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Abstract: In ground source heat pump systems, the thermal properties of the ground, where the well
field is planned to be located, are essential for proper geothermal design. In this regard, estimation of
ground thermal conductivity has been carried out by the implementation of different techniques and
laboratory tests. In this study, several methods to obtain the thermal properties of the ground are
applied in order to compare them with the reference thermal response test (TRT). These methods
(included in previous research works) are carried out in the same geological environment and on the
same borehole, in order to make an accurate comparison. All of them provide a certain value for the
thermal conductivity of the borehole. These results are compared to the one obtained from the TRT
carried out in the same borehole. The conclusions of this research allow the validation of alternative
solutions based on the use of a thermal conductive equipment and the application of geophysics
techniques. Seismic prospecting has been proven as a highly recommendable indicator of the thermal
conductivity of a borehole column, obtaining rate errors of below 1.5%.

Keywords: ground source heat pump; thermal conductivity; thermal response test; thermal
conductive equipment; geophysics

1. Introduction

The global growing energy needs have sparked renewed interest in ground source heat pump
systems. These systems are traditionally used for space heating and cooling by the extraction of the
ground’s energy through a borehole heat exchanger (BHE) [1]. High initial investments are commonly
associated with these installations so that an optimal ground loop dimensioning is advisable to avoid
unnecessary costs. In this regard, the design process requires knowing rather accurately the thermal
conductivity of geological formation where the ground source heat pump (GSHP) system will be
located [2,3]. Ground thermal conductivity is usually determined by the implementation of a Thermal
Response Test (TRT), the main purpose of which is the measuring of the equivalent thermal conductivity
of the ground volume tested and the thermal resistance of the BHE [4–7]. The conventional TRT is based
on circulating heated water in a closed loop, which simulates heat transfer occurring in a ground heat
exchanger. Inlet and outlet water temperatures and flow rate are measured during the test. These data
are then analyzed by the implementation of analytical or numerical models that allow determining the
ground thermal conductivity and the borehole thermal resistance [8,9]. The most used interpretation
technique relies on the first-order approximation of the infinite line-source model. Assuming a constant
heating power, a linear regression model is fitted to the late temperature measurements to calculate the
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mean time derivative of the temperature and deduct the desired parameters. This first approach to
linearize the infinite line source model requires rejecting the early measurements for the subsequent
test interpretation. TRT duration is usually established between 36-72 h, but this duration has been
thoroughly discussed in the past [10] and at the moment is an area of active research [11–15]. Despite
the errors these test could involve [4], the high accuracy of ground thermal conductivity results
represent essential information in the corresponding geothermal loop sizing. The main inconvenience
associated with the realization of a TRT is its relatively high cost (around 3000 Euros), remaining an
issue that prevents its widespread use. This problem is especially significant in small installations,
where the test increases the initial investment without clear compensation.

Focusing on alternative solutions, some variations of a TRT are available in the existing literature.
For example, Henke et al. [16] proposed an experimental apparatus that, as a TRT, measures the
temperature response of a borehole. Freifeld et al. [17] developed a borehole methodology to estimate
the formation thermal conductivity in situ with spatial resolution of one meter. However, the alternative
techniques found in other authors’ researches have similar economic issues [18] and their validity is
still unclear.

In this research, a series of methodologies (already published and available in the current literature),
aimed at the estimation of the ground thermal conductivity, are applied on a real area. These techniques
are then evaluated by their comparison with the results of a thermal response test carried out on a
borehole placed in the same location. In a nutshell, the thermal conductivity of a certain geological
environment is determined by the implementation of affordable methods whose validity is thoroughly
assessed. Thus, the main problematic addressed in this work is characterization of ground thermal
from different methods to generally improve the design of a low enthalpy geothermal system.

2. Materials and Methods

2.1. Global Description of the Area under Study

The comparison of the methodologies considered in this research is derived from the thermal
characterization of a 43 m length and 220 mm diameter borehole placed in the province of Ávila (Spain).
The exact location of this well is detailed in Table 1.

Table 1. Location of the borehole where this research is focused.

Borehole Position

Latitude 40◦39′2,45 N

Longitude 4◦40′44,84 O

The area contemplated in the present research is located in the center of Ávila (Spain). This region is
geologically constituted by two main blocks. One of them is defined by igneous and metamorphic rocks
from the Upper Carboniferous-Low Permian and Pre-Cambrian-Low Cambrian periods, respectively.
The second block is characterized by the presence of sedimentary materials from the Mesozoic, Tertiary
and Quaternary (oriental area of the Amble’s valley) periods [19,20]. In the case of the volume of
ground considered here, it belongs to granite formations and more specifically, adamellite rocks.
This information can be deduced from the geological map of the region presented in Figure 1.

For a more precise geological characterization, geophysical tests were applied on the experimental
borehole. A well logging system was used to obtain the specific earth information. It consists of the
measuring of continuous and simultaneous record of different physical parameters throughout the
borehole column. The equipment used for the mentioned purpose utilizes a series of interchangeable
multi-parameter sensors that allowed to register the following parameters: spontaneous potential,
resistivity, and natural gamma radiation. Figure 2 includes the register of the well logging test applied
on the study borehole and the stratigraphic column derived from its interpretation.
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Once the geological levels that constitute the ground in the area of the borehole were accurately
defined, different tests were conducted in the area with the objective of determining the thermal
conductivity of the materials previously detected. The implemented methodologies are described in
the following subsections.

2.2. Thermal Conductivity Characterization

The principal purpose of this section is the estimation of the thermal conductivity of the borehole
column described above. To that end, different methods and procedures implemented in previous
author’s researches are considered here to finally compare them with the results of a TRT. The following
subsections contain the description of each of the mentioned thermal conductivity estimator techniques.

2.2.1. KD2 Pro Measurements

In a previous research work, the thermal conductivity map of the province of Ávila (study area of
this research) was created from experimental measurements on the principal geological formations of
the region. Representative rocky samples were collected and taken to the laboratory, where the thermal
conductivity parameter was measured.

After systematic sample processing—drilling and carving obtaining samples with a specific size,
removal of excess material—KD2 Pro equipment was used to measure the thermal conductivity of
each geological formation. Before its use, a hole of 6 cm length and 3.9 mm in diameter was made on
each rocky sample in order to introduce the RK-1 sensor of KD2 Pro device. More information about
the specific measuring methodology is provided in the full published version of the manuscript [21].

As a result of the KD2 Pro measurement, the mentioned research provides the thermal conductivity
of the rocky and soil formations. According to the borehole column in Figure 2, the volume of ground
under study is constituted by different layers of materials. In order to obtain a representative thermal
conductivity value of the whole column well, the thermal conductivity of each layer and its thickness
must be considered. Based on the results offered in the research, thermal conductivities of the borehole
materials were deduced. All this information is included in Table 2. Thermal conductivity values
presented in Table 2 correspond to the average values registered for each geological formation in the
manuscript considered here. However, for the last layer of altered adamellites, the lowest values of the
mentioned study were selected due to the presence of loose materials and the altered state of granite
rocks in that level.

Table 2. Borehole column, geological layers, thicknesses and thermal conductivity values.

Geological Composition Thickness (m) Thermal Conductivity (W/mK) *

Layer 1 Anthropogenic fills 10 1.502
Layer 2 Sandstones and clayey conglomerate 7.5 1.882
Layer 3 Sandstones and conglomerate 20 2.041
Layer 4 Altered adamellite 5.5 2.565

* According to the consulted research [21].

Finally, the thermal conductivity representative of the whole studied borehole can be obtained
from the application of Equation (1) and the information previously attached in Table 2.

kT(W/mK) = k1·T1 + k2·T2 + k3·T3 + k4·T4 (1)

where:

kT = Global thermal conductivity of the whole borehole column.
k1 = Thermal conductivity of the geological formation of layer 1.
k2 = Thermal conductivity of the geological formation of layer 2.
k3 = Thermal conductivity of the geological formation of layer 3.
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k4 = Thermal conductivity of the geological formation of layer 4.
T1 = Thickness of layer 1 expressed as a percentage of the total well thickness.
T2 = Thickness of layer 2 expressed as a percentage of the total well thickness.
T3 = Thickness of layer 3 expressed as a percentage of the total well thickness.
T4 = Thickness of layer 4 expressed as a percentage of the total well thickness.

2.2.2. Geophysics

Geophysical prospecting has been used in previous works as a ground thermal conductivity
estimator. The principal basis of these studies is the correlation of a geophysical parameter and thermal
conductivity measurements (using KD2 Pro device) to finally predict the thermal behavior of the
ground in depth. A more detailed description of these methods and their implementation in the area
of the present research is included in the following subsections.

(1) Seismic data:

The first geophysical method makes reference to the implementation of seismic prospecting tests.
In a previous research work, the mentioned tests were implemented on three different geological
formations (schists, medium grain and coarse-grained adamellites) using MASW and seismic refraction
techniques in order to register P and S waves velocities. At the same time, thermal conductivity of each
formation was measured by the use of KD2 Pro equipment. These tests were made on the most and
least decomposed samples of each geological environment to find the lowest and highest conductivity
values. Finally, this published research correlates the propagation velocities of P and S waves and the
thermal conductivity of samples from the same material [22].

The ultimate result of this work is to predict the thermal behavior of the geological formations
included in the study. By identifying the propagation velocities of the seismic waves in a certain area,
the evolution of the thermal conductivity of the ground in that area can be evaluated. Thus, 2D thermal
conductivity sections provided in the mentioned research allow estimation of the evolution of ground
thermal conductivity in depth for each specific formation.

In order to ensure application of this methodology, seismic refraction tests were conducted on the
area where the borehole of study is located. The results of these tests are provided in Figure 3.Energies 2019, 6 of 14 
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Figure 3. P-wave velocity distribution in the study area from seismic refraction tests.

After the distribution of the P wave velocity was identified in depth, different thermal conductivity
measurements were taken in order to identify the most and least thermal conductive samples, meaning
those with the highest and lowest compaction levels. These values correspond to the minimum thermal
conductivity of anthropogenic fills and the maximum thermal conductivity for the altered adamellite;
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they are presented in Table 3. It should be noted that altered adamellites were extracted from the
drilling process at depths where they were identified. These samples were then used in thermal
conductivity characterization.

Table 3. Highest and lowest thermal conductivity values detected for the formations constituting the
borehole under study.

Geological Formation Thermal Conductivity * (W/mK)

Minimum value Anthropogenic fills 1.105
Maximum value Altered adamellite 2.672

* Thermal conductivity measuring was made by the use of KD2 Pro equipment.

By measuring P wave velocity and thermal conductivities in the study area, the correlation
between both parameters was obtained (graphically presented in Figure 4). This is based on pairing
the lowest thermal conductivity value with the lowest p wave velocity (in the same area) and the
highest thermal conductivity with the highest p wave velocity. More information on this method is
provided in the mentioned published research.
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From the above correlation and by following the instructions of the mentioned research,
the distribution of the thermal conductivity parameter in the area considered here is displayed
in the 2D section of Figure 5.
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According to Figure 5, the volume of ground included under the borehole is constituted by a set
of layers with different thermal conductivity values. This information can be observed in Table 4.

Table 4. Different thermal conductive layers identified in the volume of ground located under the
borehole identified for this research.

Thickness (m) Thermal Conductivity (W/mK)

Layer 1 1.2 1.140
Layer 2 1.1 1.230
Layer 3 1.3 1.321
Layer 4 1.35 1.411
Layer 5 2 1.501
Layer 6 0.8 1.591
Layer 7 0.9 1.681
Layer 8 0.9 1.771
Layer 9 1 1.952

Layer 10 0.9 2.132
Layer 11 1.4 2.215
Layer 12 0.9 2.312
Layer 13 0.7 2.402
Layer 14 0.8 2.492
Layer 15 0.9 2.582

Layer 16 * 26.85 2.672

* From layer 16, the same thermal conductivity value is assumed until the end point of the drilling (43 m).

Finally, the global thermal conductivity of the borehole column is deduced from the application of
the above data (Table 4) in Equation (1).

(2) Electrical resistivity:

In this case, electrical resistivity data were collected to finally create a 3D thermal conductivity
map of the area of interest. The fundamentals of this method are similar to the one explained before;
electrical resistivity results are correlated with thermal conductivity measurements and a relation
between both parameters is obtained for a certain geological formation. The research work, including
this methodology, was focused on granite rocks (adamellites), and the electrical resistivity was obtained
using the Electrical Resistivity Tomography (ERT) technique. Thermal conductivity measurements
were, in turn, taken using KD2 Pro equipment following the same operational procedure (tests were
made on the most and least decomposed rocky samples) [23].

The results of this research disclose a certain relation between thermal conductivity and electrical
resistivity. This relation can be observed in Equation (2).

k = 2·10−7x2 + 0.0001x + 1.4881 (2)

where:

k = thermal conductivity (W/mK)
x = electrical resistivity (Ω·m)

To apply Equation (2), the electrical resistivity of the materials in the study area must be known.
To this end, an ERT test was conducted around the mentioned area, obtaining a 2D electrical resistivity
section (presented in Figure 6).
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On interpretation of the above 2D electrical resistivity section, the borehole considered in this
study is constituted by a series of layers with different thickness and characterized by variable electrical
resistivity values. All these data are included in Table 5; the thermal conductivity of each layer is
obtained by application of Equation (2).

Table 5. Layers detected in the borehole under study, according to the interpretation of ERT results.

Thickness (m) Electrical Resistivity (Ohm·m) Thermal Conductivity (W/mK)

Layer 1 1 1280 1.943
Layer 2 4.12 100 1.498
Layer 3 6.88 450 1.574
Layer 4 10 55 1.494
Layer 5 7.5 360 1.550

Layer 6 * 13.5 2500 2.988

* Layer 6 is estimated based on the well logging of Figure 2.

As in the previous cases, Equation (1). must be used to finally define the global thermal conductivity
of the borehole column from partial thermal conductivity values and thickness of each layer.

2.2.3. Thermal Response Test

The last procedure implemented in this research is the realization of a Thermal Response Test
in the borehole. These tests are routinely used to estimate borehole thermal properties with regard
to the mentioned thermal conductivity. The conventional TRT consists of circulating heated fluid
(usually water) in a closed loop. During the test, fluid temperatures are measured at the ground heat
exchanger inlet and outlet, along with the flow rate. Theses measured values are then analyzed by
analytical or numerical models with the aim of calculating thermal conductivity and borehole thermal
resistance [3,24].

(1) Test implementation

First, the borehole was geothermally prepared for the test by installing a polyethylene single-U
tube heat exchanger of 32 mm with spacers located one meter apart. Taking advantage of the high
groundwater level in the area, grouting material was not used [25,26]. The working fluid was water
(during the test, low ambient temperatures were not expected) and the connection of the inlet and
outlet heat exchangers and the TRT device was made with polyethylene tubes that were externally
insulated. In order to set the initial condition of this test, a temperature register (PCE-T recorder) was
used to measure the base temperature of the ground, obtaining a constant value of 14.6 ◦C at a depth
of 40 m.

In this research, TRT was done according to UNE-EN ISO 17628:2017 regulations [27]. The TRT
device implemented here constituted of a heat injection system, a circulating pump, and electrical
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resistance as heat source. The resistance allows three different heating levels, corresponding to
the injection of 3 kW (stage 1), 6 kW (stage 2), and 9 kW (stage 3). The TRT equipment also
included a Kamstrup energy meter (to register a large number of parameters), commercially known as
MULTICAL 801.

Once the borehole was properly equipped, the sequence of events was as follows:

- Circuit filling and establishment of the appropriate working pressure.
- Activation of the circulating TRT pump and starting of the first heating stage (3 kW).
- General system operation during a certain period of time.
- Downloading and data management from the Kamstrup register.
- Calculation of the global thermal conductivity parameter.

The TRT duration is a controversial subject—while reducing TRT duration could help reduce costs,
the accuracy of results could be affected. Following the regulation mentioned before [27], the minimum
duration of the TRT can be estimated by Equation (3).

t (s) =
5·r2

α
(3)

where:

r = borehole radius (m)

α =
ke

cv

ke = estimated thermal conductivity (W/mK)
cv = volumetric thermal capacity (J/m3/K)

By applying Equation (3) and estimating thermal conductivity of 1.80 W/mK and volumetric
thermal capacity of 2.16 × 106 J/m3/K [28], the minimum duration required for the thermal response
test in the studied borehole would be:

t (s) =
5·0.112

8.3·10−7 = 72891. 56 s → 20.25 h

Despite this value, the real duration of the test was 43 h, which sought to guarantee total
stabilization of the system. Additionally, Figure 7 shows the TRT device and some sequences of the test.

(2) Thermal conductivity calculation

In a borehole heat exchanger of sufficient length in comparison with its radius, the analytical
solution of Kelvin’s Line Source can be applied to solve the heat equation and analyze TRT data.
According to the infinite line-source model (use as a laboratory method since 1905), the thermal
conductivity parameter can be obtained from the constant power rate and the slope of the temperature
variation in time [29,30]. The interpretation of TRT results relies on a first-order approximation to
linearize the mentioned infinite line-source model, neglecting the early measurements.

k =
Q

b·4·π·H
(4)

where:

Q = heat flux (kW/min)
b = slope (min)
H = borehole length (m)
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Figure 7. Thermal response test in the studied borehole. Left: TRT device and Kamstrup register; right:
TRT connected to the borehole heat exchanger.

3. Results and Discussion

3.1. Previous Methods Results

Thermal conductivity results of each method considered in this research are shown in Table 6.
These results are obtained by the application of the stages described for each individual procedure.
The methodologies belong to validated and already published researches. Consequently, the validity
of the mentioned results is guaranteed.

Table 6. Thermal conductivity results of each method considered in this research.

Methodology Thermal Conductivity (W/mK)

KD2 Pro 1.955
Seismic prospecting 2.337
Electrical resistivity 1.997

3.2. TRT Results

In addition to the thermal conductivity results deduced from the alternative methodologies,
the TRT also provided a thermal conductivity value that will be compared with the ones in Table 6.
After the corresponding operation of the TRT during the established period of time (43 h), inlet (T1)
and outlet (T2) temperatures were registered (shown in Figure 8). It should be mentioned that the low
temperature difference between T1 and T2 (displayed in Figure 8) is derived from the fact that the
borehole length is only 43 m.
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From these results, the linear approximation required for the calculation of the thermal conductivity
parameter was made for the period of time up to 1000 min (discarding the early measurements) in each
temperature register. Figure 9 presents the equation of each linear approximation, consequently using
the slope of these lines in corresponding thermal conductivity calculations. As shown in Figure 9,
the interpretation of the TRT and the subsequent calculation of the thermal conductivity parameter is
made by measuring the inlet and outlet fluid temperatures for time up to 1000 min.
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On observing Figure 9, we note that the slope of the linear approximation is the same for T1
and T2, such that the calculation of the thermal conductivity parameter is identical for both cases.
When applying Equation (4), the following values were considered: b = 0.0015 min, H = 43 m and
Q = 1.875 kW/min (resistance first stage (3000 kW)/time of the linear approximation (1600 min)). Thus,
the global thermal conductivity of the borehole from TRT results takes a value of 2.313 W/mK.

3.3. General Comparison

Figure 10 graphically displays the results of each methodology considered in this research. It shows
strong agreement in results between the different methods.

It is thus convenient to include the accuracy error of each of the methodologies shown in Figure 10:
10% for KD2 Pro, 14.2% for seismic prospecting, 16.7% for electrical resistivity, and 5% for TRT [4,31–33].

Considering TRT thermal conductivity value as the most accurate one and taking into account
Figure 10, the following statements can be made:
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• Thermal conductivities obtained by the alternative techniques are in strong agreement with the
TRT result. The seismic prospecting method provides the most similar value, with a difference of
only 0.024 W/mK with respect to the TRT value.

• The use of electrical resistivity tomography also allows to obtain thermal conductivity values
close to the TRT result. In this case, the difference between both methods is 0.316 W/mK.

• The least accurate method is the use of the thermal conductivity map obtained by in situ KD2
Pro measurements. Despite having the least accuracy of all the procedures considered here, the
difference with respect to the TRT is 0.358 W/mK.

• By evaluating the mentioned differences in terms of percentage, the errors of each alternative
methodology in comparison with the TRT are 15.48% for the thermal conductivity map, 1.04% for
seismic prospecting, and 13.66% when applying electrical resistivity tomography.
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4. Conclusions

TRT has been traditionally considered an appropriate technique to provide accurate thermal
conductivity values of a borehole column. However, the high costs of these tests usually prompt
researchers to look for alternative solutions that help characterize ground thermal behavior.
This research integrates different existing methodologies to evaluate their validity through the
results of a TRT made on the same study area. Provided that TRT is not always viable and based on
the final results of this work, the most recommendable technique to be applied is seismic prospecting.
It has been proved that this procedure is capable of providing highly accurate thermal conductivity
values with errors below 1.5%. The high ground water level of the area may be a cause of deviation
from the electrical and KD2 Pro methods, due to their sensitivity to this factor.

The remaining methodologies evaluated in this research could also be appropriate solutions
to obtain approximate ground thermal conductivity. In the absence of a TRT or seismic profiles,
the thermal conductivity map or electrical resistivity tomography could be of great help in ground
thermal conductivity characterization. Despite the obvious advantages of TRT, the deep local nature
of this test could be mitigated by using geophysical methods, as the ones presented in this study.
The estimation of this parameter will be incredibly useful for the corresponding geothermal design,
adjusting the number of boreholes and the total drilling length required in the shallow geothermal
system. In view of the importance of identifying ground thermal conductivity in a GSHP system, the
conclusions of this work are highly significant in the geothermal field.
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