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Abstract: Maintenance optimization has received special attention among the wind energy research
community over the past two decades. This is mainly because of the high degree of uncertainties
involved in the execution of operation and maintenance (O&M) activities throughout the lifecycle of
wind farms. The increasing complexity in offshore maintenance execution demands applied research
and brings forth a need to develop problem-specific maintenance decision-making models. In this
paper, a mathematical model is proposed to assist wind farm stakeholders in making critical resource-
related decisions for corrective maintenance at offshore wind farms (OWFs), considering uncertainties
in turbine failure information.

Keywords: offshore wind farm; offshore wind turbine; maintenance; failure classification; resource
decision; uncertainty

1. Introduction

The widespread availability and high technological maturity make wind energy a reliable
renewable option to satisfy the future energy demands of the global population [1]. The limited land
area and the need to reduce noise pollution is forcing the wind energy sector to shift towards offshore
technologies [2,3]. Offshore wind farms (OWFs) are energy assets that have experienced a considerable
growth in terms of cumulative capacity, from 4 GW to more than 18 GW over the past five years [4].
OWFs are expensive assets not only to build, but also to operate and maintain. About 23% contribution
of the operation and maintenance (O&M) to the life cycle cost (LCC) makes the O&M the second major
contributor for the LCC of an OWF [5]. The increased O&M cost is mainly caused by the uncertainties
encountered by OWFs, which include weather, sea-state conditions, component lifetimes, etc. The
high O&M cost and the unproven economic feasibility remain a hindrance for the future growth and
expansion of the OWFs.

The accessibility limitations of vessels and helicopters imposed by the weather and sea-state
conditions combined with the unavailability of failure data makes maintenance decision-making at
OWFs, a complex and challenging task for the O&M team. A significant portion of the annual budget
is wasted on many large offshore projects because of improper maintenance decisions [6]. Numerous
research studies have been carried out to assist the O&M team in making maintenance decisions at
OWFs. Almost 80% of the total research articles (related to offshore wind farm maintenance) have been
published in the last five years, which indicates the increasing importance of O&M-related research for
offshore wind farms in operation and under construction [6]. The maintenance decision problems have
been analyzed from Reliability, Availability, Maintainability and Serviceability (RAMS) perspectives
and many maintenance models have been developed for optimal decision-making.

Energies 2019, 12, 1408; doi:10.3390/en12081408 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-8607-2923
http://www.mdpi.com/1996-1073/12/8/1408?type=check_update&version=1
http://dx.doi.org/10.3390/en12081408
http://www.mdpi.com/journal/energies


Energies 2019, 12, 1408 2 of 13

Almost 98% of the models in the literature address long-term (5–20 years) and/or lifetime (which is
usually 20 years) maintenance decision problems. There exist arguments in the wind research
community that optimizing short-term maintenance decisions may not greatly reduce the O&M cost.
It is reported in [7] that the expected total cost of one corrective maintenance trip at an OWF is
$70,000–$130,000 (approximately). From the model and results of [7], it is understood that one wrong
resource decision (improper vessel selection or insufficient manpower) for a corrective maintenance
execution could necessitate an additional trip and account for a wastage of no less than $70,000 in the
annual maintenance budget. This study shows that the maintenance decisions for offshore wind farms
are critical for all time horizons (an hour, a day, a month, a year and lifetime).

Existing long-term and lifetime models are not implemented at OWFs, because the OWF
stakeholders treat the models as theoretical and incomprehensive [6]. The models are touted to
be complex and the stakeholders believe that it will take considerable time and require technical force
to solve the models. This viewpoint of OWF stakeholders about the existing models demands a shift
from theoretical research to applied research. In addition, it creates a necessity to identify maintenance
decision problems (either long term or short term) that have a significant effect on the life cycle O&M
costs and to provide solutions to one decision problem at a time through simple maintenance models.
The corrective maintenance and its associated resource decisions (both short-term and long-term)
contributes more than 60% to the life cycle O&M costs and is the highest cost driver of OWF O&M [8].
The stakeholders view of the existing maintenance models and the high cost associated with the
corrective maintenance resource decisions was the motivation to identify short-term resource decision
problems for corrective maintenance of the OWFs.

Few models in the literature have addressed the short-term maintenance problems at OWFs.
The work reported in [9] developed an opportunistic short-term maintenance model. Whenever
there is a need for corrective maintenance, the model considers the corrective maintenance trip as an
opportunity to perform preventive maintenance at other turbines in the wind farm. The model is
developed for two different time horizons (a day and a week) and for wind farms that follows flexible
maintenance schedules. The model requires the maintenance manager to optimize the maintenance
schedule in the morning of every working day and the maintenance tasks to be performed are available
only after the optimization. The results of the work showed that 43% of the total preventive maintenance
cost could be saved if this opportunistic maintenance with flexible everyday schedule optimization is
adopted at the OWFs. The work reported in [10] developed a short-term decision-making model for
scheduling resources (vessels and maintenance personnel) at the OWFs. The time horizon considered
in this model is a day and it helps the OWF maintenance managers and planners to make better
resource scheduling decisions each day. The model studied the impact of the number of maintenance
personnel on energy loss and pointed out the importance of scheduling optimal number of maintenance
personnel for daily maintenance work.

Both the short-term models [9,10] reported in the literature assumed that the information about
turbine failure is always available and known for offshore turbine maintenance. With this assumption,
the kind of needed repair is known, the resource decisions are certain and the maintenance team easily
picks the desired resources for maintenance. The short-term models [9,10] then focused on different
objectives such as opportunistic preventive maintenance [9] and resource-scheduling [10] to minimize
the total maintenance costs. When the turbine failure information becomes unavailable, the resource
decision-making turns out to be uncertain and the short-term models [9,10] are inapplicable to address
this maintenance problem situation.

In this paper, a short-term resource decision-making model is proposed for the corrective
maintenance of offshore wind turbines, considering the uncertainty in turbine failure information.
The proposed model will assist multiple OWF stakeholders in making critical resource decisions for
a corrective maintenance trip. The proposed model addresses the maintenance problem situation
for which the information on turbine failure is not available and so it cannot be compared with the
short-term models [9,10] in the literature. The paper is organized as follows: the problem description
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is presented in Section 2. In Section 3, the mathematical model for the described problem is presented.
In Section 4, a case study is presented to demonstrate the use of the maintenance decision-making
model. Some concluding remarks and the possible future work suggestions are given in Section 5.

2. Problem Description

Each component failure of a wind turbine have different maintenance/repair severities, i.e., the
effort needed from the maintenance personnel, the cost associated with the maintenance work and
the time needed to perform the repair vary for each component failure. It is reported in [11] that
the grouping of turbine component failures with similar maintenance severity is done to develop
failure classifications and the reported methodology will be followed in our study. The offshore
turbine component failures may be classified into a finite set of failure classifications and each failure
classification have a maintenance rank and a probability of occurrence. The “maintenance rank” of a
failure classification is defined as “the natural number assigned to each failure classification based
on the severity of maintenance involved in solving component failures, with 1 assigned to the failure
classification of lowest maintenance severity and N assigned to the failure classification of highest
maintenance severity”. As each failure classification is assigned a maintenance rank, the total number
of ranks is same as the total number of failure classifications. The “probability of occurrence of a failure
classification” is defined as “the sum of all the individual failure probabilities of turbine components
under a specific failure classification”.

Irrespective of the type of maintenance, certain resources are required to perform the intended
maintenance task. Resources needed to complete a maintenance activity are an access vessel,
maintenance personnel and spare parts. The right combination of maintenance personnel, access vessel
and spare part to address the offshore turbine failure is termed as “resource combination”. In the
case of an offshore wind turbine, different resource combinations are required to solve component
failures under different failure classifications. For example, to solve the failure of a gearbox under a
given failure classification, more maintenance personnel, expensive vessel and spare gearbox parts
(assembled or individual spare parts) are required, whereas to solve the failure of a brake shoe falls
under another failure classification, and less number of maintenance personnel, inexpensive vessels
and brake shoe spare parts are required. Hence, two failure classifications could potentially result in
two resource combinations. The failure of both the brake shoe and gearbox could also be addressed
using one resource combination.

This provides us an intuitive understanding that there may exist two types of resource combinations
to address the offshore turbine failure. We assume that the first type are, resource combinations that are
dedicated to address component failures under only one specific failure classification and are referred
as “A-type Resource Combinations” or simply “A-type RC’s” throughout the paper. A-type RC is
defined as “the combination of maintenance personnel, spare parts and vessels which can identify and
solve component failures under single failure classification”. A-type RC’s cannot solve the failures
occurred in turbine components under other failure classifications. We assume that the second type are,
the resource combinations that are capable of solving turbine component failures under multiple failure
classifications within a specified maintenance rank and are referred as “B-type Resource Combinations”
or simply “B-type RC’s” throughout the paper. The B-type RC for the nth ranked failure classification
is defined as “the combination of maintenance personnel, spare parts and vessels which can solve
component failures under the rank “1 to n” failure classifications”. From the definition, it is understood
that, if a B-type RC is sent to address the nth ranked failure classification it cannot solve component
failures under rank “n + 1 to N” failure classifications.

Though today’s turbines are usually equipped with condition monitoring (CM) systems, we
consider the scenario that such condition monitoring systems are unable to indicate the exact failure
classification upon a turbine failure. That is, no information on the kind of needed repair/failure
classification and spare parts requirements are obtained from the CM systems. Such scenarios arise
when natural events, including but not limited to storms, icing, and waves occur and these natural
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events account for 60% of the offshore turbine failures [12]. The occurrence of these natural events is
unpredictable and leads to failure of both the turbine components and the CM systems, respectively.
The human-influenced events are generally reliability related issues of the CM systems. It is reported
in [13] that the reliability of the CM system is not 100% and the CM systems sometimes fail to produce
an alarm when the turbine component requires immediate attention for maintenance. The event of the
CM systems not producing an alarm leads to the component failure and apparently turbine failure.
During this CM system unreliability event, the information failed turbine component is not obtained
from the CM systems. Hence, these random natural and human influenced events (of failure) leads to
situation where the O&M team will have no direct information from the CM systems to make resource
related maintenance decisions. In this paper, we focus on this scenario of corrective maintenance where
the information on failed turbine component and its failure classification is not known.

A wind farm may have many turbines in operation, which may fail anytime in the future. If any
wind turbine at an offshore wind farm failed suddenly and, no information on the failed turbine
component and its failure classification could be obtained from the CM systems, the O&M team do not
know the exact resource combination to address the failed turbine. In this situation, the O&M team is
unsure about which type of vessel to use, how many maintenance personnel to send, whether to take
spare parts or not and which spare parts to take. This creates uncertainty in making decision on the
resource combination for maintenance execution. The hypothesized problem situation is “a corrective
maintenance trip to an offshore wind turbine with unknown turbine failure information”. The aim of
our study is “to find the cost-effective resource combination for the hypothesized problem situation”.
In this problem, the failure classification is not known at the time of maintenance initiation and all
the resource combinations that are available in the onshore port turn out to be decision choices for
the O&M team. The resource combination to be selected by the O&M team might solve the unknown
failure in one trip or might not solve the unknown failure in one trip and necessitate an additional trip
to solve the identified failure known from the first trip. Therefore, the O&M team is put into a situation
to select only one resource combination among all the available resource combinations considering
the two possible results of their decision. In order to make a decision, the cost associated with each
decision choice must be evaluated taking into account the probability of occurrences of different failure
classifications. Then, the resource combination with least cost could be selected as the cost-effective
resource combination to address the unknown turbine failure. The objectives are to propose a simple
and useful mathematical model to aid decision-making and to demonstrate the use of the proposed
model through a case study.

3. Mathematical Model

In this section, the mathematical model for the described problem is proposed. If the offshore
wind turbine have a finite number of failure classifications and each classification has a probability of
occurrence, then:

N∑
i=1

Pi = 1 (1)

where Pi denotes the probability of occurrence of the ith failure classification. The probabilities of
occurrences of all the failure classifications are assumed known.

To address the component failures under respective failure classifications of offshore wind turbine,
two different types of resource combinations are described earlier in Section 2. In our model, both
the types of resource combinations are considered as decision choices. Therefore, the selection of one
resource combination among the available resource combinations (both A-type and B-type) is the
only decision for the described problem. The decision is represented as a finite set of binary variables
in our model:

Si j =

 1, use type j RC f or f ailure classi f ication i

0, don′t use type j RC f or f ailure classi f ication i
(2)
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Constraint:
N∑

i=1

2∑
j=1

Si j = 1 (3)

where Si j denotes the type j RC for the ith ranked failure classification. The above constraint ensures
that only one Si j is selected among the available N number of S′i js, to solve the unknown failure.

All the type j RC’s that are dedicated to address their respective ith ranked failure classifications are
assumed known.

The uncertainty in turbine failure information brings in two possible situations namely trip
success and trip failure. The “trip success” is defined as the situation where the unknown turbine
failure is solved in a single maintenance trip using either an A-type RC or a B-type RC. The “trip
failure” is defined as the situation where the unknown turbine failure cannot be solved in a single
maintenance trip and necessitates an additional trip to solve the identified known failure using an
appropriate A-type RC. Both the probability of trip success and trip failure depends on the decision
and the probability of occurrences of the failure classifications. The trip success and failure situations
along with their probabilities are considered in the model.

When an A-type RC which is dedicated for the ith failure classification, is sent to address the
unknown failure, the trip is successful when the failure classification is i and the trip is a failure when
the failure classification is not i. For A-type RC, the probability of the maintenance trip to be a success
is Pi and the probability of the maintenance trip to be a failure is 1−Pi. If the failure classification is
not i, we are able to identify that the failure is k and a single next trip with an A-type RC for k will
solve the failure. When a B-type RC that is dedicated for the nth failure classification is sent to address
the unknown failure, the trip is successful when the failure classification is 1, 2, 3, . . . , n and, trip is a
failure when the failure classification is k (k > n). For B-type RC, the probability of the maintenance trip
to be a success is P1 + P2 + P3 + . . .+ Pn and the probability of the maintenance trip to be a failure is
Pn+1 + Pn+2 + Pn+3 + . . .+ PN. A single next trip with an A-type RC for k will solve the failure.

The objective is to find the expected total maintenance cost of the decision, to figure out the cost-
effective decision and solve the unknown turbine failure. The total maintenance cost in our model
includes the maintenance personnel cost, access vessel cost, special maintenance vessel cost (jack-up,
crane, etc.), spare parts cost and, production losses due to downtime. The maintenance personnel and
vessels are in use from the point of time they get ready to execute maintenance to the point of time
they get back to shore after the maintenance activity. In addition, the turbine is unavailable until the
maintenance crew get the turbine back to operation. Therefore, the mathematical model formulation
involves various deterministic time elements of maintenance namely lead-time, logistic time, waiting
time, travel time, failure identification time and repair time.

The time to get the vessel ready for maintenance is the lead-time and, the time to get the spare
parts is the logistics time. It is assumed that all the resources (the vessels, the personnel and the
spare parts) are always available in the onshore port for maintenance execution. This assumption
eliminates the lead-time of vessels and the logistic time of spare parts in our model. The total delay in
maintenance execution due to weather and sea-state conditions is the waiting time and is the sum of
“the delay before travel starts” and “the delay at the turbine” [14]. It is dependent on weather and does
not depend on the decision. Hence, the waiting time is a constant in our model. The time to identify
the failure occurred at the turbine and figure out the component that requires maintenance is the failure
identification time. The failure identification time does not depend on the decision and is a constant in
our model. The time taken to travel back and forth the turbine using vessels is called the “travel time”
and is the sum of the “travel time to the turbine” and “travel time from the turbine”. The travel time
is dependent on the decision, as the vessel speed may differ for different resource combinations. To
calculate the travel time, the average distance of the turbines from the shore is considered in our model.
The wind speed and wave height variations in the sea may affect the travel speed, which in turn affects
the travel time. To simplify our analysis and exclude the hydrodynamics of the sea, the travel time is
assumed to be independent of the wave height and wind speed in this paper.
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The time it takes to perform the actual maintenance work is the repair time. In the case of trip
success, the repair activity is completed successfully and the turbine failure is solved in one trip. In our
model, the trip success situation includes the repair time. In the case of trip failure, the component
failure is only identified and is not repaired in the first trip. The certain amount of time spent to
identify the failure in the first trip (waiting time, failure identification time and travel time) along with
the fixed cost for an additional trip to solve the known failure using an A-type RC is considered for
trip failure. The fixed cost/purchase cost of spare parts are not considered in our model, instead the
cargo handling costs of spare parts is considered as the spare parts cost in our model. The spare parts
cost is the total tonnage of spare parts in a resource combination times the cargo handling cost per
tonnage. To simplify our analysis, the weight of the spare parts is considered the only cargo weight in
our model. Other weights such as the weight of the maintenance tools, technicians are not considered.
The mathematical model for the described problem is given in Equation (4) as:

Z =
N∑

i=1

2∑
j=1

Si j × gi j ×D +
N∑

i=1

2∑
j=1

Si j ×Hi j +
N∑

i=1

2∑
j=1

Si j × ti j ×Ci j +
N∑

i=1

2∑
j=1

Si j × αi j × ri j ×Ci j +
N∑

i=1

2∑
j=1

Si j × βi j ×A (4)

Ci j = Vi j + (ni j ×M) + R (5)

αi j = Pi for j = 1 (6)

αi j =
i∑

k=1

Pk for j = 2 (7)

βi j = 1− Pi for j = 1 (8)

βi j =
N∑

k=i+1

Pk for j = 2 (9)

Z Expected total maintenance cost for Sij

gij Weight of spares for Sij in tons
D Cost per tonnage of spares
Hij Cost of special vessel for Sij

tij Travel time for Sij in hours
Cij Cost of vessel, maintenance personnel, and revenue loss per hour for Sij

Vij Vessel cost per hour for Sij

nij Number of maintenance personnel for Sij

M Maintenance personnel cost per hour
R Revenue loss per hour
rij Repair time for Sij in hours
αij Probability of trip success for Sij

Bij Probability of trip failure for Sij

Pi Probability that the failure is of classification i
A Fixed additional trip cost of sending an A-type RC to solve known failure, which includes vessel

cost, personnel cost, spare parts cost, and revenue loss due to downtime

The above mathematical model describes the expected total maintenance cost of sending Sij to
address the unknown failure. The first two terms in the model, is the sum of the spare parts cost
and fixed special vessel cost of Sij. The third term in the model is the total cost including vessel
cost, personnel cost and revenue loss incurred because of the travel to and from the turbine using
Sij. The fourth term in the model is the trip success using Sij. The trip success considers the total
cost including the vessel cost, personnel cost ad revenue loss incurred because of the repair activity
at the turbine using Sij and, the probability that the turbine failure could be solved by Sij. The fifth
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term in the model is the trip failure using Sij. The trip failure considers the total cost including the
vessel cost, personnel cost ad revenue loss to solve the known failure using an appropriate A-type RC
and, the probability that the turbine failure could not be solved by Sij. The waiting time and failure
identification time are constants in our proposed model and both the time elements does not affect the
decision and the results. Therefore, the waiting time and failure identification time are not included in
the model. In the Equations (6)–(9), j = 1 represents the A-type RC and j = 2 represents the B-type RC.

With appropriate inputs, the proposed model is capable of calculating the expected cost of
each decision choice. Utilizing the enumeration method, the expected total cost of all the resource
combinations are evaluated and, the resource combination with minimum expected cost is selected as
the cost effective option to address the unknown turbine failure. The mathematical model formulated
above includes both types of resource combinations described earlier in Section 2, as decision choices and
this allows the decision makers to consider all the available resource combinations for decision-making.
In addition, the simplicity of the model ensures that it takes less time and less technical effort to
solve the model. Hence, all the OWF stakeholders could use the model anytime. Given the failure
classifications, their probabilities and resource combinations (decision choices) and, using the proposed
model, the O&M team at any OWF would be able to figure out the cost-effective resource combination
to address the unknown turbine failure.

4. Case Study

The objective of the case study is to demonstrate the use of the proposed model for offshore wind
turbine maintenance. To simplify our analysis, a wind farm model with identical turbines is selected
for our case study.

4.1. Wind Farm Models

The OWEZ wind farm model reported in [11] is selected for the study. The OWEZ wind farm has
36 identical VESTAS 3 MW wind turbines with a total capacity of 108 MW. The wind farm is in the
North Sea at 10–18 km distance from the harbor and the turbines are installed to a maximum depth of
20 m. Four failure classifications for corrective maintenance reported in [11] for a 3 MW wind turbine
is applicable for the selected OWEZ wind farm model and is given in Table 1.

Table 1. Failure classifications for a 3 MW offshore wind turbine [11].

Maintenance
Rank

Failure
Classification Definition

1 Imperfect
maintenance

An imperfect maintenance operation where there is no requirement for
spare parts.

2 Minimal
replacement

A minimal replacement of small sized sub-components with a
maximum weight of 1 tonne.

3 Perfect
replacement I

A perfect replacement of medium weight sub-components with a
maximum weight of 50 tonnes.

4 Perfect
replacement II

A perfect replacement of medium or large sized sub-components, with
weight 50 tonnes to 100 tonnes.

In accordance with the vessel characteristics reported in [15] and the weight of spares under each
failure classification reported in [11], the A-type RC’s and B-type RC’s for corrective maintenance is
given in Table 2. From Table 2, it could be observed that S11 and S12 have identical resource elements,
which means both A-type and B-type RC’s are identical for imperfect maintenance in this study.

The probabilities of different failure classifications reported in [11] is applied to the OWEZ wind
farm model. The reported probabilities are considered as the base case model in the study. It can be
observed that majority of the corrective maintenance for the base case model is imperfect maintenance.
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Thus, the base case model is interpreted as OWF in which the turbines are relative new and their age is
less than 5 years, that is, the turbines are operating in its first 5-year service period.

As the base case model is interpreted as OWF with turbines that are less than 5 years old, three
other models are established for OWFs with increasing age of turbines with appropriate assumptions
to demonstrate the powerfulness of the proposed model for different OWFs. The model 1 represents
the OWF in which the turbines in operation are 5 to 10 years old. For the wind farm model 1, it is
assumed that the majority of corrective maintenance corresponds to minimal replacement and it has
the highest probability of occurrence. The probability of other failure classifications are then descended
in the order of imperfect maintenance, perfect replacement I and perfect replacement II.

The model 2 represents the OWF in which the turbines in operation are 10 to 20 years old. For
the wind farm model 2, it is assumed that the majority of corrective maintenance corresponds to
perfect replacement I and it has the highest probability of occurrence. The probability of other failure
classifications are then descended in the order of perfect replacement II, minimal replacement and
imperfect maintenance.

Table 2. Decision Choices [11,15].

Resource
Combination Resource Elements

S11 No Spare part + Access Vessel (Crew Transfer Vessel -small) + 2 maintenance personnel

S21
Required Spare part + Access Vessel (Crew Transfer Vessel -small) + 3 maintenance

personnel. (Use of permanent internal crane for replacement).

S31
Required Spare part + Crane Vessel + Access Vessel (Crew Transfer Vessel small) + 6

maintenance personnel.

S41
Required Spare part + Access Vessel (Crew Transfer Vessel -small) + Access Vessel (Jack-

Up Vessel) + 6 maintenance personnel.

S12 No Spare part + Access Vessel (Crew Transfer Vessel - small) + 2 maintenance personnel

S22
All Class B Spare parts + Access Vessel (Crew Transfer Vessel-Large) + 3 maintenance

personnel (Use of permanent internal crane for replacement).

S32
All Class B and C Spare parts + build-up crane with a vessel + Access Vessel (SUVs) + 6

maintenance personnel.

S42
All Class B, C and D spare parts + Access Vessel (SUVs) + Access Vessel (Jack- Up barge) +

6 maintenance personnel

The model 3 represents the OWF in which the turbines are either more than 20 years old or affected
by storms or other natural disasters. For the wind farm model 3, it is assumed that the majority of
corrective maintenance corresponds to perfect replacement II and it has the highest probability of
occurrence. The probability of other failure classifications are then descended in the order of perfect
replacement I, minimal replacement and imperfect maintenance. The reported probabilities for the
base case is changed for different failure classifications to represent the wind farm models 1, 2 and 3.
The probabilities of failure classifications of the base case model and the three different wind farm
models are given in Table 3. The probability numbers in Table 3 are absolute values and are not
in percentages.

Table 3. Probabilities of failure classifications for different OWF models [11].

Failure Classification
Probability

Base Case
Model

Wind Farm
Model 1

Wind Farm
Model 2

Wind Farm
Model 3

Imperfect maintenance 0.995165258 0.002353569 0.000995862 0.000995862
Minimal replacement 0.002353569 0.995165258 0.001485311 0.001485311
Perfect replacement I 0.000995862 0.001485311 0.995165258 0.002353569
Perfect replacement II 0.001485311 0.000995862 0.002353569 0.995165258
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4.2. Time and Cost Inputs

The values of time elements are essential inputs to find the expected total maintenance cost. Travel
time is calculated using a 14 km average distance of the wind turbines from the shore and average
speed of different access vessels. The repair time for rank 1 failure classification is assumed to be 4
hours in our study. It is reported in [14] that it will take 48 hours to switch out the component in
question and replace a working unit for major maintenance. This time reported in [14] is the repair
time for rank 2, 3 and 4 failure classifications in our study. The reported work in [11], which defined the
failure classifications, did not provide any weight data for individual spare parts. Based on the turbine
components listed under each failure classification reported in [11], the maximum cargo weight of
spare parts for a failure classification is considered as the cargo weight of a resource combination. The
fixed cost for corrective maintenance trip from [15] is the additional trip cost in this case study. All the
time and cost inputs required to find the expected total maintenance cost are given in Tables 4 and 5.

Table 4. Inputs to calculate expected total maintenance cost [11,14–16].

Resource
Combination

Travel
Speed
(km/h)

Travel Time
(h)

Repair Time
(h)

Access
Vessel

Cost/hour

Crane/Jack
up Vessel

Cost

Weight of
Spare Parts

(tonnes)

S11 37.04 0.76 4 $62.5 N/A 0
S21 37.04 0.76 48 $62.5 N/A 1
S31 37.04 0.76 48 $62.5 $105,259.5 50
S41 37.04 0.76 48 $62.5 $119,294.1 100
S12 37.04 0.76 4 $62.5 N/A 0
S22 46.3 0.6 48 $93.75 N/A 11
S32 18.52 1.5 48 $93.75 $105,259.5 600
S42 18.52 1.5 48 $93.75 $119,294.1 600

Table 5. Inputs to calculate expected total maintenance cost [17–19].

Parameter Values

Maintenance Personnel cost/hour 70
Cost/tonnage of spares 29.72

Revenue Loss/hour $18,684
Fixed cost for corrective maintenance trip for offshore wind turbine $500,000

4.3. Results

The expected total maintenance cost of each decision choice for a specific wind farm model,
is represented as a 4 × 2 matrix (there are eight decision choices in this study):

Zn =


z11 z12

z21 z22

z31 z32

z41 z42


where Zn is the cost matrix of the wind farm model n. The elements z′i js of the matrix Zn represent the
expected total maintenance cost values (in $’s) of sending respective S′i js for a specific wind farm model
n. That is, the element z11 represent the expected total maintenance cost of sending S11, the element z21

represent the expected total maintenance cost of sending S21, and so on. It is earlier stated in Section 4.1
that both A-type and B-type RC’s have identical resource elements for imperfect maintenance, which
indicates, the elements z11 and z12 of the matrix Zn will have identical values. The minimum of the z′i js
in the matrix Zn is selected as the optimal solution and the corresponding resource combination is
identified to be the cost-effective resource combination.
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Using the model in Section 3, the model inputs in Sections 4.1 and 4.2, and using the explicit
enumeration method the expected total maintenance cost is calculated for all the available resource
combinations (decision choices) for the different wind farm models of Table 3 and the results are shown
in matrix form.

The cost matrix for the base case model (Z0) is:

Z0 =


91951 91951

515401 922110
621730 1072754
637456 1087414


The cost matrix for the wind farm model 1 (Z1) is:

Z1 =


513354 513354
922366 922110
621935 1072960
637250 1087414


The cost matrix for the wind farm model 2 (Z2) is,

Z2 =


513931 513931
515045 512740

1039273 1072388
637821 1087414


The cost matrix for the wind farm model 3 (Z3) is:

Z3 =


513931 513931
515045 512740
622300 653925

1054794 1087414


The minimum value of the cost matrix Zn for the wind farm model n represents the optimal

solution, that is, the corresponding resource combination is identified to be the cost-effective
resource combination.

To prove the effectiveness of the proposed model, it is appropriate to compare the results of the
proposed model with the traditional practice of solving the described problem. When no information on
the failed turbine is obtained from the CM systems, generally the offshore O&M team send technicians
to inspect the failed turbine in a small Crew Transfer Vessel, identify the failure classification and then
send the required resource combination to solve the turbine failure. In order to compare the results of
the proposed model with the general practice, the cost of the general practice is assumed as the sum of
the inspection activity cost using S11 and the fixed cost of corrective maintenance trip for offshore wind
turbine. All the inputs presented in Sections 4.1 and 4.2 are used to calculate this cost of traditional
practice and is found to be $514,353. The estimated cost of traditional practice is used to compare the
results of the proposed model and to find the cost savings, if any.

The cost-effective resource combination for each wind farm model considered in this study with
the total expected maintenance cost and, the cost savings in comparison with the traditional practice
are given in Table 6.
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Table 6. Cost-effective resource combination for different wind farm models given in Table 3.

Wind Farm Model Cost-Effective Resource
Combination

Expected Total
Maintenance Cost

(in $’s)

Cost Savings
(in Comparison with
Traditional Practice)

Base case S11 91591 82.12%
Model 1 S11 513354 0.19%
Model 2 S22 512740 0.31%
Model 3 S22 512740 0.31%

The optimal resource combination can be directly selected from Table 6. From the results, it could
be observed that, S11 (which is same as S12 in this study) is the cost-effective option to address the
corrective maintenance for turbines that are in operation for less than 10 years (base case model and
wind farm model 1). In addition, S22 is the cost-effective option to address the corrective maintenance
for turbines that are in operation for more than 10 years (wind farm model 2 and 3). Comparing
the results of the proposed model with the traditional practice, the proposed model produces very
high cost savings of 82.12% for the base case model and a considerable cost savings for the other
three different wind farm models. It has to be noted that the proposed model is for one corrective
maintenance trip and when there are multiple corrective maintenance problem instances with no
information from CM systems, the cost savings will be more for the wind farm models 1, 2 and 3.

The results that are generated from the model are not only dependent on the probability of failure
classifications (given in Table 3) but also on the cost estimates (given in Tables 4 and 5). The value
of the “fixed cost for corrective maintenance trip for an offshore wind turbine” in Table 5 is assumed
to be the same for all types of corrective maintenance because of insufficient data and this affects
both the estimated cost of the general practice and also the results generated from the models. This
assumption on the fixed cost for corrective maintenance is a key reason that the base case has a huge
amount of savings in comparison with the other three wind farm models. More accurate fixed costs
for different types of corrective maintenance will result in better estimates for the general practice
and, more accurate results for the wind farm models 1, 2 and 3. Accurate cost data in maintenance
decision-making and sensitivity analysis of the proposed model to the cost estimates (in Tables 4 and 5)
will be studied in our future work.

The case study provides a better understanding of the use of the proposed model to address a
corrective maintenance situation when there is no information on turbine failure type. Three different
wind farm models are considered in addition to the base case and the powerfulness of the model for
different OWFs is demonstrated. The case study also gives us an understanding that when the number
of failure classifications for an OWT/OWF increase, then the complexity in finding the cost-effective
resource combination also increases.

5. Summary and Conclusions

In this paper, a short-term resource decision problem for corrective maintenance at offshore
wind turbine is identified and described. A simple mathematical model is proposed to solve the
decision problem. The model is proposed in such a way that the expected cost of the decision is mainly
dependent on the probabilities of occurrences of failure classifications. The maintenance team at all
offshore wind farm will have their own failure classifications, resource combinations and access to
accurate failure data and, this model will assist the maintenance team in making resource decisions to
address the corrective maintenance problem stated in this paper. Possible future work includes the
lead-time and logistic time in the decision model and consider the uncertainty in weather and sea-state
conditions and the hydrodynamics of the sea in the model.
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