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Abstract: The economic dispatch problem (EDP) is a significant class of optimization issues in
the power system, which works on minimizing the total cost when generating a certain amount of
power. A novel distributed approach for EDP is proposed in this paper. The presented approach
consists of two steps. The first step, named absorption search, is to simplify the network structure
through absorption searching. A flooding-based consensus approach is applied in the first step,
which can be used to achieve consensus information among nodes. After the first step, only the
generation nodes are kept in the network. The data collection can be completed by local computation
and communication between neighbors. The first step can be considered as the stage of gathering
information. In the second step, a distributed half-search algorithm makes the nodes obtain the final
optimal solution in a distributed way. The results on three case studies demonstrate that the proposed
approach is highly effective for solving the EDP.

Keywords: economic dispatch problem; distributed consensus; energy management system;
half-search algorithm; absorption searching; smart grids

1. Introduction

For power generation, smart grids exploit intelligent controls and developed technology to control
the power generation combination composed of renewable resources [1]. Because of advantages
such as environmental friendliness and sustainable development, cost savings, electricity market
and shared economy, smart grid and its related research topics have attracted much attention of
scientific researchers. Ref. [2] surveyed the enabling technologies for Smart Grid. The authors
of [3–5] analyzed the stability of nonlinear power systems based on backstepping control approaches.
The optimal control and management for a large-scale battery energy storage system with wind
and photovoltaic power station is introduced in [6–8]. Ref. [9] discussed optimization of sustainable
microgrid considering cost analysis, carbon emission and availability of energy resources. In the wake
of development and expansion of the scale of smart grid, energy management systems (EMS) [10,11],
especially online EMS [12,13], are becoming important research subjects. As an essential research
direction of EMS, the economic dispatching problem (EDP) has been deeply studied due to its
significant benefit of economical efficiency for smart grid. The EDP is a resource allocation problem,
which minimizes the total generation cost while meeting the load demands. Several classical techniques
such as Lambda-iteration method [14], Gradient methods [15], and Newton’s method [16] have been
developed to solve EDP whose cost function is convex. From the converge procedure point of view,
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Lambda-iteration method can offer rapid results. There are many studies on solving EDP when cost
functions are non-convex. The authors of [17,18] introduced a hybrid evolutionary algorithm based on
shuffle frog leaping and particle swarm optimization (PSO) to address multi-objective EDP. The authors
of [19–21] used PSO and its improved algorithms to solve EDP with non-smooth or non-convex
cost function. Other optimization algorithms such as self-adaptive differential evolution (DE) [22],
real coded genetic algorithm (GA) [23], biogeography-based optimization (BBO) algorithm [24],
firefly algorithm (FA) [25], and grey wolf optimization (GWO) [26] are presented to solve this problem.

The algorithms mentioned above are, usually, performed by centralized controllers. The central
controller needs to communicate with each unit in the power system and implement the optimal
solution. As the power system becomes bigger or more complex on the generation or demand
side, the centralized units need to perform huge computing and communicating tasks in real time,
and they must be equipped with powerful servers to handle these data, which increase the cost of
power generation [27]. In addition, a single-point-failure may cause the centralized algorithm to be
redesigned [28]. At the same time, with many distributed generators (DG) entering the network and
diversified user needs, centralized algorithms are having more and more difficulty with economic
dispatch problems [29]. Besides, another important reason is that the centralized approach does not
adapt to the plug-and-play characteristics of modern smart grids. To make up for the defects of this
algorithm, many scalable and robust distributed algorithms have been proposed and applied in EDP.
Ref. [30] presented a decentralized, non-hierarchical framework, in which economic dispatch analysis
can be completed by calculating proper weighted averages of interest variables. Ref. [31] focused on
a novel consensus based algorithm to address EDP in a distributed manner, in which the mismatch
between demand and total power supply by generators is learned collectively, and then used as
a feedback mechanism to adjust the power generation by each generator. The authors of [32] introduced
a hybrid GWO-PSO algorithm to solve multi-objective energy management. Ref. [33] proposed
an approach to solve the distribution feeder reconfiguration problem in smart grid environment
with flexible electricity price. Ref. [34] gave a mathematical formulation based on incremental cost
consensus for EDP, in which a distributed control algorithm is carried out by selecting the parameter
of incremental cost for each generator. The authors of [35] put forward a distributed algorithm based
on two-consensus approach. The first-order consensus protocol focuses on the local mismatch and
ensures supply–demand equality, and the second-order consensus strategy, called most up-to-date
information, estimates the power mismatch in the system, the two consensus approach runs in parallel.
The authors of [36] proposed a distributed algorithm based on consensus-like iterative, and adopted
bisection search approach to obtain optimal incremental cost parameter in distributed way. A full
decentralized algorithm for EDP is presented in [37], in which a flooding-based consensus method
is used to obtain total power demand by communicating with neighbors of each node in the power
system. The authors of [38] proposed an optimization algorithm based on auction techniques and
consensus protocols to solve EDP with non-convex cost function. Considering the distribution losses
in EDP, the authors of [39] gave a distributed approach to collect active power loss in power system,
and the solution is reached by local computations.

In the smart grid environment, the approaches for solving EDP are changing from centralized to
distributed. In distributed algorithms, data storage and processing can be performed on local nodes,
which can avoid the risk of collapse of the whole algorithm due to the single-node-failure. Moreover,
distributed algorithm can better meet the plug-and-play characteristics of the smart grid.

In view of the merits of distributed algorithm, this paper proposes a distributed approach to
solve economic dispatch problem for smart grids. The present algorithm consists of two stages: data
collection and optimal solution. An absorption search and a flooding-based consensus approach are
applied successively in the data collection stage. A distributed half-search algorithm is used to obtain
power values of generation units as final result of EDP. The contributions of this article are as follows:
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1. Simplified network structure by absorption search: In the network simplification stage, nodes in
the system can share information and communicate with neighbors. Each time information is
shared, the generation nodes (nodes in which the generator unit is connected) will update their
status information by recording the current information of their neighbors, and the load nodes
(nodes in which no generator unit is connected) whose information is recorded by their generation
neighbor will disappear from the network at the current stage.

2. Flooding-based consensus (FBC) approach for collection information: A flooding-based algorithm
is used to gather information, and each node (agent) can obtain consistent information about its
neighbors in the power network; this process of collecting data is carried out in a distributed way.

3. Distributed half-search algorithm to obtain optimal solution in distributed manner: When only
generation nodes are included in the network, each agent in the network can be competent for the
result of EDP. A fully decentralized system based on half-search is used to solve EDP.

The remainder of this paper is organized as follows. Section 2 introduces the basic theory used in
this article, including graph theory and consensus protocols. In Section 3, the EDP and the optimal
solution are discussed. Section 4 presents the key network simplification and distributed half-search
algorithm. Section 5 presents the analysis of the numerical simulation of a series of case studies.
In Section 6, we conclude the paper.

2. Preliminary

In this section, basic preliminaries including some concepts in graph theory and consensus
algorithm are introduced, which is needed in the following discussion.

2.1. Graph Theory

A (directed) graph [40,41] G is composed of vertices and edges, and is denoted by ordered sets
G = {V(G), E(G)}, where V(G) = {1, 2, ..., n} and E(G) ⊆ V(G)×V(G) are the finite nonempty sets
of the vertices and the edges, respectively. Define a symbolic relationship between ordered vertices
in directed graph G, that is, z(e) = (µ, ω), which means that (µ, ω) denotes a path from node µ to
node ω. µ and ω are the tail and head of e, respectively. An undirected graph G is a special form of the
directed graph with a bidirectional path by exchanging the direction of each edge (µ, ω) in G.

Define an adjacency matrix A(G) = (aij)n×n that associates with G (directed or undirected),
and the index set of generation nodes in the smart grid can be represented by V(G). The directed path
(i, j) ∈ E(G) shows that node i can send information to node j, and node j can receive information
from node i. In this paper, we assume each node i ∈ V(G) does not belong to the neighbors of
itself, that is, there is no self-loop in a directed graph. However, node i is allowed to receive its
own information. Let N+

i = {j ∈ V(G) | (j, i) ∈ E(G)} and N−i = {j ∈ V(G) | (i, j) ∈ E(G)}
denote the in-neighbor set and out-neighbor set of ith node, respectively. Physically, it implies that
a node i ∈ V(G) can send information to any node j, (j ∈ N−i ) and receive information from any
node j, (j ∈ N+

i ). Let d↑i =| N+
i | and d↓i =| N−i | represent the in-degree and out-degree of node i,

respectively, where | · | denotes the cardinality of a set; it is the number of elements in set “·”. If there
is a path, (i, j) between any two nodes (i and j) in G, the graph can be treated as strongly connected.
The connection between the smart grid nodes constitutes the strong connected graph, distinctly, d↑i 6= 0
and d↓i 6= 0 for each node i ∈ V(G) in a strongly connected graph. Further, considering undirected
graphs, it can be concluded that d↑i = d↓i = di =| Ni |, where | Ni |= {j ∈ V(G) | (i, j) ∈ E(G)} and
the number of neighbors of node i is represented by di.

Based on the characteristics of power system, the concepts of directed and undirected graphs
are used to study power flow and communication between nodes in power networks. Especially in
solving consistency based on multi-agent system [42,43], network computing is indispensable.
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2.2. Consensus Algorithm

For G = (V, E) that is strongly connected, define a non-negative adjacency matrix Q ⊆ Rn×n

as follows:

Q = {qij} =


1

| N+
j | +1

if (j, i) ∈ E,

0 otherwise.

(1)

It is not difficult to prove that [Q]ij > 0 for (j, i) ∈ E, and we can verify that the sum of column
entries ofQ is 1, i.e., ∑N

i=1 qij = 1. This shows that the matrixQ is a column stochastic matrix associated
with graph G. Similarly, QT is a row stochastic matrix. According to the properties of the stochastic
matrix, we have QT1 = 11, where 1 = [1, 1, ..., 1]T .

We consider all nodes in the smart grid work together as a team of N autonomous agents; it is
assumed that each agent can define a subjective probability distribution for itself but does not know
the subjective probability distribution of other agents. Label them from 1 to n and they can achieve
a common goal value with certain constraint conditions. To explore the feasibility of this problem,
we can learn from DeGroot’s model of consensus [44]. In this model, the opinions of each agent
are gathered into an opinion pool and each agent adjusts the subjective probability distribution of
itself by merging its own subjective probability distribution and learning the subjective probability
distribution of other agents. Finally, the subjective probability distribution of all agents can reach
a common value, and a certain subjective probability distribution parameter θ is formed on the
basis, where θ can be considered as any discretionary variable whose value is a subset of the abstract
parameter space Ψ. The subjective probability distribution assigned by each monomer i to parameter
θ is represented by Φi ∈ R, and the subjective probability distributions of all agents is denoted by
Φ = [Φ1, Φ2, ..., Φn]T ∈ Rn on space Ψ. It is assumed that the subjective probability distributions
of all agents in different backgrounds on parameter space θ are denoted by Qi = [qi1, qi2, ..., qin],
and ∑n

i=1 qij = 1, qij ≥ 0. The stochasticQ associated with G denotes the n× n matrix consisting of the
elements qij, and we assume that it is feasible for each monomer i to update its subjective probability
distribution from Φ(t) to Φ(t + 1). The linear iteration process for the update is as follows:

Φ(t + 1) = QΦ(t) = ... = Q(t+1)Φ(0) (2)

The iteration index of the linear iteration is denoted by t = 0, 1, 2, ..., and the initial value is denoted
by Φ(0). For the column stochastic matrixQ associated with a undirected graph G, the element Φ(t+ 1)
shown in Equation (2) can be expressed as:

Φi(t + 1) = qiiΦi(t) + ∑
j∈Ni

qijΦj(t), ∀i = 1, ..., n (3)

where qii and qij are the elements located on the diagonal and the ith row, jth column in matrix Q,
respectively.

Before studying the asymptotic consensus performance shown in Equation (2), we give two
related theorems on the consensus problem.

Theorem 1. [45] Given a non-negative matrix Q associated with a strongly connected graph G, the Q is
a primitive matrix if G is aperiodic.

Theorem 2. [46] If matrix Q ∈ Rn×n is a primitive matrix and qij ≥ 0, which is the element of Q, then,

lim
t→∞

[ρ(Q)(−1)Q]t = UVT > 0

where ρ(Q) is the spectral radius of Q. U and V are the right and left Perron vectors of Q, respectively.
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Considering Theorem 1, we have

lim
t→∞
Qt = lim

t→∞
((QT)t)T = (1ζT)T = ζ1T (4)

where 1 = [1, 1, ..., 1]T and ζ = [ζ1, ζ2, ..., ζn]T is the right eigenvector with the character ζi > 0
corresponding to the matrix Q at the eigenvalue 1. For all nodes i, there exists a properties equation,
that is, 1Tζ = 1.

Considering Theorem 2, let ρ(Q) > 0 denote a specific eigenvalue of Q (spectral radius).
Consider the matrix Q, which is nonnegative and stochastic, such that ρ(Q) = 1. U > 0 and V > 0
are the right Perron vector and left Perron vector of Q with the following properties: QU = ρ(Q)U ,
VTQ = ρ(QVT and UTV = 1.

From Equations (2) and (4), the consensus algorithm satisfies the following property:

Φ∗ = lim
t→∞

Φ(t) = ζ1TΦ(0) = (
n

∑
i=1

Φi(0))ζ (5)

For any initial state Φ(0), if there exists Φ∗ ∈ R, such that limt→∞ Φi(t) = Φ∗ , ∀i = 1, 2, ..., n,
the system state (shown in Equation (3)) has a stable value after t times iteration.

Based on the above mentioned theorems, we can draw a conclusion: the system (shown as in
Equation (2)) state of each monomer i can converge to a stable value, and the convergence performance
is determined by the initial value Φ(0) and the strongly connected topology Q.

3. Problem Formulation

In this paper, we only consider that EDP with a quadratic cost function [47]. The basic problem
of economic operation of power system with quadratic cost function can be considered as a convex
optimization problem. It is widely used in the traditional EDP. It can be solved analytically without
any approximations. Furthermore, the duality theory can be used to solve this problem.

3.1. Economic Dispatch Problem

We first establish a traditional power system model with M buses in which N generation units
are included. Considering that the actual power system network may not contain a generation unit on
every bus, we can prescribe a limit to M > N. The EDP can be expressed as the following form:

min
N

∑
g=1

Cg(PGg) (6)

s.t. PGg < PGg < PGg (7)

M

∑
j=1

PDj =
N

∑
g=1

PGg = P0 (8)

where Cg(PGg) is generation cost function. PGg and PDj denote the power generated and load demand
by generator g and bus j, (g = 1, 2, ..., N; j = 1, 2, ..., M), respectively. From inequality in Equation (7),
we can know that the power generated PGg is restricted in the corresponding maximum PGg and
minimum PGg bounds. The total load demand on all buses is denoted by P0 and the generation cost
function is denoted by Ci(PGg), which is approximated as the follow quadratic function:

Ci(PGg) = aiP2
Gg + biPGg + ci (9)
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where ai > 0, bi ≥ and ci ≥ 0 are the parameters of cost function. To simplify the expression,
Equation (9) can be rewritten as:

Ci(PGg) =
(PGg − αi)

2

2βi
+ γi (10)

where βi > 0, αi ≤ 0. Obviously, the necessary and sufficient condition for the above problems to be
feasible is

N

∑
g=1

PGg ≤ P0 ≤
N

∑
g=1

PGg (11)

The model of optimization problem shown as above is applied in this paper to solve EDP.

3.2. Solution

It can easily be proven that generation cost function Cg(PGg) is strictly convex, and all the
constraints of the EDP are linear, therefore the EDP can be treated as s convex-quadratic optimization
problem. In other words, such a strict convex function can guarantee the establishment of the strong
duality theorem, and then, we can set up the Lagrange dual problem of the original problem shown as
Equations (6)–(8), and the dual optimal solution obtained is also the solution of the original problem.
According to the inverse form of the dual problem, the Lagrange dual problem is established as
a non-differentiable concave function with the following structure:

max

(
n

∑
g=1

CLg (λ) + λP0

)
(12)

where λ denote the Lagrangian multiplier and CLg (λ) denotes the the Lagrange dual cost function.
The incremental cost rates of the generator unit g is denoted by

ug(PGg) =
∂Cg(PGg)

∂PGg
=

PGg − αi

βi
, ∀g ∈ Vn, (13)

where λ ∈ R is the Lagrange multiplier and

CLg (λ) =


Cg(PGg)− λPGg, λ < ug(PGg),

− λ(αi +
λβi
2

), ug(PGg) ≤ λ < ug(PGg),

Cg(PGg)− λPGg, ug(PGg) ≤ λ.

(14)

The above-mentioned Lagrangian dual problem can be established depending on whether the
following equation or inequality condition can be satisfied, which includes power generated upper
and lower bounds constraints and power generated balance constraints. The constraints mentioned
above are written as, 

∂Cg(PGg)

∂PGg
= ug(PGg)

PGg ≤ PGg ≤ PGg

M

∑
j=1

PDj =
N

∑
g=1

PGg

(15)
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Based on the above analysis, we can define a mapping as follows

τg(λ) =
∂CLg (λ)

∂λ
=


− PGg, λ < ug(PGg),

− (αi + λβi), ug(PGg) ≤ λ < ug(PGg),

− PGg, ug(PGg) ≤ λ.

(16)

Based on the above discussion, we can conclude that, under the restriction of power generated
and load demand balance, if the primal problem shown as Equations (6)–(8) is solvable, we can easily
get λ∗ as the unique optimal solution, which satisfies

P0 = −
n

∑
g=1

τg(λ
∗)

According to the property of Lagrange’s dual theorem and the strong duality theorem, we can
verify that there is no duality gap between the solution of the primal problem and the dual problem,
which means that the primal problem in Equations (6)–(8) exists where the unique optimal primal P∗Gg
and optimal dual −τg(λ∗) are equivalent in function value. That is, P∗Gg = −τg(λ∗), g = 1, 2, ..., n, i.e.,

P∗Gg =


PGg, λ∗ < ug(PGg),

αi + λ∗βi, ug(PGg) ≤ λ∗ < ug(PGg),

PGg, ug(PGg) ≤ λ∗.

(17)

We can discover from the optimal solution of the EDP that the constant coefficient γi has no effect
on the cost increment. From Equation (17), we can conclude that, once the value of parameter λ∗ is
determined, the optimal solution of the EDP is determined.

4. Fully Distributed Solution for EDP

We divide the proposed approach into two stages. The first stage is network simplification,
in which the load connected to each bus is incorporated into the nodes with generator units.
A distributed approach based on FBC is used as the way of information dissemination. In the second
stage, we propose a distributed solution for the optimal solution of EDP. The algorithm is implemented
in the platform of Java agent development framework (JADE), which is an effective middleware for
the development of multi-agent systems.

4.1. Absorption Search

To solve the EDP, we need to collect the load power demand in the first phase. However, it is
not easy to calculate the load demand P0 = ∑M

j=1 Pj with a distributed method. We complete data
collection with two steps: shrinking the size of network and exchanging information based on FBC.
The concept of flooding algorithms [48,49] are applied by FBC, which is used in data networks for
broadcasting. In this paper, this communication method is used between adjacent agents.

Each node in the power network may only contain pure generator unit, pure load unit, or both.
Assume that an agent is embedded in each node to share information. It means that agents can send
(receive) messages to (from) their neighbors in the power system. We create agents in JADE; each agent
has a unique identification (ID) that consists of the order number and the node type. There are two
kinds of node types in this paper, generating node (the node with generator unit) and load node (pure
load connected to the node), and they are represented by (ID)N and (ID)M, respectively, where (ID)

is the order number, and subscripts N and M denote generation node and load node, respectively.
Assume that each agent knows its neighbor agent’s ID and has the sufficient ability of computation.
Each node i updates information by collecting and recording the information which includes the power
data of the neighbor nodes and the ID of all neighbors of the neighbor.
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At the first step of absorption search, load agents hold the message shown as follow,

msg_j = {IDM, pmid, [IDMneibs], [ID∗Mneibs]}

where msg_j is the set of information, IDM is the ID of the current load node, pmid and IDMneibs are the
load demand and the ID set of its neighbors, and [ID∗Mneibs] is alternative neighbor set, whose specific
meaning is given below. Load agent will log off after successfully sending his information to the
adjacent generation agent. Figure 1 gives the life cycle of load agents.

Figure 1. Life cycle of load agent.

We create generation agent with tuple,

msg_i = {[IDN , (pmid), MSGVA], [< IDM > (IDMneibs)], [IDNneibs], [ID∗Nneibs]}
where IDN represents the ID of the current generation node, and pmid is a parameter set that includes
the load demand PDi, the upper bound (PGg) and lower bound (PGg) of the generator unit that is
connected to the current node. IDM is the ID set of absorbed nodes at current iteration. IDMneibs is
the set of neighbors ID that connect to the absorbed nodes, [IDNneibs] is the set of neighbors ID of the
generation node, and [ID∗Nneibs] is the set of alternative neighbors, which is designed for the generation
agent that contains only one neighbor, and the neighbor corresponds to the type of load. Alternative
neighbor sets prevent isolated nodes in the process of network simplification. When a generation
agent receives a massage from its load neighbors, it updates its message. Furthermore, define a virtual
agent (VA) in JADE, and each generation agent sends a message MSGVA to VA after each iteration step.
MSGVA = 1 if the message sender receive new message from his neighbors, otherwise MSGVA = 0.
All generation agents can receive feedback information from VA. If the received messages from
generation agents are equal to zero in one iteration step, then VA will send message MSGVA = 0 as
feedback information to all generation agent. Here, we obtain the final simplified network without
load nodes.

The process of simplifying network is shown in Figure 2.
To illustrate the process of simplifying network, we take IEEE 14-bus system as an example,

and the multi-agent system based on IEEE 14-bus system is shown in Figure 3. The blue dashed line
connecting agents 8N and 4M represents that 4M is an element of 8∗Nneibs.
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Figure 2. Flow chart of simplifying network.

Figure 3. Multi-agent system for IEEE 14 bus system.
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Before iteration, each agent holds the following messages:

ST = 0

{[1N , (pm1), MSGVA = 1], [<> ()], [2N , 5M], []} {[2N , (pm2), MSGVA = 1], [<> ()], [1N , 3N , 4M, 5M], []}
{[3N , (pm3), MSGVA = 1], [<> ()], [2N , 4M], []} {[4M, pm4], [2N , 3N , 5M, 7M, 9M], [8N ]}
{[5M, pm5], [1N , 2N , 3N , 4M, 6N ], []} {[6N , (pm6), MSGVA = 1], [<> ()], [5M, 11M, 12M, 13M], []}
{[7M, pm7], [4M, 8N ]} {[9M, pm9], [4M, 10M, 14M], []} {[8N , (pm8), MSGVA = 1], [<> ()], [7M], [4M ]}
{[10M, pm10], [9M, 11M], []} {[11M, pm11], [6N , 10M], []} {[12M, pm12], [6N , 13M], []}
{[14M, pm14], [9M, 13M], []} {[13M, pm13], [6N , 12M, 14M], []}

In the first iteration, we take the load agent 5M as an example; its neighbor set contains five
elements, and four of them are generation agents. Agent 5M randomly selects an generation agent as
message receiver, and send its message to the selected agent. When the information is successfully
transmitted, agent 5M informs all its neighbors the generation agent ID which it selected, and logs
off from the current agent system. This process can be called absorption search: the generation agent
receives information from load agent and updates its own information according the received message,
then the data from the load agent are recorded by generation agent, and at this moment the log off of
the load agent does not affect the final results of network computing. In this way, the network size
is reduced.

During the first iteration cycle, the agent’s information changes as follows, and the corresponding
multi-agent system network is shown in Figure 4a.

ST = 1

# Receive message from load agent

{[1N , (pm1)], [< 5M > (1N , 2N , 4M, 6N)], [2N , 5M]} {[2N , (pm2)], [<> ()], [1N , 3N , 4M, 5M]}
{[3N , (pm3)], [< 4M > (2N , 3N , 5M, 7M, 9M, 8N)], [2N , 4M]}
{[6N , (pm6)], [< 11M, 12M, 13M > (6N , 10M, 14M)], [5M, 11M, 12M, 13M]}
{[8N , (pm8)], [< 7M > (4M, 8N)], [7M, 4M]} {[9M, (pm9)], [4M, 10M, 14M)}
{[10M, (pm10)], [9M, 11M]} {[14M, (pm14)], [9M, 13M]}
# Update information

{[1N , (pm1, pm5)], [<> ()], [2N , 6N ]} {[2N , (pm2)], [<> ()], [1N , 3N ]}
{[3N , (pm3, pm4)], [<> ()], [2N , 9M , 8N]} {[6N , (pm6, pm11, pm12, pm13)], [<> ()], [10M , 14M ]}
{[8N , (pm8, pm7)], [<> ()], [3N ]} {[9M, (pm9)], [3N , 10M, 14M)}
{[10M, (pm10)], [9M, 6N ]} {[14M, (pm14)], [9M, 6N ]}

Obviously, each load agent selects one of its neighbors among generation agent in a random way,
thus the structure of simplified network is not unique. After the second iteration, there is no load agent
in the multi-agent system, and the message of each agent is shown as follow.

ST = 2

......

{[1N , (pm1, pm5)], [<> ()], [2N , 6N ]} {[2N , (pm2)], [<> ()], [1N , 3N ]}
{[3N , (pm3, pm4, pm9)], [<> ()], [2N , 8N, 6N]} {[8N , (pm8, pm7)], [<> ()], [3N ]}
{[6N , (pm6, pm11, pm12, pm13, pm10, pm14)], [<> ()], [3N ]}

Figure 4 shows the absorption search approach for IEEE 14 bus.
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(a) First search step (b) Second search step

Figure 4. Absorption search for IEEE 14 bus.

4.2. Distributed Half-Search Algorithm

After the first stage of information collection, the structure of the original communication network
GM is reduced to the communication network GN = (VN , EN). For every node i ∈ Vn, we can get
the summation of load demand Pi collected by each generation node. Since all load nodes act as
the dependency nodes of the bus where the generation node is determined, we now propose a fully
distributed algorithm in the communication network GN to solve EDP. For the needs of the algorithm,
we define an adjacency matrix A = {a}ij associated with GN .

A = {aij} =


1

|N+
n,j|+ 1

i f (j, i) ∈ En

0 otherwise.

(18)

Now, it is reasonable to assume that the non-negative matrix A can be used as the state matrix of
each generation node in the topological GN . For i ∈ VN , a corresponding variable gi(t) is established
for each generation node as the carrier variable of the power load carried by the generation node.
And the total power collected by each generation node from the neighboring node is taken as the
initial value of the variable, that is gi(0) = Pi. Then, the following iterative algorithm is applied to
reallocate the load power of each generation node.

gi(t + 1) = aiigi(t) + ∑
j∈Nn,i

aijgj(t), (19)

where gi(t) is the carrier variable of the power load carried by the generation node, and j ∈ Nn,i
denotes all neighbors of node i in GN . For any node i ∈ Vn, the computation in Equation (19) applied
to each generation node will converge after t-time iterations. That is, g∗ = limt→∞ g(t). The following
equation is derived from Equation (5).

g∗i =

(
n

∑
j=1

gj(0)

)
ζi = P0ζi (20)

where ζ = [ζ1, ζ2, ..., ζn]T is the right eigenvector with the character ζi > 0 corresponding to the matrix
A at the eigenvalue 1, and g∗i is the final load information obtained by each generation node in GN .

Define the basic variables λ(k), λ↑(k), λ↓(k) required by the algorithm, where λ(k) represents
the Lagrange multiplier for each iteration, and the upper and lower bounds of λ(k) are denoted
by λ↑(k) and λ↓(k), respectively. The step index of the half-search algorithm is denoted by k ≥ 0.
The initializations of λ↑(k) and λ↓(k) may take any values as long as λ↑(k) is large enough and λ↓(k)
is small enough. To make the interval as tight as possible, we initialize with the following equation:
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[
λ↓(0)
λ↑(0)

]
=

[
mini∈Vn ui(PGi)

maxi∈Vn ui(PGi)

]
This means that the closer are λ↓(0) and λ↑(0) to the optimal Lagrangian λ∗, the fewer iterations

are needed. There are multiple ways to define and solve for variable λ(k), and for simplification,
λ(k) as an approximation of the optimal Lagrangian λ∗, that is

λ(k) =
1
2
[λ↑(k) + λ↓(k)]. (21)

In the communication network graph GN = (Vn, En), for all nodes i ∈ Vn, the output of each
generation node is assigned as follows:

PGi(k) = −τi(λ(k)) (22)

Then , for all nodes i ∈ Vn , define an auxiliary variable Xi(t) as the power generated carried by
each generation node and initialized by Xi(0) = PGi(k). Then, the following iterative algorithm is
applied to compute Xi(t).

Xi(t + 1) = aiiXi(t) + ∑
j∈Nn,i

aijXj(t). (23)

where Xi(t) is the power generated carried by node. Let us define X ∗ = limt→∞ Xi(t), and then,
we get the convergent generators output variable X ∗ corresponding to the current λ(k) according to
Equation (5):

X ∗i =

(
n

∑
j=1

PGj(k)

)
ζi, ∀i ∈ Vn (24)

Now, the half-search algorithm is proposed. In the communication topology graph GN , generation
node i updates the values of the current upper bound λ↑(k + 1) and lower bound λ↓(k + 1) of the
Lagrange multiplier λ(k) by comparing the magnitude of the local load information g∗ and the local
output X ∗ as follows: [

λ↑(k + 1)
λ↓(k + 1)

]
=

[
λ(k)
λ↓(k)

]
f orX ∗ > g∗, (25)

[
λ↑(k + 1)
λ↓(k + 1)

]
=

[
λ↑(k)
λ(k)

]
f orX ∗ ≤ g∗. (26)

From Equations (21), (25) and (26), it is easy to get that λ∗ = limk→∞ λ(k), and then, the output of
each generation node can get a local optimal solution from Equation (22), that is

P∗Gi = −τi(λ
∗), ∀i ∈ Vn (27)

The distributed half-search algorithm is summarized in Algorithm 1.
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Algorithm 1 Distributed half-search algorithm.

Input: Pi, i = 1, 2, ..., N:load demand for each generation agent;
Pmin

Gi : lower limit for generation unit i;
Pmax

Gi : upper limit for generation unit i;
ai, bi or αi, βi: cost coefficient; k=0.
ε: a sufficiently small positive number greater than 0

Output: P∗Gi:generating power for each generation unit

Initialize the Lagrange multiplier λ↑(0) and λ↓(0)
repeat

Obtain λ(k) by Equation(21)
Carry out PGi(k) by Equations (16) and (22)
Calculate Equation (24)
Complete calculation as shown in Equations (25) and (26)
k=k+1

until λ↑(k)− λ↓(k) ≤ ε

return P∗Gi = PGi(k)

4.3. Algorithm Analysis

We divide the proposed algorithm into two parts for analysis. First, we need to prove that
the algorithm is convergent asymptotically; and second, we need to formulate a stop criterion for
the algorithm.

4.3.1. Proof of Convergence

Before proving the convergence of the proposed algorithm, the following two remarks are given,
which are used in the following proof.

Remark 1. If there exists an optimal solution to the original EDP (shown as in Equations (6)–(8), then there
exists a positive k that, when k → ∞, the proposed algorithm can converge to the globally unique optimal
solution asymptotically.

Remark 2. If a continuous function f (x) is strictly monotonic in a bounded interval [a, b], then the function
f (x) converges in a bounded interval [ f (a), f (b)].

Proof. From Equation (13), for any node i ∈ Vn, we can get the incremental cost rates of the generation
node i ui(PGi). λ+ = max(ui(PGi)) and λ− = min(ui(PGi)) denote the upper and lower bounds of λ,
respectively. Since the original EDP is feasible, we can get λ− ≤ λ ≤ λ+.

From Equation (16), for any node i ∈ Vn, we can easily get that the function τi(PGi) is about
monotonous continuous decrementing of λ. Therefore, −∑n

i=1 τi(PGi) is strictly monotonically
increasing in interval λ ∈ [λ−, λ+]. From Equation (22), PGi(k) = −τi(λ(k)), for any node i ∈ Vn,
thus we can get ∑n

i=1 PGj(k) is also strictly monotonically increasing in interval λ ∈ [λ−, λ+].
According to Remark 2, we can easily get that the distributed algorithm we proposed is convergent.

In this paper, the EDP is constructed as astrictly convex optimization problem, therefore the distributed
algorithm proposed can converge to a unique global optimal solution.

4.3.2. Stopping Criterion

For the half-search algorithm proposed in this paper, we give the algorithm stop criterion.
We know from the discussion of the above algorithm that the lower and upper bounds of λ(k)
as the search interval of the algorithm will be reduced by half after each search. Therefore, λ(k) in
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this algorithm can rapidly converge to the unique optimal solution λ∗. At the same time, the optimal
solution of the original power system EDP can be directly obtained as P∗Gi = −τi(λ

∗) by solving the
Lagrange multiplier optimal solution λ∗. Theoretically, as long as the preset step size k value can
ensure the convergence of the algorithm, the stopping criterion can be set to stop when the algorithm
runs to the preset k value. However, this stopping criterion does not satisfy the flexibility of the
algorithm. Now, a stopping criterion with algorithm change is given as follow:[

k(|λ↑(k)− λ↓(k)|)− δ
]
≤ 0

where k is the iteration step size, and δ is a preset positive number small enough. By applying this
stopping criterion, the algorithm can be stopped after convergence to unique optimal solution.

5. Simulation Results

Three simulation cases were studied to verify the effectiveness of the proposed algorithm.
Firstly, we studied the simulation results of the algorithm based on IEEE14-bus data with generators
constraints. Secondly, on the basis of simulation Case 1, we verified the plug-and-play performance of
the proposed algorithm by removing load nodes of IEEE14-bus and adding a generation unit. Lastly,
a case study based on IEEE57-bus was used to test the performance of the proposed algorithm in
a wide range of power system.

5.1. Case 1: With Generator Constraints

We first studyied the case with generation constraints based on the IEEE 14-bus system.
In the course of the study, all research data were derived from IEEE14-bus data. In our
study, buses {1, 2, 3, 6, 8} were chosen as the generation buses and the load buses were
{2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}. Note that bus 7 was selected as neither a generation bus nor a load bus
since the power generated and the load demand of bus 7 were equal to zero. The local power load were:
PD2 = 21.7 MW, PD3 = 94.2 MW, PD4 = 47.8 MW, PD5 = 7.6 MW, PD6 = 11.2 MW, PD9 = 29.5 MW,
PD10 = 9 MW, PD11 = 3.5 MW, PD12 = 6.1 MW, PD13 = 13.5 MW, and PD14 = 14.9 MW. We calculated
the summation of the load demand as P0 = 259 MW, which was unknown to each individual bus
node. Five generation nodes were located on buses 1, 2, 3, 6, 8, and the generator parameters of each
generation unit are shown in Table 1. We took δ = 0.0001 as the stopping criterion.

Table 1. Generator parameters in IEEE 14-bus system.

Bus a ($/MW2h) b ($/MWh) Pmin
Gi (MW) Pmax

Gi (MW)

1 0.0430293 20 0 332.4
2 0.25 20 0 140
3 0.01 40 0 100
6 0.01 40 0 100
8 0.01 40 0 100

Each generator unit was initialized with the sum of the load power collected in the first stage:
PG1 = 332.4 MW, PG2 = 70 MW, PG3 = 100 MW, PG6 = 100 MW, and PG8 = 100 MW. We set the lower
and upper bounds of Lagrange multiplier as: λ↓(0) =2 $/MW and λ↑(0) = 72 $/MW. The numerical
simulation results with generators constraints are shown in Figure 5. To clearly analyze the simulation
results of this case, we show the Lagrange multiplier, λ(k), in Figure 5 (top), the evolution of ∑ Pj
(j = 1, 2, 3, 6, 8) in Figure 5 (middle), and the generator output PGg (g = 1, 2, 3, 6, 8) in Figure 5 (bottom).
we subjectively set the iteration step to k = 20, while the stopping condition was satisfied at k = 12.

The Lagrangian multiplier λ(k) gradually approached an optimum stable value
λ∗ = 5.4165 $/MW at iteration step k = 12, which affected the output of each generator unit.
As λ(k) was asymptotically stable, the total power generated by all generators units was gradually
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adapted to the total static load demand. When λ(k) converged asymptotically to the optimal λ∗,
the combination of generators output of each generator unit at the optimal λ∗ was optimized, and the
output powers of the generator units were: P∗G1 = 39.70 MW, P∗G2 = 6.84 MW, P∗G3 = 70.82 MW,
P∗G4 = 70.82 MW, and P∗G5 = 70.82 MW, and ∑ Pj = 259 MW (j = 1, 2, 3, 6, 8). The optimal generators
output P∗g and the optimal Lagrangian multiplier λ∗ satisfied the generator constraints. At the same
time, the total power generated equaled the total load demand. Since the generator constraints
and the power generated cost coefficient of generator units 3, 4, and 5 in the IEEE14-bus data were
identical, the output of each generator unit was completely uniform.
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5.2. Case 2: Plug and Play Capability

The characteristics of plug and play reflect the flexibility of power supply and demand of smart
grid. In this case, we slightly changed the IEEE14-bus power system structure in Case 1 to study the
plug-and-play performance of the proposed half-search algorithm in power systems. In this case,
all research data were the same as in Case 1 until the system was changed. To design a more realistic
power supply and demand scenario experiment, we first removed a load power based on Case 1,
which caused a sharp reduction in the total load power of the system. The plug-and-play performance
of the proposed half-search algorithm was effectively tested when the total load power was sharply
reduced. Besides, to verify the plug-and-play performance of the algorithm under different generator
conditions, we added a generator unit to change the generator conditions of the system for a period of
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5.2. Case 2: Plug and Play Capability

The characteristics of plug and play reflect the flexibility of power supply and demand of smart
grid. In this case, we slightly changed the IEEE14-bus power system structure in Case 1 to study the
plug-and-play performance of the proposed half-search algorithm in power systems. In this case,
all research data were the same as in Case 1 until the system was changed. To design a more realistic
power supply and demand scenario experiment, we first removed a load power based on Case 1,
which caused a sharp reduction in the total load power of the system. The plug-and-play performance
of the proposed half-search algorithm was effectively tested when the total load power was sharply
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reduced. Besides, to verify the plug-and-play performance of the algorithm under different generator
conditions, we added a generator unit to change the generator conditions of the system for a period of
time after the system converged again. Note that, whether removing a load to reduce the total power
of the system or adding a generator unit to change the system’s generator conditions, the total power
generated must equal the total power demand.

At iteration step k = 23, the load demand on bus 4 was removed, and the situation of sharply
reduced power demand was simulated. At iteration step k = 43, a generator unit was added between
the 13th and 14th buses. The constraints of the generator units were PG6 = 200 MW and PG6 = 50 MW,
and the power generated cost coefficient was the same as the power generated coefficient of the
second generator unit. That is, the power generated cost coefficient of the added generator unit was:
a = 0.25, b = 2, c = 0. The results of the case study are shown in Figure 6.
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generated by each generator unit reached a steady state value. At iterative step k = 23, the total load
demand decreased by 47.8 MW. After another 13 iterations of the proposed algorithm, the Lagrangian
multiplier λ(k) could approach a steady state value λ∗ = 5.124 $/MW again. At the same time,
the total power generated and the total load demand were balanced again, and the power generated by
each generator unit was also stabilized at a steady state value. The power generated by the generator
units were: P∗G1 = 36.20 MW, P∗G2 = 6.24 MW, P∗G3 = 56.22 MW, P∗G4 = 56.22 MW, and P∗G5 = 56.22 MW.
At iterative step k = 43, since a new generator unit was added, the generator conditions were changed.
At this time, the total load demand was reallocated among six generator units by applying the proposed
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Since this case study was based on Case 1, the simulation data were the same as the simulation
data of Case 1 at the beginning. Therefore, before the reduction of the total power demand, the power
generated by each generator unit reached a steady state value. At iterative step k = 23, the total load
demand decreased by 47.8 MW. After another 13 iterations of the proposed algorithm, the Lagrangian
multiplier λ(k) could approach a steady state value λ∗ = 5.124 $/MW again. At the same time,
the total power generated and the total load demand were balanced again, and the power generated by
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each generator unit was also stabilized at a steady state value. The power generated by the generator
units were: P∗G1 = 36.20 MW, P∗G2 = 6.24 MW, P∗G3 = 56.22 MW, P∗G4 = 56.22 MW, and P∗G5 = 56.22 MW.
At iterative step k = 43, since a new generator unit was added, the generator conditions were changed.
At this time, the total load demand was reallocated among six generator units by applying the proposed
half-search algorithm. Then, the algorithm gradually converged to the Lagrange multiplier optimal
value λ∗ = 4.819 $/MW again under the new generator conditions. Under the result of the balance
between the total power generated and the total load demand, the optimized output powers of
the generator units were: P∗G1 = 32.77 MW, P∗G2 = 5.64 MW, P∗G3 = 40.93 MW, P∗G4 = 40.93 MW,
P∗G5 = 40.93 MW, and P∗G6 = 50.00 MW. Simulation results show that the half-search algorithm could
meet the demand of plug and play in current power system.

5.3. Case 3: Implementation on IEEE 57-Bus System

In this case, based on IEEE57-bus system, we studied the application performance of the proposed
half-search algorithm in large-scale power system. The research data were derived from IEEE57-bus
data. IEEE57-bus system contains seven generators units located on buses {1, 2, 3, 6, 8, 9, 12}. Besides,
we selected the buses with load power as the load buses, which are all buses except for buses
{4, 7, 11, 21, 22, 24, 26, 34, 36, 37, 39, 40, 45, 46, 48} in the IEEE57-bus system. By analyzing the load
power data of IEEE57-bus, the summation of the power load could be calculated as P0 = 1250.8 MW,
which was unknown to each individual node. The generator parameters of each generator unit are
shown in Table 2. We took δ = 0.00001 for the stopping criterion.

Table 2. Generator parameters in IEEE 57-bus system.

Bus a ($/MW2h) b ($/MWh) Pmin
Gi (MW) Pmax

Gi (MW)

1 0.077579519 20 0 575.88
2 0.01 40 0 100
3 0.25 20 0 140
6 0.01 40 0 100
8 0.022222222 20 0 550
9 0.01 40 0 100

12 0.0322580645 20 0 410

Compared with IEEE14-bus system, IEEE57-bus system has more bus nodes to test the application
performance of the proposed half-search algorithm in large-scale power system. After the proposed
half-search algorithm was applied in IEEE57-bus system, all of the generators nodes reached consensus
about the solution and simulation results are shown in Figure 7. In Figure 7 (top), the upper and
lower bounds of the Lagrangian multiplier λ(k) are initialized to λ↑(0) = 91.35 $/MW, and λ↓(0) =
2 $/MW. Note that the power mismatch between the total power generated and the total load power
equaled zero, as shown in Figure 7 (middle). Figure 7 (bottom) shows the generators output PGg
(g = 1, 2, 3, 6, 8, 9, 12). Each generation unit was initialized with the sum of the load power collected
in the first stage, that is, PG1 = 287.94 MW, PG2 = 100 MW, PG3 = 89.353 MW, PG6 = 100 MW,
PG8 = 550 MW, PG9 = 100 MW, and PG12 = 410 MW. The half-search algorithm had the advantage of
rapid convergence, which could asymptotically reach a steady-state values within a finite iterative
step in IEEE57-bus system with generator constraints.

Firstly, the Lagrangian multiplier λ(k) could asymptotically reach a steady state value of
λ∗ = 22.472 $/MW at k = 13. In the asymptotic stabilization process of λ(k), the total power
generated and the total power demand in the power system were gradually balanced: ∑ PGj = P0

(j = 1, 2, 3, 6, 8, 9, 12). The optimal output power combination of the seven power generation units
were as follows: P∗G1 = 131.94 MW, P∗G2 = 100.00 MW, P∗G3 = 40.943 MW, P∗G6 = 100.00 MW,
P∗G8 = 460.614 MW, P∗G9 = 100.00 MW and P∗G12 = 317.312 MW. The optimal Lagrangian multiplier
λ∗ and the optimal solution P∗Gi stayed within the generator constraints, and ∑ Pj = 1250.8 MW
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(j = 1, 2, 3, 6, 8, 9, 12). The case simulation of the IEEE57-bus power system verified the availability of
the proposed half-search algorithm in large-scale power system.
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6. Conclusions

This paper proposes a distributed algorithm based on an absorption and half-search approach.
The algorithm consists of two stages. In the first stage, absorption search, a popular broadcasting
manner known as flooding is used as the mode of agent communication. The size of agent network
is reduced and only the generation agents are retained in the multi-agent network, which reduces
subsequent computing and agent communication. The process of network simplification is completely
distributed. In the second stage, named optimal solution stage, a distributed half-search algorithm is
proposed, which runs in a simple and straightforward manner. The idea of network simplification
proposed in this paper can be applied to other multi-agent systems, and other economic dispatching
problems for smart grids. For our future work, we will concentrate on expanding the presented
approach to solve EDP with non-convex cost functions.
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This paper proposes a distributed algorithm based on an absorption and half-search approach.
The algorithm consists of two stages. In the first stage, absorption search, a popular broadcasting
manner known as flooding is used as the mode of agent communication. The size of agent network
is reduced and only the generation agents are retained in the multi-agent network, which reduces
subsequent computing and agent communication. The process of network simplification is completely
distributed. In the second stage, named optimal solution stage, a distributed half-search algorithm is
proposed, which runs in a simple and straightforward manner. The idea of network simplification
proposed in this paper can be applied to other multi-agent systems, and other economic dispatching
problems for smart grids. For our future work, we will concentrate on expanding the presented
approach to solve EDP with non-convex cost functions.
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Abbreviations

The following abbreviations are used in this manuscript:

EMS Energy management systems
EDP Economic dispatch problem
FBC Flooding-based consensus
DE Differential evolution
GA Genetic algorithm
BBO Biogreography-based optimization
FA Firefly algorithm
GWO Grey wolf optimization
DG Distributed generation
JADE Java Agent DEvelopment Framework
VA Virtual agent in JADE
G Directed or undirected graph
V(G)/E(G) The finite nonempty set of vertices/edges
F(e) The relationship between ordered vertices of an edge
A(G) An adjacency matrix associates with graph G
N+

i /N−i In-neighbor/Out-neighbor set for node i
d↑i /d↓i In-degree/Out-degree of node i
| · | The cardinality of a set
PGi Power generated by generator i
PDj Load demand in bus j
P0 Total load demand
αi, βi, γi Parameters about the cost of generator i
PGi/PGi Maximum/Minimum power generated by generator i
msgi The message that load agent i holds
MSGVA The information from each load agent to virtual agent
idi Unique identifier of agent i
IDM The identification of load node
IDN The identification of generating node
ID∗Mneibs The alternative neighbor set
IDMneibs The ID set of current load node neighbors
pmid The load demand of current load node
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