El′ , where El′ contains
the bearing overtemperature alarm. The mismatch to failure over all individual wind turbine can be seen
in Figure 9b as a histogram. The largest mismatch is 38 days, while the smallest is −15 days, the mean
value and median are 16 and 17 days, respectively. The bulk of turbines is concentrated in the quantiles
between 10 and 20 days. The combined mismatch accumulates to 836 days.

3.3. Continuous Assessment

As shown in Figure 7 the continuous assessment is concerned with the prediction of the RUL at
each time step. Focusing on either the first moment, median, or arg max of the Weibull distribution,
it becomes apparent that there is a discrepancy between the model’s prediction and expected ˆRUL.
This is the aforementioned mismatch δ

(turbine)
t and may differ for each wind turbine. Similar graphs

can be drawn for other turbines, with varying degrees of δ
(turbine)
t , containing also negative values of

δ
(turbine)
t . The average mismatch to failure over all individual wind turbines can be seen in Figure 9c

as a histogram. The largest mismatch is 41 days, while the smallest is −8 days; the mean value and
median are 11 and 12 days, respectively. The bulk of turbines are concentrated in the quantiles between
10 and 15 days. The combined mismatch accumulates to 739 days.
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4. Discussion

Common for all assessments is a high count of wind turbine mismatches at the respective mean
values. These peaks can contain more than twice the amount of wind turbines than their neighboring
bins, indicating not only the most likely mismatch, but also a firm consistency indicating a tendency to
stop too early. However, two points are worth mentioning, (i) the different assessments do not yield
the same results, and (ii) the accumulative mismatch is based on naïve O&M assumption.

4.1. Discrepancy Between Assessments

The discrepancy between the different assessments stem from the underlying nature of the
descriptive statistics. As the initial assessment applies for the total length of failure, no iterative
adjustment occurs in the monitoring effort, thus assessing wind turbines that are further into a fault
process are not presented by the initial assessment. On the other hand, as the name implies, it gives an
initial assessment of the expected length of the failure state and their relative probability based on an
ensemble of wind turbines.

A step closer to a real representation of the RUL is provided by the discrete assessment. While the
failure state can be split further into shorter states, the RUL and probability of failure is obtained by
propagating non run-to-failure wind turbines through the RUL probabilities for each state transition.
Besides, the discrete assessment can provide a measure of RUL until the next state transition, aiding an
operator to known when to stop a wind turbine’s operation for more conservative O&M strategies.
For both the initial assessment and discrete assessment, RUL of individual wind turbines and, from
there, the mismatch δ, are ensemble measures, i.e., when addressing the RUL of a single wind turbine
with respect to a cumulative distribution obtained by all other turbines that were undergoing the
same failure.

The initial and discrete assessments are in their core curve fitting problems for one or more
datasets of wind turbine RULs. When the number of CM points goes towards the number of sample
vectors, S → T, one can consider the discrete and continuous assessment as equivalent. While the
aforementioned assessment was an ensemble measure, the continuous assessment offers a real-time
monitoring approach for individual wind turbines, where the RUL is updated at each successive time
step. This makes the prediction of the RUL more and more reliable the closer a wind turbine is to
failure, but provides poor or misleading assessments early in the fault process, where predictions are
wide [9]. The further a wind turbine is in a fault state, a continuous assessment becomes more and
more desirable.

All together, when combined as proposed in Figure 1, the proposed assessment offers an operator
information at desired stages of a main bearing fault.

4.2. The Naïve O&M Assumption

The cumulative, potential lost RUL has to be looked upon with caution. Firstly, naïve O&M
assumption takes away any other consideration that might play a role in stopping a turbine,
and secondly, wind turbines might continue to operate reliably even if models suggest otherwise.
Apart from the predictive error due to model constraints, it becomes apparent that RUL, i.e., a measure
of time, is a difficult measure that is not easily related to the physical parameters of a wind turbine’s
operation. If a wind turbine is not operated due to lack of wind or other external factors, no matter
how good a model, predictions will underestimate the RUL in any of the suggested frameworks.

5. Conclusions

We have proposed three fault monitoring and assessment concepts, namely, initial assessment,
discrete assessment, and continuous assessment, showing that in any of the frameworks, wind turbines are
stopped earlier than necessary compared to a global ensemble. Based on the descriptive statistics of 67
non-run-to-failure wind turbines, wind turbines are stopped 13 days too early, prior to their failure,
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accumulating, on average, 786 of potentially lost days of operations under the naïve O&M assumption
made in this study. Future work will probably focus on the inclusion of supply chain and weather
constraints to represent a more realistic model mismatch behavior.
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Abbreviations

cdf cumulative distribution function
CM Condition Monitoring
KM Kaplan-Meier
NN Neural Network
O&M Operation and Maintenance
pdf probability density function
RNN Recurrent Neural Network
RUL Remaining-Useful-Lifetime
SCADA Supervisory Control and Data Acquisition

Nomenclature

a scalar
a vector
A matrix
xt sample vector
x[a,b] samples on the interval a to b
E set of all possible events
Ek kth event
El subset of E
RUL random variable for the remaining-useful-lifetime

ˆRUL real remaining-useful-lifetime
η hazard function
H cumulative hazard function
∆ ∈ {0, 1} censoring variable
L likelihood function
β = [βc, βm] hyper-parameter for conditional prior and sample model
P(s(t) | s(t−1)) ≡ P(s(t) | s(t−1), βc) independent conditional prior
P(s(t) | x[1,t]) probability distribution over the current state
P(xt | s(t−1), x[1,t−1]) ≡ P(xt | s(t−1), x[1,t−1], βm) sample model
δ mismatch between RUL and ˆRUL
D average mismatch
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