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Abstract: This paper develops an approach for two-day-ahead global horizontal irradiance (GHI)
forecast using the naïve Bayes classifier (NB). Based on publicly available weather forecasting
information about temperature, relative humidity, dew point, and sky coverage, they are used as a
training set in NB classification with hourly resolution. To reduce having two times with the same
GHI affecting the classification in the proposed model, two characteristics of the GHI under different
weather conditions are considered: The daylight variation and diurnal cycle. More importantly, NB’s
independence assumption-based on simple Bayes’ theorem makes the process speed faster and less
constrained than other classification algorithms. The forecast performance is verified with several
error criteria from established analytical practices using relevant statistics. Moreover, commonly
used forecasting error criteria are discussed. This NB model shows improved results regarding
error criteria and a good agreement for a clear day that satisfies the guideline for the evaluation of
two-days-ahead forecast, when compared with other recent techniques.

Keywords: global horizontal irradiance; naïve Bayes classification; diurnal variation; kernel
density estimation

1. Introduction

This paper presents a study for solar irradiance forecasting in order to improve the operation of
photovoltaic (PV) systems. Presently, global environmental issues and energy demand are promoting
the use of clean and sustainable energy sources on local utility grids. Among alternative energy sources,
PV power is desirable for its minimal environmental impact, reduced reliance on oil, and improved
secure electricity supply [1]. The contribution of power production to PV systems in electricity
grids may likely increase in the future partly motivated by lower costs and up to 22% cell-efficiency
improvement [2], with further cost reductions and efficiency improvements expected in the future.
However, as grid-connected PV systems increase, grid operators and system planners will also be
more concerned about PV systems’ power output fluctuation. Since PV power output may vary
significantly depending on the solar irradiance, some potential issues could be expected by utility-grid
operators associated with scheduling primary and spinning reserve capacity and voltage control. As
an alternative plan, energy storage can compensate solar irradiance variability [3,4], but, in terms of
developing adequate dispatching plans and transmission scheduling, a-day-ahead market expectations
still require accurate solar irradiance forecast techniques with an hourly resolution [5].

Until recently, many studies have worked on forecasting global horizontal irradiance (GHI), which
represents the total solar irradiance from the entire sky on a horizontal surface. It includes the sum of
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the direct-beam, the diffuse radiation from atmospheric scattering, and reflections and the reflected solar
radiation from the ground [6]. These solar forecast techniques can be divided into two classes by data
resolution. For high resolution (i.e., less than one hour), most time series techniques, such as regression,
autoregressive integrated moving average (ARIMA) [7], artificial neural networks (ANN), and hybrid
models that are combination of regressions with ANN, show good accuracy compared to the reference
model in [8]. For the a-day-ahead forecast with hourly resolution, the study in [9] forecasted solar irradiance
using ANN with a multilayer perception (MLP) model during sunny and cloudy days. For the sunny
days, the forecast accuracy is verified with a correlation coefficient of 98.95% to 99.96% and a relative mean
bias error (RMBE) of—6.43% to 32% (this negative error means under-estimated result). Similar to [9],
the study in [10] proposed solar power forecast using ANN in several weather types. For sunny days,
the correlation coefficient ranged from 98.43% to 99.39% and the mean absolute percentage error (MAPE)
was between 8.29% and 10.8%. However, larger errors were observed in partially cloudy days because
of weather forecast uncertainty in the cloud cover percentage during this type of days. That is, errors in
cloud cover percentage are more likely in partially cloudy days than errors when a clear day is forecasted.
The studies in [11,12] also developed solar irradiance forecast hour-by-hour or day-by-day using ANN.
However, they produced results with large errors given the previous poorly forecasted value.

The ANN-forecast techniques are frequently used in many areas and work well, but they also
have drawbacks. Complicated architecture, a large training data set, and choosing the optimal
number of hidden layers and input nodes for the better results are still issues that need to be
addressed. Furthermore, the use of different test criteria (i.e., comparison to the unclear reference
model, normalization factors, or test duration) or performance testing under the several defined
weather types (i.e., sunny, foggy, rainy, cloudy) make it difficult to compare with other developed
models and to understand certain real-time weather patterns.

In order to solve these problems, this paper proposes a simple probabilistic classification method,
the naïve Bayes (NB) classifier for two-days-ahead GHI forecast. Since the variability of solar irradiance
generates the issues mentioned above, the proposed NB model considers two main characteristics
of solar irradiance (diurnal cycle and daytime variability) in order to improve the hourly forecasted
accuracy by avoiding having two times with the same GHI affecting the classification.

The two-day-ahead forecast accuracy is validated with several statistical metrics. For the whole data
set (eight months), the proposed NB model indicates an RMBE of 2.73% based on the mean GHI of 333.04
Wh/m2. Furthermore, different from previous studies, the results are not for a short period but for a total
test period of eight months. More importantly, this paper discusses various weather condition tests in
order to not only compare with the existing models but to also account for changes in real-time weather.

The paper is organized as follows. Section 2 describes solar irradiance properties and weather
variables. Section 3 illustrates the proposed NB model, which is constructed by considering the effect
of solar irradiance variability and the diurnal cycle. Section 4 evaluates forecast results based on
several statistical metrics that can be clearly compared with other developed models. Finally, Section 5
concludes this paper.

2. Data Description

Hourly weather and GHI data sets were obtained at the city of Austin, TX, USA, from August
2013 to March 2014. Weather data were taken from the publicly available website of the National
Oceanic and Atmospheric Administration (NOAA) [13]. Two types of weather data were collected
daily: Hourly observations and two-day-ahead forecasts. Austin typically indicates a warm humid
temperate climate with hot summers and no wet season [14]. However, uncommon drought conditions
were predominant during the considered period.

2.1. Weather Variables

The available weather variables of interest for this work were temperature, relative humidity,
dew point, sky coverage, visibility, wind speed, and wind direction. These weather variables can
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be categorized into continuous or discrete variables. Of the two categories, the former one includes
temperature, relative humidity, dew point, and wind speed. The latter includes sky coverage, visibility,
and wind direction. Continuous variables are better suited for the proposed NB model because
discrete variables represent some finite states which cannot show in the process of classification various
values between two states. Thus, three weather variables—temperature, relative humidity, and dew
point—are used as features in the NB model. In particular, the sky coverage, which is discrete variable,
is used to determine the impact on GHI variation before the NB classification is performed, as it is
discussed in detail in the next section. In addition, the study in [9] supports the use of the three
continuous weather variables, suggesting certain correlation with GHI.

2.2. Solar Irradiance

GHI measurements can be an important variable to produce and forecast PV power output.
Since the values of GHI are proportional to the PV-power curve, GHI is appropriate for forecasting
PV-power output.

Figure 1a shows actual hourly GHI, of which the maximum value is about 1000 Wh/m2 in August.
In order to classify GHI in the proposed NB model, the measured range of GHI values is divided into
several levels so that the classified GHI according to weather features belongs to certain finite levels.
First, GHI is transformed by the extraterrestrial solar radiation (ESR) called clear index kt in [15]. Since
the ESR has greater values than those of the GHI, the calculation of kt is performed by applying a
normalization factor for ESR, as shown in Figure 1b.
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Equation (1) represents the ESR in which SC is the solar constant (1367 W/m2, which represents a
negligible difference to the most recent value of 1360.80 W/m2, was used for this paper), and Rav and R
in are the mean sun-earth distance (1.496× 108 [km]) and the actual sun-earth distance, respectively:

ESR = SC·
(Rav

R

)2
[W/m2], (1)
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which varies depending on the day of the year. The variation in the actual sun-earth distance is defined
by the following [6]:

R =

{
1 + 0.017·sin

[
360(n− 93)

365

]}
·1.496× 108 [km] (2)

where n is a number of the day (e.g., 31 December is the day number of 365).
ESR in Figure 1b has a range of 1320 W/m2 to 1420 W/m2, so the range of kt varies from 0 to 1.

Figure 1c shows kt levels that have a similar profile with that of GHI (Figure 1a). In the proposed NB
model, 100 kt levels were chosen based on a step size of 0.01. After the NB algorithm is performed,
the classified kt levels one converted back to GHI values by multiplying kt by ESR as

GHI = ESR·kt. (3)

3. Two-Days-Ahead Forecast Model

In this Section, the proposed NB model is constructed considering three steps. In the first step,
the daytime hours in the NB model are partitioned into subsets in order to avoid having two times
with the same GHI affecting the classification. In the second step, the observed weather variables
are filtered by the five levels of forecasted sky coverage given by the U.S. National Oceanic and
Atmospheric Administration (NOAA) in order to improve the classification accuracy. These five levels
are clear (0–1% of covered sky), mostly clear (2–23%), partly cloudy (24–48%), mostly cloudy (49–81%),
and overcast sky (82–100%). In the third step, the proposed NB classifier is performed based on a
Gaussian kernel estimation and with the forecasted weather values as input.

3.1. Step 1: Deterministic Characteristic of Solar Irradiance

In many studies, GHI is considered as a random variable due to its uncertainty, which arises from
the random weather changes. As shown in Figure 2, on a clear day, the values of GHI over time follow
what can be best described as a bell-shaped curve, increasing until noon and decreasing thereafter until
sunset. This profile indicates that there is a known deterministic component for the GHI (i.e., the sun’s
position in the sky) that can be used to improve the estimation of the random component of the GHI
due to weather conditions. However, this trend also causes several times with the same GHI value in
the classification over a 24 h period. This trend is also observed on an overcast day. Therefore, the basic
idea for step 1 is to prevent having two times with the same GHI in the classification by limiting the
classification range to one hour.
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Figure 3 shows that, after excluding the hours with no sunlight, a day can be partitioned
into 14 hour-long subsets (i.e., daytime hours, 7 AM to 8 PM). In this paper, we assume
that the daylight consists of 14 h, but it can be adjusted depending on location and season
(i.e., latitude/longitude, summer/winter). The rows of the matrix correspond to each day in the
training data (here 30 days), and the columns correspond to each daylight hour. The elements in
the matrix, Wobs,h =

[
VTemp,h VRH,h VDP,hVSC,h

]
∈ R1×4, represent the feature vectors consisting

of temperature, relative humidity, dew-point, and sky-coverage observation values, respectively.
The partitioning of the daily data set into hours increases the number of iterations the NB classifier
requires to process the data. However, the speed of calculation is not impacted due to the simplicity of
the NB classifier.
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Figure 3. The fourteen-hour observation training sets obtained from the inclusion of the daylight data
only (step 1).

3.2. Step 2: Solar Irradiance Variation by Clouds

Sky coverage plays a pivotal role in the GHI-forecast model. Other factors may also affect GHI—e.g.,
dust, clouds, local obstacles—but most disturbances occur due to cloud movement. In contrast to the
other observed variables (temperature, relative humidity, and dew point), sky coverage is presented
as a group variable. According to the reported weather data observations [13], the sky coverage was
grouped in the five aforementioned levels: Clear (0–1% of covered sky), mostly clear (2–23%), partly
cloudy (24–48%), mostly cloudy (49–81%), and overcast sky (82–100%).

Figure 4 represents how the new training sets were obtained. The fourteen observations from a
single day that form the training sets from step 1 were filtered individually by following these five
states of the forecasted sky coverage.
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For a better understanding of step 2, it is possible to consider the following example based on
Figure 4. If the next day’s sky-coverage forecast anticipates that at 8 AM the sky is going to be clear,
and if four days of the training data are assumed as in Equation (4), the same states (clear sky) of
the feature vectors Wobs,8 in the matrix obs8 are selected. Additionally, the rest of the feature vectors
including the other states (i.e., overcast and partly cloudy) are excluded in the obs8. Therefore, the new
observation training set matrix, obsnew,8 is determined as in Equation (5). In step 2, this process is
repeated continuously for the entire observation training set (obs7 to obs20) in order to improve the
estimate of the feature vector (weather variables) given the GHI observations.

obs8 =


Wobs,8am = [ · · · , clear ]
Wobs,8am = [ · · · , over cast]
Wobs,8am = [ · · · , partly cloudy]
Wobs,8am = [ · · · , clear ]


4×1

(4)

obsnew,8 =

[
Wobs,8am = [ · · · , clear ]
Wobs,8am = [ · · · , clear ]

]
2×1

(5)

3.3. Step 3: Naïve Bayes Classifier

The naïve Bayes (NB) classifier is an effective probabilistic classification algorithm. Based on the
Bayes’ theorem, the NB algorithm performs the classification with the assumption that the features
(the weather variables) are independent of each other in a given class (a value of kt). This assumption
considerably simplifies the training step of the proposed algorithm for weather forecasting, and,
for that reason, the calculations are fast while the performance is highly accurate in many practical
applications [16].

Figure 5 represents the NB model process. The input value, in conjunction with the observation
training set, draws the output value of ktNB ∈ {1, · · · , 100} that belongs to each hour in the daytime
period. Unlike the observation feature Wobs,h ∈ R1×4 in step 1, the forecasted feature vector W f cst,h ∈

R1×3, which includes VTemp,h, VRH,h, and VDP,h, is used as input to the proposed NB model. The
relationship between input and output in Figure 5 can be expressed as follows:

kt(h + 48) = f
[
VTemp(h + 48), VRH(h + 48), VDP(h + 48)

]
, (6)

where the function f represents the NB classification.
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3.3.1. Estimation of P(Vi|C): Kernel Methods

The estimation of P(Vi|C) requires itself an estimation of the probability density functions
(PDF) for the random variables involved. This estimation can be implemented using parametric or
non-parametric methods. The parametric estimation for the PDF assumes that it is a member of some
parametric family of distributions, e.g., a normal distribution N

(
µ, σ2

)
. When this assumption is correct,

the parameters (mean µ and standard deviation σ in case of the Gaussian) can easily be estimated
from the data. However, when the underlying distribution generating the data has multiple modes or
a skewed shape, the probability calculation might be wrong due to the restrictions imposed by the
choice of the distributions family.

Non-parametric kernel density estimation can deal with large variations in the features. In other
words, the kernel density estimation does not require the assumption that the features follow some
generic probability distribution as mentioned above. In addition, since the GHI classification is a
nonlinear problem [17], the kernel density function may be preferable to the estimation of P(Vi|C).
Therefore, this paper used the kernel density function based on a Gaussian kernel in order to estimate
P(Vi|C). The Gaussian kernel for each feature Vi is given by

Kgau(Vi,n, σi) = exp
(
−Vi,n

2

2σi2

)
, (7)

where Vi,n indicates n observations (Vi,1, Vi,2, · · · , Vi,n) and σi represents the bandwidth. The bandwidth
has a decisive effect on the decay of the Gaussian kernel in Equation (7). However, the methods used
to choose σi are seldom discussed in related works. The bandwidth σi can be determined from an
estimator σ̂i, which is a combination of the inter-quartile range R̂i and a rule-of-thumb bandwidth [18].
First, the inter-quartile range R̂i is determined as

R̂i = Vi,Q3 −Vi,Q1, (8)

which indicates that the interquartile range R̂i is the length of the interval in the support of the feature
Vi between the upper quartile of 75% (Vi,Q3) and the lower quartile of 25% (Vi,Q1). Equation (8) can
also be transformed into the standardized Z-scale [19], which has a Gaussian with zero mean and a
unity standard deviation, as shown in Equation (9) by rescaling the horizontal axis with the feature
mean E(Vi) and the standard deviation σ(Vi)

Zi =
Vi − E(Vi)

σ(Vi)
. (9)
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Based on Equation (9), then, the inter-quartile range R̂i in Equation (8) can be derived as

R̂i =
(
E(Vi) + σ(Vi)ZQ3

)
−

(
E(Vi) + σ(Vi)ZQ1

)
= σ(Vi)(0.675− (−0.675))= 1.35σ(Vi), (10)

σ(Vi) =
R̂i

1.35
. (11)

The standard deviation σ(Vi) in Equation (11) is then plugged into the rule-of-thumb bandwidth
σ̂i,rot in Equation (12), where n represents the number of hourly values in feature Vi:

σ̂i,rot =

4σ(Vi)
5

3n

0.2

≈ 1.06 σ(Vi)n−0.2, (12)

σ̂i,rot = 1.06
R̂i

1.35
n−0.2. (13)

3.3.2. Update Posterior of C: Calculating the Value of P(C|Vi)

Once the bandwidth estimator σ̂i,rot in Equation (13) is derived, the above process, Equation (7)
through (13), is repeated in the training step in order to estimate a posterior density of each feature in
each class using the Gaussian kernel density estimation. Based on the training step, the NB classifier
can be expressed as:

ktNB = arg max
C∈{1,··· ,l}

P(C)
∏

i

P(Vi|C), (14)

where the ktNB stands for the target class value, chosen to be the one maximizing the probability in
Equation (14). Therefore, this proposed NB model is used to estimate the hourly GHI by multiplying
ESR in Equation (3) by ktNB from Equation (14). It is worth noticing that the ktNB value has interval
[(l− 1) × 0.01; l× 0.01], where l = 1, · · · , 100, so the median value of 0.005 is used for the ktNB when
GHI is re-estimated. Furthermore, after training, two-day-ahead average daily solar energy can be
forecasted by summing the daily ktNB,h values regardless of the previous forecast results, since the
input values are obtained from the weather reports.

4. Forecasting Test

The outputs of the proposed NB model, the kt classes, are re-converted to GHI values to compare
with actual GHI. In order to consider seasonal effects, several error tests are compared month-by-month
from August 2013 to March 2014.

4.1. Diagnostic Checking

To comprehensively evaluate the forecasting performance clearly, multiple error metrics were
calculated. These metrics are the mean bias error (MBE), the mean absolute error (MAE), the root mean
square error (RMSE), and the relative mean bias error (RMBE), where the subscript i in Equations (15) to
(20) represents the ith forecast and observation pair given the forecasting horizon length. For example,
N is equal to 434 (14 daily points × 31 days) for August. With an hourly resolution, the error evaluations
are restricted to the daytime hours (14 points).

Depending on the various purposes, the error criteria can be mutually complementary for
analyzing the forecast quality. Usually RMBE (Equation (19)) or MAPE (Equation (20)) are used for
forecast testing, but these are often unclear on the normalizing factor (measured mean or maximum
value). The MBE (Equation (16)) measures the tendency of solar energy that is over-estimated or
under-estimated given the forecasting period. For example, the MBE can be directly used for an
evaluation of real application such as PV-energy-storage system. The MAE (Equation (17)) measures an
absolute difference that is less biased than the RMSE in Equation (19) in large error cases. Similar to the
MSE, the MAPE (Equation (20)) is widely used for forecasting the model performance, but the MAPE
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is not bounded in case that the errors are greater than the actual value [20]. The RMSE represents the
variation between forecasted and actual data that are usually used for short-term forecast (less than
one-day). The RMBE (Equation (19)) shows the relative MBE value, which is normalized by the average
of GHI within the observation period.

E = GHI f cst,i −GHIobs,i (15)

MBE =
1
N

N∑
i = 1

(E) (16)

MAE =
1
N

N∑
i = 1

|E| (17)

RMSE =

√√√
1
N

N∑
i = 1

(E)2 (18)

RMBE =
MBE

1
N

∑N
i = 1 GHIobs,i

100 (19)

MAPE =
1
N

N∑
i = 1

|E|
GHIobs,i

100 (20)

4.2. Model Testing

Before the forecasting results are discussed, it is important to note that summers in Austin have
more clear days than during other seasons. Moreover, in order to avoid an infinite result during
the computation procedure, the denominator in Equation (20) was replaced by 1 during nighttime,
when the GHI result was close to zero.

4.2.1. Monthly Results: Seasonal Effect

Table 1 shows a summary of the statistical values relevant to the two-day-ahead GHI forecast.
For the actual GHI, the minimum, maximum, mean, and correlation coefficient, r, are evaluated
month-by-month with hourly resolution. From Table 1, August indicates the maximum GHI and
standard deviation with the largest mean of 551.28 Wh/m2, while December shows the smallest
GHI and standard deviation with the smallest mean of 210.87 Wh/m2. Similar to the GHI profile,
r, which represents the linear relationship between actual and forecasted values, also shows the
maximum of 90.38% for August and minimum of 78.37% for December. The RMBE of August through
December indicates an overestimation in the NB model, while the rest of the months show the reverse
tendency. Particularly, the MAPE is not evaluated in the monthly analysis (Table 1) because of its
unbounded property.

Table 1. Summary of Statistical Values for Actual GHI and Two-Day-Ahead Forecast Errors.

Month Min./Max. (Wh/m2) Mean (Wh/m2) Std. (Wh/m2) r (%) Training
Days MBE (Wh/m2)

MAE
(Wh/m2) RMSE (Wh/m2) RMBE (%)

August 5/999 551.28 306.65 90.38 26 33.42 62.31 126.8 6.06
September 0/926 452.85 302.79 86.55 26 23.46 78.18 143.64 5.18

October 0/879 348.18 284.98 84.7 28 12.56 84.48 143.66 3.61
November 0/746 227.11 232.94 87.29 36 40.49 76.51 117.22 17.83
December 0/643 210.87 212.16 78.37 40 4.95 73.77 126.49 2.35

January 0/745 273.30 240.28 91.42 50 –11.09 57.04 91.03 –4.06
February 0/853 254.80 269.35 80.98 24 –12.89 105.17 147.91 –5.06

March 0/972 338.68 300.83 80.9 30 –32.85 107.37 167.32 –9.7
Total 0/999 333.04 292.47 86.33 30 9.09 80.39 138.85 2.73

(8 months)
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4.2.2. 4-Days-Results: Various Weather vs. Specified Weather Types

Figures 6–9 compare the two-day-ahead forecasts and actual GHI values with the various weather
types for 4 days. This various weather analysis is similar to the established analytical practices in [9,10]
in that test period of 4 days. However, the various weather analysis shows real-time weather change
that is not specified with specific weather types (i.e., sunny, cloudy, or rainy). On the days that are
clear (5–8 August 2013), Figure 6 and type 1 in Table 2 indicate that the forecasted GHI has a good
agreement with the actual GHI.
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Figure 7 shows a mix of 2 clear, 1 partly cloudy, and 1 overcast day (10–13 December 2013),
where the GHI decreases significantly on the last day. In contrast, the 3 overcast days and 1 clear
day (24–27 February 2014) depicted in Figure 8 show that GHI sharply increases on the last day.
Though there are some differences between forecasted and actual values on the last day in Figures 7
and 8, the proposed NB model shows that the forecasted GHI follows the actual values. In addition,
the following actual tendency can be proved with Table 2. For types 2 and 3, Table 2 indicates that r is
84.16% and 96.86%, respectively, which means that the forecasted values significantly follow the actual
GHI trends for four days.
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Table 2. Summary of Two-Day-Ahead Forecasted Errors for 4 days.

Weather Type r (%) RMBE (%)

Type 1 99.82 −1.49
Type 2 84.16 −1.33
Type 3 96.86 −3.4
Type 4 74.18 −8.43

At this point, it is worth comparing the forecasting performance of the proposed NB model
(Table 2) against the approach of a previous study (ANN, see Table 3 in [10]) that might be helpful to
understand how the proposed NB algorithm follows the real weather change. The previous study
in [10] represents three layers (input, hidden, output layer) based on radial basis functions (RBF) and
uses six input variables (day of month, solar power, relative humidity, wind speed, solar irradiance,
air temperature). Table 3 (re-produced from [10]) shows an r of 65.63% for rainy days, which is a poorer
result than that of type 3 in the NB model (i.e., 96.86%). Though that study could recognize the rainy
days’ pattern—lower actual GHI—during 4 rainy days, the recognized pattern could not reflect the
actual values’ tendency. Contrary to this, the NB model (type 3) was able to anticipate the tendency
of the various weather types for 4 days, which include not only the 3 overcast days but also 1 clear
day. Strictly speaking, because of different environment and weather types, the performance of the
model in [10] may not be directly comparable with that of the proposed NB model. However, given
the test criteria, r, which indicates the linear relationship between the forecasted and actual values, it is
reasonable to compare the forecasting performance of the NB model with that of the previous study.
Moreover, and more importantly, it can also be said that the proposed NB model has better forecasting
performance than the previous one when the forecasting time scale is considered (the proposed NB
model of two days vs. the previous study of one day).



Energies 2019, 12, 1529 12 of 13

Table 3. Summary of One-Day-Ahead Forecast Errors for 4 days.

Method Structure Weather Type r (%) RMBE (%) MAPE (%)

ANN in [10]
Three layers (input, hidden, output)

& 6 input variables

Sunny 98.77 x 9.45
Cloudy 98.46 x 9.88
Rainy 65.63 x 38.11

Lastly, Figure 9 shows 1 clear and 3 partly cloudy days (25–28 March 2014), which represent the
typical GHI variability by cloud movement. From the results (Figures 6–9), most of the differences
between forecasted and actual values occur on cloudy days.

5. Conclusions

An hourly solar irradiance NB model was developed for two-day-ahead forecast. Publicly available
weather observation and forecast data were used as training sets and input values in the model. A key
contribution of this paper was to reduce the GHI uncertainty by partitioning daily hourly intervals into
subsets and by considering the effect of clouds in training step. Furthermore, the proposed NB model
is considerably simple and fast in that it requires small training data (less than two months) and uses
only four weather variables (temperature, relative humidity, dew point, and sky coverage). The NB
model’s forecast accuracy was demonstrated with statistics values and several error metrics. For an
eight-month period with hourly resolution (14 h per day), the proposed NB model provided forecasting
results with RMBE of 2.73% and r of 86.33% with a GHI mean of 333.04 Wh/m2. For the various weather
types, four clear days represent RMBE of—1.49% and an r of 99.85%, which considerably match with
the actual GHI. In particular, the proposed NB model showed reasonable results under various weather
conditions (types 2, 3, and 4) as the forecasted GHI values tended to follow the actual GHI’s ones.
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