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Abstract: This paper proposes applications of a modified stochastic fractal search algorithm (MSFS)
to solve the economic load dispatch problem (ELD) in which valve-point effects, prohibited operating
zones, power losses in all conductors, multi-fuel sources and other constraints of power system are
taken into consideration. The proposed method is first developed in the study by performing two
modifications on two procedures of new solution generation from conventional stochastic fractal
search (SFS). The first modification is used to change the strategy of producing new solutions of the
first and the second update procedures while the second one is to newly update the worst solutions in
the first update process and the best solutions in the second update process. These modifications have
major influence on the solution search performance of the proposed method. All improvements of the
proposed method can be illustrated by solving and analyzing results from various test systems with
different system scales including 3-unit, 6-unit, 10-unit, and 20-unit systems. Comparison of results
obtained by MSFS, SFS, and other existing methods indicates that the proposed MSFS method is more
effective and robust than compared methods in terms of solution quality, high-quality solution search
stability and convergence process. Consequently, the proposed method should be used as a very
favorable optimization method for the ELD problem and it should be tried for other optimization
problems in electrical engineering.

Keywords: modified stochastic fractal search algorithm; thermal generating units; total fuel cost;
fitness function; optimal solution

1. Introduction

One of the most conspicuous trends in the 21st century is the economic growth, leading to
ever-growing needs of energy consumption in all of the activities including production, services,
and daily domestic households. They necessitate a power system to supply an adequate amount of
energy in order to address rising power demands. However, one of the most complicated issues of
power system supply is suitable electricity energy management that can use fuel cost-effectively and
satisfy the system constraints exactly. The objective and constraints of such power system are taken
into account in the economic load dispatch problem (ELD) [1].

Typically, the simplest cost-power feature of each thermal unit in the ELD problem is approximately
represented as a quadratic function since valve-point effects and prohibited operation zones are not
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taken into consideration [2,3]. In practice, the thermal generating units can be supplied by one or
more fuel sources, such as like coal, natural gas, and oil, and their cost function can be displayed
as the piecewise quadratic function [4]. Moreover, the cost function of each unit still has complex
characteristics when considering ramp rate limits, prohibited operating zones and non-convex.
The above factors accompanied by power system constraints have turned the ELD problem into a
complicated optimization problem.

Traditionally, the ELD problem used to be solved by using various classical optimization methods,
such as the interior point method (IPM) [5], gradient method (GM) [6], lambda iteration method
(LIM) [7], quadratic programming (QP) [8], Hopfield model (HM) [9], enhanced lagrangian ANN
(ELANN) [10] and enhanced augmented Lagrange Hopfield network (EALHN) [11]. Among the
classical approaches, ELANN and EALHN, which were based on neural network and a change
in the state of neurons, were applied for solving ELD problem with the piecewise quadratic cost
functions. However, these methods have coped with setbacks in handling nonlinear constraints,
put up with too many numerical iterations and slow convergence. In general, the performance of
conventional techniques is limited in dealing with the problems associated with multiple fuel sources,
complex constraints and substantial system scale, especially real power systems. Although these
shortcomings are challenges, they are also an inspiration as well as a promising research trend for
many researchers to explore and exploit. To overcome these difficulties, researchers must make more
efforts to find new algorithms better than previous algorithms. In recent years, a variety of techniques
inspired by natural phenomena or behaviors of animals has been proposed, such as distributed
auction-based algorithm (DAA) [12], artificial immune system (AISF) [13], biogeography-based
optimization (BBO) [14,15], genetic algorithm (GA) [16], multi-objective evolutionary programming
(MOEP) method [17], firefly algorithm (FA) [18], differential evolution (DE) [19], Krill herd algorithm
(KHA) [20], Cuckoo search algorithm (CSA) [21,22]. Besides, to enhance the ability of finding
global optimal solutions in large spaces, a high number of improved/modified versions of original
methods have been proposed, including improved Tabu search (ITS) [23], one rank Cuckoo search
algorithm (ORCSA) [24], improved Cuckoo search algorithm (ICSA) [25], anti-predatory particle
swarm optimization (APSO) [26], modified PSO (MPSO) [27], improved quantum-behaved particle
swarm optimization (IQPSO) [28], modified artificial bee colony algorithm (MABC) [29], iteration
particle swarm optimization (IPSO) [30], modified symbiotic organism search algorithm (MSOS) [31],
non-dominated sorting genetic algorithm-II (NSGA-II) [32], new adaptive particle swarm optimization
(NAPSO) algorithm [33] and fuzzy logic controlled genetic algorithm (FCGA) [34].

Over a long period, many algorithms have successfully solved the ELD problem. However,
they had different strengths and weaknesses. Therefore, many researchers have chosen outstanding
algorithms and combined them to create new algorithms with more promising results than the
original algorithms. For this purpose, many articles have productively introduced and launched
highly effective algorithms for the ELD problem, such as hybrid PSO with real-valued mutation
(RVM-PSO) [35], combination of the differential evolution and particle swarm optimization algorithms
(DEPSO) [36], hybrid PSO with gravitational search algorithm (HPSO-GSA) [37], modified shuffled
frog leaping algorithm (MSFLA) [38], global best harmony search algorithm (GHS) [38], hybrid
SFLA-GHS algorithm [38], combination of hybrid SFLA-GH and shuffled differential evolution
(MSFLA/GHS/SFLA-GHS/SDE) [38], hybrid fuzzy adaptive chaotic ant swarm optimization (FCASO)
algorithm and sequential quadratic programming (SQP) technique (FCASO-SQP) [39], a new
hybridization of particle swarm optimization with dynamic linkage discovery (PSO-RDL) [40],
hybrid ant colony optimization and real-coded genetic algorithm (GAAIP) [41] and shuffled differential
evolution (SED) [42]. All of the previous methods showed that they were powerful and effective
techniques that could deal with most of such difficulties of classical methods.

In this paper, a novel method called modified stochastic fractal search algorithm (MSFS) for
solving the ELD problem taking into consideration all constraints relating to the power system and
generator features. MSFS is created by improving the performance of stochastic fractal search algorithm
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(SFS), which is also a population-based meta-heuristic algorithm and was derived from the natural
evolution process [43]. SFS has received much interest from researchers and it has been successfully
utilized to resolve optimization problems in engineering fields so far. The main goal of this method
was to create an efficient solution search strategy by using diffusion procedure and two update
mechanisms. This algorithm can find near-optimal solutions and overtake the disadvantages from
other meta-heuristic methods, such as premature convergence in a local optimum zone without finding
the real optimal solution. The structure of SFS comprises three main stages for producing new solutions,
such as the diffusion process, the first update process, and the second update process. In the first
stage, each old solution is newly updated more than one time and there are at least two new solutions
produced around each old solution. On the contrary, the two remaining stages produce fewer solutions
dependent on solution quality in which the worst solutions have more chances to be newly updated
while the best solutions have a lower possibility to be newly produced. In MSFS, we concentrate on the
improvement of stage 2 and stage 3 by proposing two modifications. In the first modification, two step
sizes are suggested to be used and a new technique is proposed for determining one more appropriate
step size for updating new solutions. Furthermore, search spaces can be around each individual
solution or around the best solution depending on the comparison between fitness function of the
considered solution and the best solution. In the second modification, selected solutions to be newly
updated are different from those in SFS. In SFS, the worst solutions have more chances to be newly
updated rather than the best solutions in the two-update process. The strategy limits to exploit search
spaces around solutions with high quality and miss good search spaces. In MSFS, the worst solutions
are given priority to be updated in the first update process while the best solutions are selected to be
updated in the second update process. In general, MSFS can overcome major shortcomings that SFS
has coped with so far, but the implementation of the proposed MSFS method for obtaining promising
results has also encountered several difficulties as follows:

(i) Set the most appropriate value to the probability of updating bad solutions. The probability is in
the range from zero to one, but it should be selected by evaluating the results of the first some
cases and then the best value is fixed for other cases. However, a randomly selected value in
middle point, such as 0.6 or 0.5, can result in better solutions than SFS method.

(ii) Select the best values for population size and iterations. As setting the control parameter to
high values, it is sure that the best performance is obtained but execution time may be long.
Therefore, the best values must get two advantages, high-quality solutions and short enough
simulation time.

The application of these modifications is implemented and evaluated by testing the proposed
MSFS method and SFS method on four systems with twelve cases with a different number of generators
and different constraints. In addition, the proposed method is also compared to other existing methods.
The main contributions of the study can be summarized as follows:

(i) Describe the SFS method in detail and point out its advantages
(ii) Propose highly effective modifications on SFS in aim to reduce values of population size and

iterations, shortening simulation time and finding high performance.
(iii) Show the real performance of the proposed method when solving complicated systems. This can

help readers to decide if the method should be used for their applied problems.

Other remaining parts of the paper are as follows: Section 2 describes the ELD problem in detail
by explaining the objective function and considered constraints. Section 3 introduces the SFS method
and then proposes MSFS to the overcome shortcomings of SFS. Section 4 instructs the application of
MSFS for solving the ELD problem. Section 5 shows obtained results from MSFS and compares the
results with those from other methods including SFS. Section 6 concluded the work in the paper and
introduces future work. In addition, Appendix A is also added for showing optimal solutions obtained
by MSFS.



Energies 2019, 12, 1796 4 of 25

2. Problem Formulation

2.1. Objective Function

The main duty of the ELD problem is to determine the total fuel cost of thermal units and satisfy
any constraints of the power system. The total fuel cost can be calculated by using the fuel function of
each thermal generating unit that can be expressed as follows:

2.1.1. Traditional Cost Function

When the thermal unit uses single fuel cost, the objective function of ELD can be expressed as a
quadratic function and formulated as follows:

Ck(APk) = vk + xkAPk + ykAP2
k ($/h) (1)

So, the mathematical modeling for the objective function of the ELD problem is calculated by
determining the total fuel cost of N units as follows:

Min C =
N∑

k=1

Ck(APk) (2)

where Ck is the fuel cost of thermal generating unit k and its form is as shown in Equation (2) and in
Figure 1.
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Figure 1. Fuel cost function for the case of single fuel option.

Traditionally, fuel cost function was represented as the second order form once the effects of
thermal valves during the power change were not taken into account. However, it is more realistic
since the valve effects are considered for the process of increasing or decreasing the power output
of thermal generating units. The valve effects are represented as a sinusoidal term. Therefore, the
fuel cost function is the sum of the second order Function (1) and the sinusoidal term as shown in
Equation (3). The effects can be identified by observing the curve in red in Figure 2 [2].

Ck(APk) = vk + xkAPk + ykAP2
k +

∣∣∣∣sk × sin
[
tk ×

(
APmin

k −APk
)]∣∣∣∣ ($/h) (3)
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2.1.2. Cost Function with Multiple Fuels and Valve-Point Effects

Usually, thermal generating units can be provided with multiple fuels. So, the cost function can
be piecewise curves consisting of two or three second order equations depending on the number of
fuels. For this case, Ck can be described in Equation (4) and plotted in Figure 3.

Ck(APk) =



vk1 + xk1APk + yk1AP2
k , fuel 1, APmin

k ≤ APk ≤ APmax
k1

. . . ..
vkm + xkmAPk + ykmAP2

k , fuel m, APmin
km ≤ APk ≤ APmax

km
. . . . . .
vkMk + xkMkAPk + ykMkAP2

k , fuel Mk, APmin
kMk ≤ APk ≤ APmax

kMk

(4)

Energies 2019, 12, x FOR PEER REVIEW 5 of 26 

 

 

Figure 2. Fuel cost function with valve-point effects. 

2.1.2. Cost Function with Multiple Fuels and Valve-Point Effects 

Usually, thermal generating units can be provided with multiple fuels. So, the cost function can 

be piecewise curves consisting of two or three second order equations depending on the number of 

fuels. For this case, Ck can be described in Equation (4) and plotted in Figure 3. 

2

1 1 1

2

2

min max

1

min max

min max

, fuel 1, 

.....

( ) , fuel m, 

......

, fuel , 

k k k k k k

k k km km k km k k

kMk kMk k kMk k k

k k

km km

kMk kMk

x P y P P P P   

C x P y P P P P  

 v x P y P Mk P P P

v A A A A A

AP v A A A A A

A A A A A

+ +  

= + +  

+ +  











 (4) 

 

Figure 3. Fuel cost function for the case of multi-fuel options. 

However, in real operation conditions, the power output of the thermal generating units is 

controlled by their boilers that are influenced by valve-point effects. Hence, the fuel cost function 

associated with multiple fuels (MF) options and valve-point effects (VPF) can be mathematically 

formulated as follows [28]:  

Figure 3. Fuel cost function for the case of multi-fuel options.

However, in real operation conditions, the power output of the thermal generating units is
controlled by their boilers that are influenced by valve-point effects. Hence, the fuel cost function
associated with multiple fuels (MF) options and valve-point effects (VPF) can be mathematically
formulated as follows [28]:
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Ck(APk) =



vk1 + xk1APk + yk1AP2
k +

∣∣∣sk1 × sin(tk1 × (APmin
k1 −APk))

∣∣∣
, for fuel 1, APmin

k ≤ APk ≤ APmax
k1

. . . . . .
vkm + xkmAPk + ykmAP2

k +
∣∣∣skm × sin(tkm × (APmin

km −APk))
∣∣∣

, for fuel m, APmin
km ≤ APk ≤ APmax

km
. . . . . . .
vkMk + xkMkAPk + ykMkAP2

k +
∣∣∣skMk × sin(tkMk × (APmin

kMk −APk))
∣∣∣

, for fuel Mk, APmin
kMk ≤ APk ≤ APmax

k

(5)

2.2. Constraints

Real power balance: The total generated power must be equal to the sum of the total load demand
and transmission line losses as the following rule:

N∑
k=1

APk = PLD + PTLL (6)

where PLD is the total load demand (in MW). PTLL is total transmission line losses (in MW) and can be
calculated by using Kron’s formula below:

PTLL =
N∑

k=1

N∑
h=1

APkBkhAPh +
N∑

k=1

B0kAPk + B00 (7)

where Bkh, B0k, B00 are B active power loss matrix coefficients and computed by the following way [44]:

(i) Run optimal power flow for a solution to record voltage magnitude and phase angle of all buses
(ii) Determine branch currents and impedance matrix
(iii) Form Hermitian matrix H
(iv) Calculate B coefficients

The value of coefficients has a great influence on the total transmission line losses and these
coefficients should be updated per iteration due to the change of solutions from optimal power flow
program. However, in this study, these coefficients remain unchanged with an assumption that new
generation schedule and previous schedule are slightly different or approximately similar [44].

Active power output constraint: Active power output of each generator should be between its
upper and lower power limits as shown in Equation (8) below:

APmin
k ≤ APk ≤ APmax

k (8)

Prohibited operation zone constraint: In some situations, the thermal units have some prohibited
operation zones (POZ) owing to the survival of some weakness in generators or in accessories. These
prohibited operation zones create intermittent regions in the cost function. Therefore, when the units
operate, it should avoid these regions as shown in the following model:

APk
min
≤ APk ≤ APk,1

l

APu
k, j−1 ≤ APk ≤ APl

k, j
. . . , j = 2, . . . ., Nk

APu
k,Nk
≤ APk ≤ APmax

k

(9)
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3. The Proposed Modified Stochastic Fractal Search Algorithm

3.1. Stochastic Fractal Search Algorithm (SFS)

SFS was first proposed by Salimi in 2014 for stacking optimization problems [43]. SFS algorithm
was modified based on basic fractal search (FS) to get rid of the disadvantages of FS, such as:

1. There are too many parameters which have to be carefully selected and the selection of these
parameters must be suitable to avoid trapping in local solutions.

2. The speed of convergence of the algorithm is too slow because there is no exchange of information
between individuals within the group.

SFS can deal with the above drawbacks by proposing two processes: the first update and the
second update. So, the structure of SFS consists of the diffusion process, the first update process
and the second update process corresponding to three times of newly generated solutions. Concrete
information about such SFS is presented as follow:

3.1.1. Diffusion Process

The first process is considered as a narrow zone search technique based on the natural phenomenon
of growth. In such process, each solution d from the population (Npop) will diffuse into the number of
diffusions (Nd,f) of new solutions by using Gaussian walk model. This process is carried out by the
selection of Equation (10) or (11).

Xnew
d, f = Gaussian(Xbest, ∆) + λ× (Xbest −Xd) (10)

Xnew
d, f = Gaussian(Xd, ∆) (11)

where Gaussian(Xbest, ∆) and Gaussian(Xd, ∆) are two solutions, which are, respectively, found around
Xbest and Xd by using Gaussian distribution with the standard deviation of ∆ [43] in which ∆ is obtained
by Equation (12) below.

∆ =

∣∣∣∣∣∣ log(Iter)

Iter
× (Xd −Xbest)

∣∣∣∣∣∣ (12)

where Iter is the current iteration. Xbest is represented as the position of the best solution and Xd is
represented as the dth solution in the population.

After using both mentioned equations to update new solutions, the quality of all updated solutions
Xnew

d, f is measured by determining their fitness function, which is represented as FFd,f (f = 1,..., Nd,f).
Then, Fitness function values of new solutions (FFd,f) are compared with each other to find the lowest
fitness and the solution with the lowest fitness, called FFnew

d and Xnew
d , respectively [45]. Finally,

the comparison between the newly updated solution’ fitness function (FFnew
d ) and that of the old

solution (FFd) is executed to keep a better one.

3.1.2. The First and Second Update Processes

The first update process is considered a large zone search technique in charge of newly producing
solutions around old solutions, which were retained after the diffusion process. First of all, all previous
solutions are ranked and assigned to rankd based on their fitness function in which worse solutions are
with smaller order and better solutions with higher order. Namely, the best solution with the lowest
fitness function is ranked last corresponding to the Npop-th order while the worst one is ranked first.
Similarly, other solutions are assigned to their order. In the next step, a ratio (PGd) is calculated using
Equation (13).

PGd =
rankd
Npop

(13)
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In the last step, old solutions receive the decision to update. If the solution owning PGd with a
smaller value than a random number θd, the solution will be newly updated based on Equation (14).
We noted that θd is a random value within the range [0, 1]. It is different from a random confidence
threshold B in [46]. In [46], authors have applied the random confidence threshold B based on different
distribution functions, such as beta distribution function, truncated normal distribution function and
two-point distribution function to determine the critical confidence threshold E(B) for a continuous
opinion model. The value of θd is used for producing a possibility of updating new solutions rather
than producing new solutions with high quality.

Xnew1
d = Xt1 − rand× (Xt2 −Xd) (14)

In case that PGd is not less than θd, there is no update action for the considered solution. The whole
description can be summarized based on the following Algorithm 1.

Algorithm 1. The first update process of SFS method

(i) Sort all solutions by based on the fitness function
(ii) Determine rankd value for all sorted solutions
(iii) Determine PGd by using Equation (13)

For d = 1:Npop

if PGd < θd
Update solution d by using Equation (14)

else
Solution d does not change

end
end

In the second update process, all steps are similar to those in Algorithm 1 but the Equation (14)
for updating new solutions is replaced with Equations (15) and (16) below.

Xnew2
d = Xd − α× (Xt3 −Xbest) f or β ≤ 0.5 (15)

Xnew2
d = Xd + α× (Xt3 −Xt4) f or β > 0.5 (16)

3.2. The Proposed Modified Stochastic Fractal Search Algorithm

3.2.1. The Newly Proposed Technique for the Two Update Procedures

In the first update procedure of SFS, new solutions via Gaussian walk are updated by using a
random solution with step size (∆X) based on a random solution and solution d as Equation (14).
Obviously, the search mechanism is a random search way without a good strategy because its generated
solutions always search around the random solution with the small step size. So, the first modification of
MSFS aims to manage the restrictions of SFS by using a novel search strategy consisting of Equations (17)
and (18).

Xnew
d = Xd + γ× ∆X (17)

Xnew
d = XBest + γ× ∆X (18)

Clearly, the search strategies applying two models in Equations (17) and (18) have a big difference
from Equation (14) because the proposed model of Equation (17) is used to update new solutions
around the old solutions whilst the purpose of applying the model in Equation (18) is to create new
solutions around the so-far best solution. The choice of applying either the model of Equation (17) or
(18) should be determined by a correct criterion. The criterion is the result of the comparison between
EFd and EFaver. The two new definitions are shown in Equations (19) and (20) as below:
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EFd =
FFd − FFbest

FFbest
(19)

EFaver =

(Npop∑
d=1

FFd)/NPop

− FFbest

FFbest
(20)

where FFd is the fitness function value of each solution Xd, FFbest is the fitness function value of the
current best solution Xbest.

For the case that EFd is bigger than EFaver, it implies that the current solution is far away from the
so-far best solution, new solutions are updated by utilizing Equation (18). On the contrary, it can be
understood that the current solution is close to the so-far best solution. Thus, the newly generated
solutions are produced by employing Equation (17).

Moreover, the step size has also played a major part in finding a good solution quality. As seen,
the step size in Equation (14) is always small. Thus, it may be not useful for searching optimal solutions
and time consuming for being convergent to the optimal global solutions. To escape the local search
zone and handle the mentioned disadvantages, we propound two step size types in order to extend
the practicable search zone and overcome the local minima. The details of selecting the step size are
presented as follows:

∆X =

{
(Xt1 −Xt2) i f εd〈D
(Xt1 −Xt2 + Xt3 −Xt4)else

(21)

where D is the probability of selecting step size types, which can be from 0.1 to 1. By the experience,
D should be set by 0.1 to 0.3. This indicates that the step size based on two random points is only used
up to thirty percent, while another step size called the large step size can be used up to seventy percent.
Consequently, the contribution of the large step size is more significant than that of another.

The proposed update process can be easily understood as observing Figure 4. In the Figure,
we suppose that there are five solutions in the population. Solution 1 and solution 2 in blue together
with the best solution in red are in the group with EFd not higher than EFaver while solution 3 and
solution 4 in black are in another group with EFd higher than EFaver. There are two main differences in
the process of updating new solutions. Search space around good solution group is exploited while
that around bad solution group is neglected. Instead, the best solution is a central solution that is used
to find new solutions for bad solutions. In fact, two arrows pointing to the best solution from solutions
3 and 4 illustrates the statement. It is clearly seen that spaces around solution 1, solution 2 and the
best solution are marked and sought many times while spaces around solution 3 and solution 4 are
abandoned. That is the first difference between good solution group and bad solution group. In the
second difference, it can be identified that search spaces around solution 1 are more narrow than those
around solution 2 because ε1 is smaller than random number D but ε2 is equal to or higher than D.
Similarly, space around the best solution is plotted by two circles with different radius, one circle with
a higher radius and another with a smaller radius. The smaller circle is the search space for solution 3
because ε3 is smaller than D whereas the large circle is the search space for solution 4 because D is not
higher than ε4. The implementation of the proposed update process can be accomplished by using
Algorithm 2 below.
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Figure 4. The description of the first update process of the proposed modified stochastic fractal search
algorithm (MSFS) method.

Algorithm 2. The proposed search strategy for the first update process

Calculate given probability of solution d by utilizing Equation (13)
if εd < D

∆X = (Xt1 −Xt2)

else
∆X = (Xt1 −Xt2 + Xt3 −Xt4)

end
if EFd > EFaver

Xnew
d = Xd + rand× ∆X

else
Xnew

d = XBest + rand× ∆X
end

3.2.2. The Modifications on Selected Solutions for the Two Update Procedures

Equation (13) of SFS indicates that most of the solutions with bad fitness are always updated while
solutions with better fitness have a lower possibility to be newly updated. Clearly, PGd of the best
solution is the largest value while that of the worst solution is the smallest value. Besides, the value
of a random number of solution d, θd is always smaller than one and bigger than zero. Therefore,
considering the comparison of PGd and θd, only search spaces around the worst solutions are highly
exploited while search spaces around the best solutions are disregarded. The manner has caused
the main disadvantage for SFS in seeking solutions in local optimal zones or nearby global optimal
solution. Therefore, in the modification, we suggest updating bad quality solutions in the first update
procedure while good quality solutions are focused to be newly produced. For implementing the
modification, the ratio of updating bad quality solutions Rnbs (where Rnbs is less than one and higher
than zero) must be selected in advance and then the number of bad quality solutions is determined and
updated in the first update process. Consequently, in the first update, (Rnbs × Npop) worst solutions
are newly updated. After the first update, all solutions are ranked and then [(1 − Rnbs) × Npop] best
solutions are newly updated in the second update process.

The whole search process of the proposed MSFS method is described in detail in Figure 5 below.
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4. The Implementation of MSFS for ELD Problem

4.1. Dealing with the Constraints

In ELD problem, solving load demand-supply balance constraint is one of the most important
affairs because it affects the good solution quality and the speed of convergence. So, many methods
have used two variable types to deal with the constraints. The first variable type is called a dependent
variable and selected from one thermal generating unit. The second variable type is called a control
variable and selected from other thermal generating units. In the search strategy of the proposed
method, the variables are included in the position of each point in the initialization step and are
updated in each iteration. Consequently, the position of point d will include thermal generating unit
from unit 2 to unit N as the following formula.

Xd = [AP2,d, AP3,d, . . . ., APN,d]; d = 1, . . . , Npop (22)

where
Xmin ≤ Xd ≤ Xmax (23)

Xmin = [AP2,min, AP3,min, . . . ., APN,min] (24)

Xmax = [AP2,max, AP3,max, . . . ., APN,max] (25)

As a result, the balance constraint can be solved by the expressions below.

AP1,d = PLD + PTLL −

N∑
k=2

APk,d (26)

4.2. Handling the Violation of the Dependent Variable

The value of AP1,d obtained from Equation (26) may violate constraint in Equation (8). Therefore,
the violation must be evaluated in the quality of solutions. The task is performed by computing the
following penalty term.

PENAP1 =


(
AP1,d −APmax

1

)
i f

(
AP1,d > APmax

1

)(
APmin

1 −AP1,d
)

i f
(
AP1,d < APmin

1

)
0 else

(27)

As seen from Equation (27), the thermal generating unit 1 will be penalized if it is higher than
upper bound or smaller than lower bound. On the contrary, it will not be penalized or the penalty
term will be zero if it is within the upper bound and the lower bound.

4.3. Handling the Violation of Upper and Lower Boundaries

After newly updating the power output of from the second unit to the last unit, these units must
be checked and corrected exactly by using the following equation:

APk =


APmax

k i f APk > APmax
k

APmin
k i f APk < APmin

k
0 else

; k = 2, . . . , N (28)

4.4. Handling the Violation of Prohibited Operation Zones

If the active power output of the kth thermal generator falls into one out of prohibited operation
zones, it should not be kept but correction and penalty need to be made depending on thermal
generators. From the second generator to the last generator (APk with k = 2, . . . , N) should be corrected
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by using Equation (29) while the first unit AP1 should not be corrected but it needs to be penalized by
using Equation (30). The two equations are as follows:

APk =


APl

k, j i f APk ∈

[
APl

k, j, APu
k, j

]
&
(
APk < APaver

k, j

)
APu

k, j i f APk ∈

[
APl

k, j, APu
k, j

]
&
(
APk ≥ APaver

k, j

)
APk i f APk <

[
APl

k, j, APu
k, j

] ; k = 2, . . . , N & j = 1, . . . , Nk (29)

PENPOZ,AP1 =


0 i f AP1 <

[
APl

1, j, APu
1, j

]
∣∣∣∣AP1 −APl

1, j

∣∣∣∣ i f AP1 <
[
APl

1, j, APu
1, j

]
&
(
AP1 < APaver

1, j

)
∣∣∣∣AP1 −APu

1, j

∣∣∣∣ i f AP1 <
[
APl

1, j, APu
1, j

]
&
(
AP1 > APaver

1, j

) ; j = 1, . . . , N1 (30)

In Equations (29) and (30), average powers are defined as the following model:

APaver
k, j =

APu
k, j + APl

k, j

2
; j = 1, . . . , Nk; k = 1, . . . , N (31)

4.5. Handling the Violation of the Spinning Reserve Power (SRP)

Under normal conditions, the operating reserve capacity of the generating thermal units has
played an important role in meeting load demands within a short time in case a generator breaks
or there is another disruption to the supply. If that is not satisfactory, the approach is penalized.
This problem is presented as the following formula:

PENSRP =


0 i f

N∑
k=1

(
APmax

k −APk
)
≥ APSRP∣∣∣∣∣∣ N∑

k=1

(
APmax

k −APk
)
− APSRP

∣∣∣∣∣∣esle
(32)

4.6. Calculating Fitness Function

Most of the meta-heuristic methods need to calculate the fitness function of all the solutions in
order to arrange the rank of all the solutions. Accordingly, the fitness function is determined as the
following equation.

FFd =
N∑

k=1

Ck(APk) + K × (PENAP1)
2 + K × (PENPOZ,AP1)

2 + K × (PENSRP)
2 (33)

4.7. The Detail of MSFS’s Procedure for ELD Problem

Step 1. Select parameters for the proposed MSFS, such as the number of points Npop, the maximum
value of iterations NIter, and the ratio of updating bad quality solutions Rnbs

Step 2. Randomly initialize population based on the rule shown in Equation (23)

- Handling POZ constraint for unit 2 to unit N based on (29)
- Calculate dependent variables AP1,d by using (26)
- Penalize the violation of generation limits for AP1,d by using Equation (27)
- Penalize the violation of POZ constraint for AP1,d by using Equation (30).
- Calculate fitness function FFd for the solution d by using (33)
- Find the best solution XBest with the lowest fitness
- Start the first iteration (Iter = 1)



Energies 2019, 12, 1796 14 of 25

Step 3. Produce new solutions of the diffusion process using Equations (10) and (11)
Step 4. Correct new solutions by using Equation (28)

- Handling POZ constraint for unit 2 to unit N based on (29)
- Calculate dependent variables AP1,d by using (26)
- Penalize the violation of generation limits for AP1,d by using Equation (27).
- Penalize the violation of POZ constraint for AP1,d by using Equation (30).
- Calculate fitness function FFd for the solution d by using (33)

Step 5. Compare new solutions and old solutions to retain better ones.
Step 6. Update bad solutions by using the first update process in Algorithm 2

- Correct new solutions by using Equation (28)

Step 7. Handling POZ constraint for unit 2 to unit N based on (29)

- Calculate dependent variables AP1,d by using (26)
- Penalize the violation of generation limits for AP1,d by using Equation (27).
- Penalize the violation of POZ constraint for AP1,d by using Equation (30).
- Calculate fitness function FFd for the solution d by using (33)

Step 8. Compare new solutions and old solutions to retain better ones.
Step 9. Update good solutions by using the second update process in Algorithm 2

- Correct new solutions by using Equation (28)

Step 10. Handling POZ constraint for unit 2 to unit N based on (29)

- Calculate dependent variables AP1,d by using (26)
- Penalize the violation of generation limits for AP1,d by using Equation (27).
- Penalize the violation of POZ constraint for AP1,d by using Equation (30).
- Calculate fitness function FFd for the solution d by using (33)

Step 11. Compare new solutions and old solutions to retain better ones.
Step 12. Determine the best solution with the smallest fitness function value.

5. Numerical Results

In this section, the proposed MSFS and SFS are applied to solve the ELD problem in four different
test systems with 3, 6, 10 and 20 thermal units. The first test system considers two cases (cases 1–2),
the second system evaluates four cases (cases 3–6), the third system analyzes five cases (cases 7–11),
and the final system investigates only one case (case 12). The different cases are due to the different
fuel cost function characteristics, different loads and different constraints in which fuel cost functions
consider single fuel with and without valve-point effects (VPE) and multi-fuels (MF) with and without
valve-point effects while different constraints are power losses (PTLL), prohibited operating zone (POZ)
and power balance. As a result, there are twelve study cases with a detailed description shown
in Table 1.

Similar to the meta-heuristic algorithms, the proposed MSFS also needs to set some parameters,
such as the population size, the maximum iteration number, the number of diffusions and the ratio of
updating bad-quality solutions reported in Table 2. All study cases of the method have been performed
in Matlab program language and a computer with 4 GB of Ram and 2.4 Ghz processor.
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Table 1. Summary of twelve study cases.

Case Unit PLD (MW) POZ PTLL (MW) VPE MF

Case 1 3-unit 850 No Yes No No
Case 2 3-unit 850 No No Yes No
Case 3 6-unit 800 No No No No
Case 4 6-unit 1200 No No No No
Case 5 6-unit 1800 No No No No
Case 6 6-unit 1263 Yes Yes No No
Case 7 10-unit 2400 No No No Yes
Case 8 10-unit 2500 No No No Yes
Case 9 10-unit 2600 No No No Yes
Case 10 10-unit 2700 No No No Yes
Case 11 10-unit 2700 No No Yes Yes
Case 12 20-unit 2500 No Yes No No

Table 2. The selection of population size and the highest iteration number.

Case Npop NIter Nd,f Rnbs

Case 1 3 15 2 0.6
Case 2 10 10 2 0.6

Cases 3–6 5 20 2 0.6
Cases 7–10 10 40 2 0.6

Case 11 30 100 2 0.6
Case 12 10 100 2 0.6

5.1. The Analysis of the Performance Improvement of MSFS

In order to test the level of improvement of MSFS compared to SFS, this section surveys the effect
of population and the number of iterations on the results of the methods. The first survey is studied in
a complex constraints case, specifically, case 6 with transmission power losses and prohibited operating
zones as constraints. The results achieved by SFS and MSFS methods with respect to the best cost, mean
cost, worst cost and standard deviation cost are shown in Table 3 and Figure 6. Among the four cost
values, the best cost and standard deviation cost are the two most important values considered as major
comparison criteria. It means that the comparison of the minimum cost is used to evaluate the best
optimal solution and the comparison of the standard deviation cost is used to evaluate the stabilization
of finding ability. From Table 3, the population of the two methods is set to five but the number of
iterations is changed from 15 to 60 iterations. As observed from the minimum cost, it only needs
20 iterations for MSFS to get the best cost of 15,443.0752 ($/h). Meanwhile, the best cost of SFS gradually
decreases from 15,443.1775 ($/h) to 15,443.0752 ($/h) when the number of iterations of SFS is changed
from 15 to 60. Specifically, a cost of 15,443.1775 ($/h) is corresponding to the setting of 15 iterations,
a cost of 15,443.1381 ($/h) is corresponding to the setting of 20 iterations, a cost of 15,443.1197 ($/h)
is corresponding to the setting of 30 iterations, a cost of 15,443.1171 ($/h) is corresponding to the
setting of 45 iterations, and, a cost of 15,443.0752 ($/h) is corresponding to the setting of 60 iterations.
Clearly, to obtain the minimum cost of 15,443.0752 ($/h), SFS must use 60 iterations but MFSF only uses
20 iterations. As seen Figure 6, the minimum cost of MSFS is 15,443.0772 ($/h) at 15th iteration, but
from the 20th iteration to the 60th iteration, cost of MSFS is also 15,443.0752 ($/h) and does not change.
On the contrary, the best cost of SFS tends to be decreased from 15,443.1755 ($/h) to 15,443.0752 ($/h)
corresponding to from the 15th iteration to the 60th iteration. This implies that MSF is more efficient
than SFS. Besides, MSFS always has a lower standard deviation cost than SFS when the two methods
use the same number of iterations. This points out that MSF is more robust than SFS.
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Table 3. Results obtained by MSFS and stochastic fractal search (SFS) methods for case 6.

NIter Method Min.
Cost ($/h)

Aver.
Cost ($/h)

Max
Cost ($/h)

Std dev.
($/h)

15
MSFS 15,443.0772 15,450.0960 15,484.6862 0.2508
SFS 15,443.1755 15,470.3311 15,619.4444 3.9302

20
MSFS 15,443.0752 15,454.5582 15,600.7939 0.7644
SFS 15,443.1381 15,457.2901 15,490.2090 1.2845

30
MSFS 15,443.0752 15,450.7556 15,483.2619 0.3138
SFS 15,443.1197 15,459.8633 15,593.5810 2.5499

45
MSFS 15,443.0752 15,450.5985 15,476.4993 0.3194
SFS 15,443.1171 15,462.6925 15,601.3773 2.6220

60
MSFS 15,443.0752 15,447.3049 15,471.5278 0.2170
SFS 15,443.0752 15,460.7564 15,549.6672 2.1338
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For other remaining cases, the strong point of the proposed method over SFS is the same manner.
The obtained results of MSFS and SFS in regard to the best cost, the average cost, the worst cost and the
standard deviation are seen in Table 4 for the rest of the cases. With the same population and iterations,
the best cost of MSFS is always smaller than those of SFS. In addition, to see the improvement of MSFS
over SFS, we have calculated the reduction cost and added it as the last column in Table 4. For different
cases or different test systems, the value of reduction is also different. For example, that of the first test
system is from 0.02 ($/h) to 0.04 ($/h), for the second test system is from 0.019 ($/h) to 0.409 ($/h), for the
third test system is from 0.0001 ($/h) to 0.0429 ($/h), and for the last test system is 0.006 ($/h). In general,
the reduction cost is not high for each hour but the reduction for one day with 24 h or one year with
8760 h is highly significant. Furthermore, the improvement of the proposed method over SFS can be
identified more clearly as focusing on average cost, maximum cost as well as standard deviation cost.

To give further evidence of the stability of the proposed algorithm, we also test the distribution of
the minimum costs over fifty independent trial runs for case 6 and case 11. Case 6 takes transmission
power losses and prohibited operating zones into account and case 11 considers multi-fuels options
and valve-point effects as constraints. The best costs of 50 runs obtained by MSFS and SFS are plotted
in Figures 7 and 8 for case 6 and case 11, respectively. These figures show a random distribution of
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50 values of fitness function values obtained by MSFS and SFS over 50 fruitfully independent runs.
It means that after each trial run, there is a red point of MSFS and a blue point of SFS allocated on
such curves. These points can be increased or decreased without any rules. The deviation between
the peak of SFS and MSFS is very high. The fluctuations of SFS are high since all points of MSFS are
approximately lied on a line. Furthermore, it can point out that nearly all points of MSFS have the
same cost as the best point but only a few points of SFS are around the best point of MSFS. The manner
indicates that SFS hardly ever finds an optimal solution.

Table 4. Results obtained by MSFS and SFS methods for the rest of the cases.

Case Method Min.
Cost ($/h)

Aver.
Cost ($/h)

Max.
Cost ($/h)

Std. Dev
($/h)

Reduction
Cost ($/h)

Case 1
SFS 8344.613 8354.989 8484.935 10.4561

0.02MSFS 8344.593 8347.9508 8364.731 5.2664

Case 2
SFS 8234.112 8240.3524 8252.073 6.0824

0.04MSFS 8234.072 8240.7777 8251.061 4.0656

Case 3
SFS 8227.506 8278.6951 8448.024 5.1367

0.409MSFS 8227.097 8244.5885 8439.616 1.486

Case 4
SFS 11,477.109 11,515.151 11,656.08 4.5367

0.019MSFS 11,477.09 11,495.095 11,560.31 0.7406

Case 5
SFS 16,579.35 16,588.184 16,644.100 1.1320

0.02MSFS 16,579.33 16,591.024 16,716.37 0.6577

Case 7
SFS 481.7240 484.2762 537.0084 6.5127

0.0014MSFS 481.7226 483.196 526.4292 3.7283

Case 8
SFS 526.2389 530.1006 565.0843 7.1695

0.0001MSFS 526.2388 527.6925 556.1475 3.3526

Case 9
SFS 574.3817 578.1708 608.8124 6.9787

0.0009MSFS 574.3808 575.2905 589.5618 2.1429

Case 10
SFS 623.8126 627.9128 662.3985 6.0800

0.0034MSFS 623.8092 624.8894 645.5859 2.0321

Case 11
SFS 623.8764 627.4806 655.5396 6.1576

0.0429MSFS 623.8335 623.9309 626.3913 0.0415

Case 12
SFS 62,456.639 62,460.654 62,482.88 6.3851

0.006MSFS 62,456.633 62,456.676 62,457.94 0.19766
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0.006 
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5.2. Comparison and Discussion

In this part, we will conduct an investigation of the best simulation results of the proposed algorithm
and those from other approaches available in the paper. Besides, another comparison formula is
concerned to be the number of fitness assessments (NGer), which is obtained by Equation (34) below:

NGer = t×Npop ×NIter (34)

where t stands for the number of generations in every iteration. Depending on the structure of
optimization algorithms, they have a difference of the number of generations. For example, CSA
and ORCSA technique with two solution generations, t is two while t is one for other technique with
one solution generation, such as DE, GA, and PSO methods. For the proposed MSFS, the number of
generations in each iteration equals the sum of the number of diffusions and number one (Nd, f + 1).
This formula indicates that an algorithm with lower NGer is assessed to be a more effective method if it
has equal or lower best cost.

5.2.1. Test System 1 with 3 Units

In the first test system, a small size system with three generators is dissected with two different
study cases in which transmission power losses are investigated in case 1 and valve-point effects are
investigated in case 2. The load demand in test system 1 is set to 850 MW. The detailed data input
of the first case related to the fuel cost function coefficient and transmission power losses matrix are
shown in [17] and [32]. In this case, we discuss the results of the proposed method and others such as
MOEP [17], NSGA-II [32], ICSA [25], CSA [22], and BBO [15] regarding the best cost, the population
(Npop), the number of iterations (NIter), and the number of fitness evaluations (NGer) in Table 5. As seen
in Table 5, the solution quality of the MSFS method is the same as that of ICSA [25], CSA [22], and
BBO [15] but better than that of MOEP [17] and NSGA-II [32]. Besides, NGer of MOEP, NSGA-II and
BBO is very high, 150,000 for MOEP, 10,000,000 for NSGA-II and 6000 for BBO while NGer of MSFS is
only 135. For that reason, MSFS is capable of searching very good quality solutions for case 1.

Case 2 considers valve-point effects and its input data is taken from Reference [39]. Table 6 shows
a comparison between MSFS and other ones. As shown in Table 6, all of the methods can solve the
case with the same best cost. However, MSFS has only used 300 evaluations while most of the other
methods have used many times of fitness evaluation. NGer of SDE [42] cannot be calculated because it
has not reported population and iterations.



Energies 2019, 12, 1796 19 of 25

Table 5. Result comparisons for case 1.

Method Min. Cost ($/h) Npop NIter NGer

BBO [15] 8344.59 30 200 6000
MOEP [17] 8344.60 500 300 150,000
CSA [22] 8344.59 - - -
ICSA [25] 8344.59 - - -

NSGA-II [32] 8344.60 500 20,000 10,000,000
MSFS 8344.59 3 15 135

Table 6. Comparison of the implemented results for case 2.

Method Min. Cost ($/h) Npop NIter NGer

FA [18] 8234.07 25 100 5000
ITS [23] 8234.07 20 50 1000

MPSO [27] 8234.07 20 100 2000
FCASO-SQP [39] 8234.07 20 200 12,000

PSO-RDL [40] 8234.07 20 50 1000
SDE [42] 8234.07 - - -

MSFS 8234.07 10 10 300

The optimal solutions of the two cases are shown in Table A1 in Appendix A.

5.2.2. Test System 2 with 6 Units

The second test system is established by six thermal units and is divided into four cases from case
3 to case 6. In case 3, case 4, and case 5, the fuel cost function of thermal units is a quadratic function,
the data implemented in this situation are obtained from [34] and the required load demand is set to be
800, 1200, and 1800 MW without transmission losses. For case 6, both the prohibited operating zones
and transmission losses are considered while the active load demand is set to 1263 MW [33].

Table 7 provides the results yielded by MSFS and other approaches. With regard to the best cost,
MSFS gets a cost of 8227.09 ($/h) for case 3, 11,477.09 ($/h) for case 4 and 16,579.33 ($/h) for case 5.
These results absolutely suppress FCGA [34] and CGA [34] but share the same position with GA [16],
CSA [22], and ICSA [25] for cases 3, 4 and 5.

Table 7. Comparison of the implemented results for case 3, case 4, and case 5.

Method
Case 3 Case 4 Case 5

NGer
Min. Cost ($/h)

GA [16] 8227.09 11,477.09 16,579.33 -
CSA [22] 8227.10 11,477.09 16,579.33 -
ICSA [25] 8227.10 11,477.09 16,579.33 -
FCGA [34] 8231.03 11,480.03 16,585.85 10,000
CGA [34] 8232.89 11,493.74 16,589.05 10,000

MSFS 8227.09 11,477.09 16,579.33 300

Table 8 layouts the minimum cost obtained by seven approaches. From Table 8, three out of
seven methods obtained the same best cost value equal to 15,443.08$. They are KHA [20], CSA [21],
and MSFS, respectively. This result is considerably lower than those from BBO [14], NAPSO [33],
IPSO [30], and GAAPI [41] by 0.02 ($/h), 0.69 ($/h), 0.92 ($/h), and 6.62 ($/h), respectively. Furthermore,
the number of fitness evaluations of MSFS is only 300 for cases 3, 4, 5, and 6 and is smaller than that of
the others. Clearly, MSFS is superior to these compared methods.
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Table 8. Comparison of the implemented results for case 6.

Method Min. Cost ($/h) Npop NIter NGer

BBO [14] 15,443.1 50 100 5000
KHA [20] 15,443.08 50 100 5000
CSA [21] 15,443.08 50 300 30,000
IPSO [30] 15,444 20 200 4000

NAPSO [33] 15,443.77 5 100 3000
GAAPI [41] 15,449.7 - - 1000

MSFS 15,443.08 5 20 300

Optimal solutions of the systems are shown in Table A2 in Appendix A.

5.2.3. Test System 3 with 10 Units

In this part, a medium scale power system with 10 generators is employed for five cases from case
7 to case 11. Among these five cases, only case 11 takes valve-point loading effects into account but
all the cases use the piecewise quadratic function [11]. Four levels of the load demand are examined,
which are found in the literature: PDL = 2400 MW (in case 7), PDL = 2500 MW (in case 8), PDL = 2600 MW
(in case 9), and PDL = 2700 MW (in case 10). The value of the best cost and the fitness evaluations
obtained by the proposed algorithm and ten other methods are listed in Table 9. This table reveals that
the best cost of MSFS has equally optimal solution quality with eight compared methods and lower
cost than two other ones, such as ELANN [10] and IQPSO [28]. However, MSFS is ranked at the first
position amongst these methods because of having the lowest value of NGer with 1.200 while AIS [12]
and MPSO [27] have used 3000, DE [5] has used 12.000, IQPSO [28] has used 40.000, and MSFLA, GHS,
SFLA-GHS, and SDE [38] have used 9.000. Clearly, MSFS is the standout method with the lowest
evaluation for these four cases.

Table 9. Comparison of minimum cost ($/h) for cases 7, 8, 9 and 10.

Method Case 7 Case 8 Case 9 Case 10 NGer

ELAHN [10] 481.740 526.270 574.410 623.880 -
EALHN [11] 481.723 526.239 574.381 623.809 -

AIS [13] 481.723 526.240 574.381 623.809 3000
DE [19] 481.723 526.239 574.381 623.809 12,000

MPSO [27] 481.723 526.239 574.381 623.809 3000
IQPSO [28] 481.732 526.245 574.387 623.832 40,000

SDE [38] 481.723 526.239 574.381 623.809 9000
MSFLA [38] 481.723 526.239 574.381 626.254 9000

GHS [38] 481.723 526.239 574.381 623.809 9000
SFLA-GHS [38] 481.723 526.239 574.381 623.809 9000

MSFS 481.723 526.239 574.381 623.809 1200

Another case (case 11) in such test system is also investigated in order to verify the efficiency of
the proposed method where both valve-point loading effects and multi-fuels options are assessed.
The complete data are given in [35]. The best cost, the population, the number of iterations, and the
number of fitness evaluations achieved by eleven methods are arranged in Table 10. As Table 10
shows, the best cost of BBO is only equal to 605.639 ($/h) and is lower than those of other methods.
Nevertheless, it is difficult to determine whether the result is accurate. Referring to BBO [14], we see
that the best solution of generator 3 is 332.02 MW. It is clear that this value is corresponding to the
second fuel type but the authors [14] have used fuel cost function coefficients of the third fuel type for
calculating the fuel cost of generator 3. This mistake has resulted in a smaller fuel cost than the accurate
value. Considering the solution quality aspect, the minimum cost of MSFS obtains 623.834 ($/h), is lower
than those from DAA [12], APSO [36], RVM-PSO [35], MSFLA [38], GHS [38], and SFLA-GHS [38]
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and slightly higher than those from three methods, such as IQPSO [32], DEPSO [36], and SDE [38].
However, Nger of MSFS has used 9.000 while IQPSO [32] has used 40.000, and DEPSO [36] has used
25.000. Clearly, Nger of MSFS is many times lower than that of IQPSO [32], DEPSO [36]. This shows
that MSFS outperforms the other methods for case 11.

Table 10. Comparison of the implemented results for case 7.

Method Min. Cost ($/h) Npop NIter NGer

DAA [12] 623.952 - - -
BBO [14] 605.639 50 400 20,000

APSO [26] 624.015 20 200 4000
IQPSO [28] 623.832 80 500 40,000

RVM-PSO [35] 623.959 30 300 9000
DEPSO [36] 623.830 50 500 25,000
MSFLA [38] 624.116 60 150 9000

GHS [38] 623.849 60 150 9000
SFLA-GHS [38] 623.841 60 150 9000

SDE [38] 623.827 60 150 9000
MSFS 623.834 30 100 9000

The optimal solutions of the system are shown in Table A3 in Appendix A.

5.2.4. Test System 4 with 20 Units

In this paragraph, the proposed method is applied to deal with the ELD for a twenty-unit system
with the transmission line losses [9]. The performance of MSFS and a number of other approaches is
tabulated in Table 11. The most interesting finding in Table 11, a cost of 62,455.616 ($/h) for HPSO-GSA
algorithm is very diminutive but this result is unachievable. Consulting HPSO-GSA [37], we see
that the results of the total generated real powers and system power losses do not satisfy the power
balance constraints Equation (6). Standing on this view, the cost of MSFS, CSA [25], and ORCSA [25] is
only 62,456,633 ($/h) and the value is lower than those of lambda-iteration [9], HM [9], and BBO [31].
Moreover, NGer of MSFS is lower than those of CSA [25], ORCSA [25] and BBO [31]. Consequently,
MSFS is one of the most effective methods with the lowest fitness evaluation.

Table 11. Comparison of the implemented results for case 12.

Methods Min. Cost ($/h) Npop NIter NGer

Lambda-Iteration [9] 62,456.639 - - -
HM [9] 62,456.634 - - -

CSA [25] 62,456.633 10 500 10,000
ORCSA [25] 62,456.633 10 500 10,000

BBO [31] 62,456.793 50 400 20,000
HPSO-GSA [37] 62,455.616 - - -

MSFS 62,456.633 10 100 3000

The optimal solution of the system is shown in Table A4 in Appendix.

6. Conclusions

In this paper, a revamped version of the conventional stochastic fractal search algorithm, called
modified stochastic fractal search algorithm, was proposed for solving the smooth or non-smooth
ELD problem with different fuel cost function characteristics, different loads and different constraints.
Based on two proposed modifications, the proposed MSFS has become a strong tool with a good
solution quality, fast convergence, and stabilization of searching ability. The first modification is in
charge of exploiting the global search space while the second one undertakes to enhance solution
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quality. Therefore, the proposed method has solutions better than SFS. As tested on four systems, fuel
cost-saving level over SFS could reach 0.04 ($/h) for a three-unit system, 0.409 ($/h) for a six-unit system,
0.0429 ($/h) for a 10-unit system, and 0.06 ($/h) for a 20-unit system. Furthermore, the performance of
the proposed method over other mentioned methods has also been scrutinized. The reduction in cost
can be up to 16.65 ($/h) for the second test system, 0.282 ($/h) for the third test system and 0.16 ($/h) for
the last test system. In addition, other costs of the proposed method, such as mean cost and maximum
cost, are also less than those of the other ones. Consequently, it can be concluded that the proposed
method is a useful optimization approach for searching solutions of the ELD problem.

With advantages of the proposed method, in future research, MSFS can be introduced to deal with
ELD problems considering complicated models of thermal generating units [47], the combination of
heat generators and power generators [48]. Besides, the considered ELD problems regarding renewable
energies, such as wind power plants and solar power plants, are also interesting studies [49].
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Nomenclature

APl
k, j, APu

k, j
Lower and upper limits of the jth prohibited operation zones of the kth
thermal generator

APmin
k , APmax

k The upper and lower power output of the kth thermal generator

APmin
kMk, APmax

kMk
The upper and lower power output for the fuel type Mk of the kth
thermal generator

APSRP Sum of spinning reserve power of power system
K Amplified factor for the violation.
Mk Number of the Mk fuel type of the kth thermal generator
N Number of thermal generators
N1 Number of prohibited zones for the first thermal generator
NGer Number of fitness assessments
Niter Number of iterations
Nk Number of prohibited operation zones of the kth thermal generating unit
Npop Population size
PLD Total load demand
PTLL Total transmission line losses
PENAP1 Penalty term for the violation of thermal generator 1.
PENPOZ,AP1 Penalty term for violating POZ constraint of the first thermal generator
PENSRP Penalty term for the violation of spinning reserve power.
vk, xk, yk, sk, tk Constant fuel cost function coefficients of the kth thermal generator

vkMk
, xkMk

, ykMk
,skMk

, tkMk

Constant fuel cost function coefficients for the Mk fuel type of the kth
thermal generator

Xnew1
d

Newly updated position of Xd
Xt1, Xt2, Xt3, Xt4 Randomly picked solutions from current population
α, β, γ, ε, λ, D Random number with value in the range [0, 1]
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Appendix A

Table A1. The best solutions for system 1 found by MSFS.

Case 1 Case 2

k APk (MW) k APk (MW)

2 299.9079 2 149.7331
3 130.9249 3 400

Table A2. The best solutions for system 2 found by MSFS.

Case 3 Case 4 Case 5 Case 6

k APk (MW) k APk (MW) k APk (MW) k APk (MW)

2 123.8781 2 100 2 248.0103 2 173.2223
3 117.7802 3 50 3 217.7133 3 263.3614
4 50.0000 4 100 4 75.1815 4 139.0457
5 230.1763 5 110 5 335.4618 5 165.4284
6 229.6070 6 127.4212 6 335.6103 6 87.0688

Table A3. The best solutions for system 3 found by MSFS.

k
Case 7 Case 8 Case 9 Case 10 Case 11

APk (MW) APk (MW) APk (MW) APk (MW) APk (MW)

2 202.3427 206.4573 210.9058 211.6626 211.4116
3 253.8953 265.7391 278.5441 280.7228 280.6591
4 233.0456 235.9531 239.0967 239.6315 239.4175
5 241.8297 258.0177 275.5194 278.4973 279.9549
6 233.0456 235.9531 239.0967 239.6315 240.7359
7 253.2750 268.8635 285.7170 288.5845 287.7287
8 233.0456 235.9531 239.0967 239.6315 239.2832
9 320.3832 331.4877 343.4934 428.5216 426.8477

10 239.3969 255.0562 271.9861 274.8667 275.8486

Table A4. The best solution for system 4 found by MSFS.

k APk (MW) k APk (MW) k APk (MW) k APk (MW)

2 169.3077 7 115.2917 12 292.7916 17 66.8422
3 126.8774 8 116.4401 13 119.1725 18 88.0168
4 102.8520 9 100.3887 14 30.8405 19 100.7899
5 113.6378 10 105.8272 15 115.8406 20 54.3104
6 73.5494 11 150.2158 16 36.2444
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