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Abstract: In most smart grids, load management techniques are required to handle multiple loads
of several types. This paper studies decentralized demand-side management (DSM) in a grid with
different types of appliances in two service areas: one with many residential households, and one
bus with commercial customers. Each building runs an individual optimal DSM to reschedule the
usage time of its flexible appliances to reduce its electric energy cost at a manageable sacrifice of
inconvenience according to the forecasted time-varying electricity price. Using the developed model,
we examined the effectiveness of decentralized DSM by comparing its performance on the operation
status of the grid in terms of electricity cost saving, rooftop photovoltaic (PV) utilization efficiency,
voltage fluctuation, power loss, voltage rises, and reverse power flows, which can easily be seen at
the commercial load bus.

Keywords: smart building; demand-side management; intelligent load management; utilization
efficiency; load schedule

1. Introduction

Demand-side management (DSM) refers to the response taken by the consumer to manage the
energy usage based on the electricity price over 24 h [1–4]. Reference [5] developed an optimization
model for a single-household demand-side management (DSM) model. This model, as a single feeder,
delivers energy to 13 houses based on a day-ahead household DSM system with local solar photovoltaic
(PV) generation. The proposed algorithm searches for the optimal load schedule of the household
DSM with solar PV generation, and with multiple technical constraints. Additionally, previous
DSM programs used (e.g., References [6–10]) focused on cost minimization. However, demand-side
management (DSM) also aims to avoid the peak load during the time of the low electricity price.
A combination of time-of-use pricing (TOUP) with a fixed threshold, which represents the maximum
load demand applied for each residential household and a commercial site, is illustrated in this paper.

The optimization algorithms used for direct load control schemes are for certain types of loads
(for example, refrigerators or air conditioning [11–15]); these algorithms are not suitable for large loads
such as commercial or industrial loads. In Reference [16], a strategy of load management was proposed.
In this reference, the same electricity price was applied to both residential and commercial areas. For a
more realistic study, this paper takes into consideration that residential and commercial loads have
different time-varying billing rates and exhibit different characteristics (e.g., power consumption profile,
electric devices settings, and customer willingness for DSM participation). Therefore, examining the
DSM strategy for both commercial and residential sites is essential in the grid, allowing a comparison
of their performance to seek a better management strategy.

The demand-side management (DSM) algorithms used in References [17–20] are system-specific.
These algorithms are not practical for different types of appliances. Reference [9] proposed a DSM
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model for a residential site. This model aims to minimize the cost based on a day-ahead household DSM
system. The proposed algorithm searches for the optimum scheduling of household DSM by doing
load shifting to the period with low price, and ensuring the avoidance of any high load occurrences.

Note that the optimization algorithms used for direct load control schemes are for certain
appliances (for example, refrigerators or air conditioning [21,22]). Some demand-side management
algorithms used in the literature [23–27] are system-specific. These algorithms are not practical for a
wide variety of appliances. Our work, however, proposes an algorithm to cover a range of appliances
in different types of loads, such as commercial loads and residential loads, despite each type of load
having a different characteristic in terms of load profile, electricity price, appliances, and customer
willingness for DSM participation.

Unlike the work in Reference [8] that use fixed market prices for both residential and commercial
sites, our work uses a time-of-use pricing (TOUP) profile for a residential load that differs from the
time-of-use pricing (TOUP) used for a commercial site.

This paper extends the work in Reference [9] to that of a decentralized DSM with multiple
residential and commercial loads with a rooftop PV installation. One of the main advantages of
the proposed algorithm is the ability to take in to account the voltage fluctuation, in addition to the
maximization of PV utilization efficiency, and the reduction of real power loss of the entire system while
optimizing the electricity cost. Additionally, the proposed algorithm can handle a large number of
controllable appliances in two types of loads: residential and commercial. Furthermore, residential and
commercial loads have different time-varying billing rates and exhibit different characteristics, such as
load profile, appliance settings, and customer willingness for DSM participation; therefore, they may
have different impacts on electricity cost savings and distribution network operation. The designed
algorithm handled these complexities successfully, and we examined the DSM performance for both
commercial and residential sites to efficiently seek a better management strategy.

This paper proposes a practical model for demand-side management with a flexible penalty
approach to account for the inconvenience caused by deviation from the customer-desired schedule.
In other words, customer inconveniences caused by the DSM schedule will translate into an additional
compensation cost in the optimization objective function, which is calculated based on some customized
rate and intends to discourage or reduce unnecessary load shifting or changes.

For a more realistic scenario, the proposed algorithm also takes into consideration the fact that
certain appliances may have higher priority over other appliances such that these appliances have
to operate in their specified time; hence, these types of appliances have less DSM participation. Our
algorithm classifies commercial appliances into three categories: high priority, medium priority, and
low priority; every kind of appliance is accordingly subjected to a specified penalty price. This also
verifies the impact of the penalty price on DSM scheduling of an appliance’s operation.

Our model was verified using the clonal selection algorithm (CSA). This algorithm can deal with
multiple types of household appliances in two areas (residential and commercial), despite each type of
load having different characteristics such as load profile, electricity price, power rate of the appliances,
and customer willingness for DSM participation. The algorithm can evaluate the voltage fluctuation,
encouraging solar energy usage, further allowing evaluation of the energy loss while optimizing the
electricity cost. The proposed algorithm also takes into consideration the fact that certain appliances
may have higher priority over other appliances such that these appliances have to operate in their
specified time; hence, these types of appliances are considered as top-priority appliances.

The rest of this paper organized as follows: Section 2 illustrates the model, the decentralized DSM
is described in Section 3, the results are summarized in Section 4, and the conclusions are given in
Section 5.

2. System Modeling

This section clarifies the decentralized DSM in the distribution grid of the feeder to show the
influence of the developed DSM model. A DSM is applied on two loads, each with a different type
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of customer: residential and commercial. As shown in Figure 1, 29 buses represent the households
connected in each type. Each household contains different kinds of appliances (see Tables A1 and A3
in Appendix A).Energies 2019, 12, x FOR PEER REVIEW 4 of 21 
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Figures 2 and 3 show the curves for commercial activity. As shown in Figures 2 and 3, high load
appears between 9:30 a.m. and 5:30 p.m. Figure 4 illustrates the residential load profile, showing
that most evening loads are subjected to peak electricity prices. In the commercial building (Bus
No. 17), the appliance is scheduled based on the price provided in Figure 5 (commercial time of
use pricing (TOU)). The four different types of appliances in the commercial building are shown in
Table A2 (Appendix A). The four types of commercial appliance include the high-priority appliances,
medium-priority appliances, low-priority appliances, and the base appliances. High-priority appliances
refer to the case when these appliances are more important and the customer has to use them at any
time, and these appliances have a low participation level in the DSM program; therefore, the appliances
in this type are subjected to high tariffs. In medium-priority appliances, the operation time will not be
very necessary (the time can be delayed and shifted to another period); thus, a lower tariff is applied
on these types of appliances. The low-priority appliance can be on/off at any time and, therefore, a low
tariff is applied on these appliances. The base appliances have to be on all day, and no tariff is applied;
these appliances cost a fixed price. In the decentralized DSM, we minimize the cost, and the algorithm,
in this case, will obtain the optimal load schedule for each load individually, before using analysis to
calculate voltage fluctuation and energy loss. In other words, each household will reschedule the daily
load according to the time-of-use pricing tariff; the results are then compared to show its impact on
the distribution network operation and renewable integration, in terms of the utilization efficiency
of rooftop PV generation, voltage fluctuation, and real power loss. Each household has its own load
profile and the DSM is applied to find the optimal load scheduling based on a day-ahead price. Clearly,
this involves static data. The original load profile does not change, and the model tries searching for
the optimum operation time slots for each appliance to avoid the peak load time and to minimize
the cost. We firstly consider a micro-grid network, as shown in Figure 1, which contains a single
distribution feeder line supplying a small community of 29 houses. Each of these houses has a typical
time-varying load profile generated by a time series load model we built based on realistic residential
customer load data obtained from an open-access database with a rooftop solar PV panel with a rated
capacity of 6 kW. It is assumed that the smart home has a set of commonly used active appliances
under a real-time pricing environment, and that the homeowner has access to day-ahead electricity
rates and a day-ahead forecast of PV generation, while agreeing to participate in the DSM program
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to save on electricity bills with a controlled number of sacrifices. For the purpose of simplicity of
analysis, 31 active appliances were categorized into three groups based on their operational features as
follows: (1) interruptible appliances, referring to electric devices able to be switched on or off at any
time during a day; (2) uninterruptible appliances, referring to electric devices that need to operate until
finished once started; and (3) inflexible appliances, referring to appliances that are active for the entire
simulation time (24 h). Each appliance is modeled using four parameters, sa, fa, ra, and Da, where
[sa, fa] defines the allowable operating time during which the appliance may be switched on, and ra

and Da denote the power rating and the total number of operating time slots as requested, respectively.
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3. Mathematical Formulation

This section describes the model applied for the household individually taking part in the
demand-side management (DSM) program. This model will help the participant to decrease their
electricity bill and avoid usage of the load during the time of high price. The consumer inconvenience
is modeled by a penalty in the objective. This part represents an additional cost that will help avoid
the unnecessary load shift. The optimization model is illustrated below.

min
[ua,m(t)]

Cm
e + Cm

p , (1)

where Cm
e refers to the energy usage cost, and Cm

p is the total penalty cost ($/day) in household m.
The energy usage cost is subject to
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Cm
e = 0.5×

∑T

t
Pm

load(t) ×πe(t), (2)

where Pm
load(t) is the household load that needs to be optimized, πe(t) is the time-of-use pricing, T

refers to the number of time slots (T = 48), and t is the time slot index.

Cm
p = 0.5×

∑A

a,m
πp· ra,m·∆Ta,m, (3)

where constraints in Equations (2) and (3) apply to the electricity and the penalty cost. In Equation (3),
πp is the penalty price in cents (¢), ra,m is the power rate of appliance a in household m, and ∆Ta,m refers
to the number of slots shifted after applying DSM.

Pm
load(t) = max((

∑Am

a,m=1
ra,m × ua,m(t) − α·Pm

pv(t)) , 0). (4)

Equation (4) is applied to remove negative cost. For this model, it is assumed that surplus
generated power from PV can be delivered into the grid with zero reward; therefore, the cost at each
time slot should not be less than zero. In Equation (4), α is a binary parameter representing the status
of PV installation at the DSM household, m is the home index, ua,m is the operation status of appliance
a (0 when the appliance is off, and 1 when it is on), and Pm

pv(t) refers to the power generated by the
solar PV in household m. ∑Am

a,m=1
ra,m × ua,m(t) ≤MDm

∀a ∈ {1 to Am}. (5)

The maximum load to be used at each time slot is indicated in Equation (5). This load limit can
help in the prevention of load peak even when the electricity price is low. Here, MDm refers to the
threshold of usage. ∑T

t=1
ua,m(t) = Da,m ∀a ∈ {1 to Am }; (6)

ua,m(t) = 0 ∀t < sa,m or ∀t > fa,m. (7)

Constraints in Equations (6) and (7) define the total operation time status of an appliance. Here,
Da,m is the time duration of each appliance, while [sa,m , fa,m] represents the possible start and end time
slot for each appliance.

∆Ta,m = 1T.
∣∣∣tstnew

a,m − tstold
a,m

∣∣∣∀a ∈ {1 to Am}. (8)

The constraint in Equation (8) indicates the number of time slots shifted by calculating the
difference between the old slots and the new slots.

tstnew
a,m =

[
t
∣∣∣unew

a,m (t) = 1
]
1×Da,m

∀a ∈ {1 to Am}; (9)

tstold
a,m =

[
t
∣∣∣uold

a,m(t) = 1
]
1×Da,m

∀a ∈ {1 to Am}. (10)

Constraints in Equations (9) and (10) specify the old time slot before shifting and the new
time slot after shifting (tstold

a,m and tstnew
a,m , respectively), which allows specifying the time duration of

interruptible appliances.
[v(t)] = fAC(Pg(t), PPV

g (t), P∗L(t)
∣∣∣Ybus). (11)

The constraint in Equation (11) is used for load flow calculation, where Pg(t) represents the
injected power from the substation, PPV

g (t) is the available PV generation, and P∗L(t) is the electrical
load after DSM scheduling.

Eloss =
∑T

t=1

∑L

l=1

∣∣∣itL∣∣∣2RL. (12)
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The constraint in Equation (12) is used to calculate the system power loss, where itL is the current
of the feeder L at time t, and RL is the resistance of line L.

σv =

√
1

T ×N

∑T

t=1

∑N

i=1

(
vt

i − v
)2

. (13)

The constraint in Equation (13) defines the voltage fluctuation (σv) index with vt
i as the voltage of

bus i at time t, and v =
∑T

t=1
∑N

i=1 vt
i as the average voltage in the network. Here, m is the home index,

and ua,m is the operation status of appliance a (0 when the appliance is off, and 1 when it is on), with
the following format:

[ua,m(t)]A×T = [u1
1, u2

1, . . . , uT
1 ; u1

2, u2
2, . . . uT

2 ;. . . . .; u1
A, u2

A, ..., uT
A],

where T refers to the number of time slots (T = 48), and t is the time slot index. The household appliances
were modeled using the measurable factors sa, fa, ra, and Da, where [sam, fa,m] are parameters defining
the operating period when the household appliance a can be operated, and ra,m and Da,m represent the
appliance power rating and time duration of the appliance.

Typically, when there is no shift, the penalty cost is zero (Cp = 0 $/day), which means no time
slots are shifted for the operated appliances and ∆Ta = tstnew

a,m − tstold
a,m = 0. In this case, the consumer has

to pay for the consumed energy (kW/h) as electricity (Ce) based on the TOUP. With optimal shifting,
the total cost that the consumer has to pay will be reduced due to the cost saving (Csaving) in ¢/kWh,
which comes after the shift in operation time from a high-price to a low-price period. In this case,
the consumer will pay the extra cost as a penalty cost. It is important to mention that the algorithm
allows a shift whenever cost saving is possible elsewhere (Csaving > Cp), and the total cost paid by the
consumer is represented by Ce −Csaving + Cp, where Csaving is the cost saving, Cp is the penalty cost,
and Ce is the total electricity.

4. Simulation Results

To examine the impact of the decentralized DSM on the operation status of the grid (e.g., utilization
efficiency of the energy generated by the PV, voltage fluctuation, system energy loss, and the reverse
power flow), the DSM was firstly applied to some households with and without PV-generated power.
Secondly, we studied the impact of different DSM penetration levels on the network performance.

4.1. DSM of the Residential Household Area

Figure 3 shows the difference between the preferred consumption (original load profile; solid line)
and the aggregated load (dotted line) after applying the proposed DSM, with πp = 0, 1, or 3 ¢/kWh.
The preferred daily load consumption shows two high-load periods: around 6:30 to 8:00 a.m. and
4:30 to 7:30 p.m. The load during the evening is exposed to the time of high rate; hence, most of the
flexible appliances tend to shift to a part of the day when the price is low (see Figure 6A). On the other
hand, at penalty πp = 1 or 3 ¢/kWh, we see a few appliances shift to off-peak load, as illustrated in
Figure 6B,C. It is worth noting that, by increasing the penalty factor, the participation of uninterruptible
appliances in load shifting is discouraged due to their constraint of continuous operation after starting.
For rescheduling uninterruptible appliances, the DSM program needs to incorporate more time shifting
and, most of the time, it imposes a larger penalty cost compared to the electricity cost saving. However,
interruptible appliances with more flexibility to reschedule may actively participate in a DSM program
with a penalty factor, because their operational feature allows them to be switched on or off at any time
within the allowable operation time range.
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4.2. DSM of the Commercial Area

Figure 7 shows that, when assuming πp = 0 ¢/kWh, more of the load is moved into time slots
with a low-price period. As stated in the introduction, for a more realistic scenario, the proposed
algorithm also take into consideration the fact that certain appliances may have higher priority over
other appliances such that these appliances have to operate in their specified time; hence, these types
of appliances have less DSM participation. The obtained results for the commercial area are given in
Figures 8 and 9, with the comparison of the preferred load (original load consumption; solid line) and
the new profile after applying the DSM (green dotted line), showing that there is only one high-load
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period from 9:30 a.m. to 4:30 p.m. Figure 10a illustrates the cost saving of the shifted appliances
and the corresponding penalty cost for πp = 0, 1, and 3 ¢/kWh, reporting the penalty prices applied
for low-, medium-, and high-priority appliances, respectively. The obtained results show that one
high-priority appliance participated in the DSM with one time slot shifts, while five appliances under
the medium-priority category participated. It is worth noting that the corresponding cost saving
depends not only on the reduced electricity price caused by the shifted time slots but also on the
power rating ra of the appliance. Lastly, for the low-priority category, we can see that the number of
appliances participating in the DSM increased to nine, with much higher cost saving and a higher
number of shifted time slots. We can also see from Figure 10a that the low-priority appliances had
zero penalty cost (πp = 0 ¢/kWh). Figures 11 and 12 illustrate the cost saving for the appliances
and their corresponding penalty cost from the time slots shifting across two different values for the
medium-priority category. Also, from Figure 10, we can see that appliance No. 30 appears, and the
reason is that the appliance operated originally in the time slot with a low electricity price; thus, it will
not shift unless there will be cost saving. In other words, if the cost saving resulting from time shifting
becomes lower than the corresponding penalty cost, then the suggested time shift will be rejected.
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4.3. Comparison of Experimental Results

4.3.1. Electricity Cost

The results show that the daily cost of the residential households was reduced from a total value
of $417.74 to $261.76. With the DSM, the results show a cost reduction of 38.1%. The results for the
commercial area are summarized in Figure 9, whereby the cost of the commercial building was reduced
from $88.22 to $43.27 (50.4%). The impact of demand side management on the cost summarized in
Table 1.

Table 1. Impact of demand-side management (DSM) on the daily cost.

Type of Load Original Cost without
DSM ($)

Cost after Applying
DSM ($) Percentage Reduction

Residential household load 417.74 261.76 38.1%

Commercial load 88.22 43.27 50.4%

Typically, DSM shows better improvement of the results when more flexible appliances are
available for shifting. However, even when the number of flexible appliances was lower (e.g., in the
commercial load), the percentage reduction in the electricity cost was higher than that in the residential
load. Also, the residential load had a higher number of rescheduled appliances, but the percentage cost
reduction was lower than that in the commercial load. This was due to the higher power rate of the
appliances in the commercial load in comparison with the much lower power rate of the appliances in
the residential area. Additionally, when some appliances were moved to another time slot, it resulted
in big savings for the user.

4.3.2. Solar PV Usage Efficiency

The efficiency of solar PV usage is defined as the total PV power consumed with respect to the
total energy generated from the solar PV. The results show the effect of applying a high penalty on the
efficiency of solar PV usage. The efficiency of usage dropped in the case of residential loads when
πp = 3 ¢/kWh, where the utilization efficiency was 89%. In fact, applying a high penalty added more
restriction on appliances with regard to shifting to a time power was generated by the solar PV; as
a consequence, the solar PV usage efficiency was reduced. The efficiency of usage was 92% in the
commercial buildings because the entire PV-generated power was consumed in the period of peak
load demand.

4.3.3. Real Power Loss

Figure 13 compares the feeder’s real power loss in terms of residential and commercial DSM.
The feeder’s power loss was 738.36 kW and dropped to 314.27 kW (56.85%) for the commercial are.
For the residential area, the loss dropped to 522.54 kW (28.25%). PV solar panels with a rated capacity
of 6 kW were used for the residential area in our model, and a capacity of 600 kW was used for the
commercial area. Although the residential load had the highest number of appliances available for
rescheduling, it is obvious that applying the DSM on commercial loads was more effective, because
the appliances (e.g., dough mixer, bun-grilling toasters, and gyro machine) had a higher kW rating.
The rescheduling of these appliances to the time of PV power generation tended to reduce line loss
much better.
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4.3.4. Voltage Profile

When applying a DSM model, it is necessary to ensure no voltage violation (a value greater
than 1.04 P.U.) Where P.U. is a per-unit. Figure 14 clarifies the voltage deviation of Bus No.17 for
the small commercial load. There is a clear difference between the profiles with and without solar
PV, especially between 12:30 p.m. and 4:00 p.m., as most of the demanded load was covered by the
PV-generated power. The increased voltage was caused by the reverse power flow, which can be
curbed by reducing the active power injected from the solar PV. In this work, voltage increased during
the low-consumption time slots with PV generation at the maximum level. A possible solution for this
voltage rise can involve either reducing the network resistance or reducing the PV power penetration
level during the simulation. As shown in Figure 14, a two-fold reduction in power penetration level
caused a slight reduction in voltage level.
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Figure 14. Voltage profile for the commercial load (A—large; B—small).

4.3.5. Real Power Loss at πp = 0 ¢/kWh

From Figure 15, it is clear that the power loss decreased upon injecting PV-generated power.
As we can see, between 8:00 a.m. and 12:30 p.m., the power loss was reduced. The overall reduction
in power loss was 26%. As shown in Figure 15A with the black dotted line, for the case of the DSM
(no PV, πp = 0 ¢/kWh), there was an increase in the power loss between 8:00 a.m. and 12:00 p.m., as
the load demand at this time was high, as was the current drawn from the grid. The blue dotted
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line shows the feeder power loss in the presence of solar PV generation. In the time from 8:00 a.m.
to 12:00 p.m., the power loss showed a significant reduction, because both of the loads consumed
the power from the solar PV and, consequently, the current was reduced. Table 2 summarizes the
effectiveness of considering a high tariff on the efficiency of solar PV usage. It shows that the efficiency
of solar PV usage dropped for the residential area, while it increased for the commercial building,
where the highest PV-generated power occurred at the period of peak commercial load (see Figures 2
and 3). The feeder power loss calculation is given below.

PLoss =

nbr∑
i=1

|Ii|
2 ri,

where nbr is the number of nodes in the feeder, |Ii| is the node current of i, and ri is the resistance.
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Table 2. Photovoltaic (PV) utilization efficiency at different penalty prices (πp).

PV Utilization Efficiency

Penalty Price πp (¢/kWh) Residential Area Penalty Price πp (¢/kWh) Commercial Area

0 98% 0 98%

5 72.3% 2 100%

10 64.8% 3 100%

20 58.4% 5 100%

4.3.6. Reverse Power Flow

Figure 16 presents the power flow distribution across the distribution feeder for the original
system without DSM, and with all the residential households participating in the DSM (πp = 0 ¢/kWh).
DSM participation helped smooth the flow of distributions along the feeder and, hence, no reverse
power flow occurred. Figure 17 illustrates the power flow distribution across the distribution feeder
with DSM (with PV, πp = 0 ¢/kWh), meaning all customers had PV generation installed. Reverse
power occurred at the time with high PV power penetration levels to the bus while the load demand
was at its lowest level, which can also cause a voltage rise. As shown in Figure 17A, reverse power
occurred during the time slots at which the PV generation was at a maximum level while the load
demand was at a minimum level. Figure 17B shows that, when the DSM is applied, more appliances
were rescheduled and shifted to the time when energy was generated by the solar PV, which helped
remove the reverse power flow.
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4.4. Desterilized DSM Comparison for Different Participation Levels

Figure 18 compares the feeder voltage for different participation levels withπp= 0 ¢/kWh, considering
two scenarios (i.e., with or without PV installation). It can be seen that increasing the number of customers
participating in DSM will tend to smooth the voltage profile and decrease the voltage fluctuation caused
by load changes. Moreover, when the rooftop PV energy generation was at the highest level (8:30 a.m.
to 4:30 p.m.), the DSM at πp = 0 ¢/kWh helped mitigate the voltage rise during these hours. Figure 19
illustrates the feeder total power loss with varying number of customers with the presence of a rooftop
PV. As we can see, with higher DSM participation (note that, in this case, 100% means all 30 customers
participated in the DSM program), the power loss is reduced with the on-peak price, as illustrated in
Table 3. As depicted in Figure 20, with DSM (at penalty πp = 0 ¢/kWh), more loads were rescheduled to
the free power time (solar PV generation) at midday, which mitigated the real power loss. Lastly, the
voltage profiles at the end of the feeder with 30 smart homes participating in the decentralized DSM
program were compared. As this test was applied at different values of penalties with the presence of
rooftop PV, when the value of πp increased from 5 to 10 ¢/kWh, the voltage became less flattened, and
only the flexible (less preferred) appliances were rescheduled to the time when the solar PV panel had
maximum generation (Figure 20).
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5. Conclusions

In a radial distribution network of 30 buses, we examined the following: (1) electricity cost,
(2) efficiency of solar PV usage, (3) line power loss, and (4) voltage fluctuation (σv in P.U.). From
the results, it is clear that the commercial DSM showed better effectiveness than the residential
DSM, with reductions in electricity cost of 50.3% and 37.1%, respectively, due to the high power
rate of the appliances in the commercial load, meaning that any small shift resulted in much higher
savings than with residential appliances. Also, the commercial load profile showed a time alignment
with local solar insolation and, thus, PV generation; therefore, the commercial DSM exhibited better
electricity cost savings, higher efficiency of solar PV usage, a larger decrease in electric energy loss,
and better improvement of voltage fluctuation. In addition, the overall simulation illustrated that the
decentralized DSM had a negative effect on grid energy loss. Thus, it is necessary in the future to adopt
coordinated DSM optimization for commercial loads to see how it affects system performance.

Author Contributions: H.O.A. collected the data, investigated the results, performed the literature review, and
prepared the manuscript. H.S. developed the MATLAB code. S.A. contributed to the critical reading of the
manuscript and provided input for the final version. All authors read and approved the final manuscript. H.O.A.
and H.S. contributed equally to this work.



Energies 2019, 12, 1811 18 of 21

Funding: Financial support was provided by the Higher Committee for Education Development (HCED).

Acknowledgments: The first author gratefully acknowledges the Higher Committee for Education Development
(HCED) for the financial support and scholarship opportunity.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

DSMD Demand-side management
TOUP Time-of-use pricing
PV Photovoltaic
MD Maximum demand
¢ Cent
Variables
M Number of homes participating in the DSM program
m Home index
ua,m The operation status of the appliance a (on/off)
ra,m Power in kW for appliance
A Interruptible and uninterruptible number
Am The appliance number in each home
T Number of the time slots (T = 48 slots; each slot = 30 min)
t Time slots
Da,m Time duration of each appliance
[sa,m , fa,m] The possible start and end time slot for each appliance
tstnew
a,m New time slot after applying DSM

tstold
a,m Old time slot

Ppv(t) Power generated by the solar PV
πe(t) Time-of-use pricing
πp Penalty price in cents (¢)
∆Ta,m Number of the slots shifted after applying DSM
MDm Threshold of energy usage
Cm

e Energy usage cost in $
Cm

p Total penalty cost ($/day) in household m

Appendix A

MATLAB code sharing is not applicable to this article. The numerical results, the appliance data,
and the algorithm steps generated or analyzed during the current study are all available within this
manuscript and in Appendix A.

Table A1. Number (No.) of appliances (appl.) in each residential household. MD—maximum demand.

Bus No. Interruptible Appl. Uninterruptible Appl. MD (kW)

2 21 7 12.4
3 15 4 15.3
4 17 4 11.8
5 12 4 8
6 19 4 10.5
7 21 4 11.5
8 21 4 14.7
9 21 4 15

10 13 4 15
11 18 4 10.5
12 21 7 11.3
13 15 4 13
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Table A1. Cont.

Bus No. Interruptible Appl. Uninterruptible Appl. MD (kW)

14 17 4 8.3
15 19 4 13.6
16 21 4 13
18 19 4 11.7
19 18 4 8.6
20 13 4 11.2
21 18 4 9
22 21 7 10
23 15 4 12
24 17 4 7.2
25 19 4 13.6
26 21 4 14
27 21 4 13.8
28 13 4 15.7
29 18 4 8.6
30 21 7 8.3
31 15 4 13

Table A2. Appliances in the commercial area.

Categorization
of Appliances Index Appliances Operation

Status Da (30) min Power Rate
(kW)

Baseline
Appliances

1 Icebox All day 48 22.5
2 Lights All day 48 240
3 Closed-circuit television All day 48 22.5

High Priority
πp = 3 ¢/kWh

4 Welding device 15−19 5 109.5
5 Electric fan 24−27 4 109.5
6 Arc furnace 25−28 4 270
7 Three0phase motor 21−24 3 270
8 Direct current motor 22−24 3 270
9 Ice machine 13−17 5 57

10 Drum machine 7−11 5 189
11 Broiler 21−24 4 189
12 Drill 39−42 4 246

Medium
Priority πp = 1
¢/kWh

13 Pizza oven 43−46 4 189
14 Food display 25−29 5 105
15 Dispenser 20−24 5 111
16 Laundry machine 30−34 5 96
17 Sewing machine 40−44 5 240
18 Microwave 16−20 5 285
19 Frying pan 23−27 5 246
20 Dishwasher machine 37−41 5 225
21 Heaters 14−18 5 225
22 Waste disposal 36−41 5 225

Low Priority πp
= 0 ¢/kWh

23 Shawarma machine 37−41 5 165
24 Liquid dispensers 29−33 5 300
25 Washing machine 27−31 5 270
26 Shawarma machine 24−28 5 37.5
27 Bun grilling 36−40 5 150
28 Air conditioner 20−23 4 180
29 Barbecue grill 27−30 4 180
30 Meat Slicer 10−13 4 180
31 Dough Mixer 30−33 4 180
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Table A3. Parameters of appliances in the residential area.

Categorization
of Appliances

Appliance
Index

Original Operation
Time Slot Da (30) min Power (kw) No. of

Appliances

Baseline
Appliances

1 1−48 48 0.15 150
2 1−48 48 1.60 150
3 1−48 48 0.15 150

Uninterruptible
Appliances

4 14−17 4 0.73 56
5 23−25 3 0.73 48
6 24−26 3 0.80 97
7 20−22 2 0.80 185
8 21−22 2 0.8 168
9 12−15 4 0.38 267

10 26−29 4 1.26 115

Interruptible
Appliances

11 21−24 4 1.26 164
12 39−42 4 1.64 118
13 43−46 4 1.26 174
14 24−27 4 0.70 187
15 19−22 4 0.74 150
16 29−32 4 0.64 119
17 39−42 4 1.60 82
18 15−18 4 1.90 156
19 22−25 4 1.64 148
20 36−39 4 1.50 107
21 13−16 4 1.50 195
22 35−39 4 1.50 168
23 36−39 4 1.10 247
24 28−31 4 2.00 154
25 26−29 4 1.80 210
26 23−26 4 0.25 125
27 35−38 4 1.00 164
28 20−23 4 1.20 154
29 27−30 4 1.20 162
30 10−13 4 1.20 195
31 30−33 4 1.20 164

Total - - - 4730
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