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Abstract: Energy performance certification is an important tool for the assessment and improvement
of energy efficiency in buildings. In this context, estimating building energy demand also in a
quick and reliable way, for different combinations of building features, is a key issue for architects
and engineers who wish, for example, to benchmark the performance of a stock of buildings or
optimise a refurbishment strategy. This paper proposes a methodology for (i) the automatic estimation
of the building Primary Energy Demand for space heating (PEDh) and (ii) the characterization of the
relationship between the PEDh value and the main building features reported by Energy Performance
Certificates (EPCs). The proposed methodology relies on a two-layer approach and was developed
on a database of almost 90,000 EPCs of flats in the Piedmont region of Italy. First, the classification
layer estimates the segment of energy demand for a flat. Then, the regression layer estimates the
PEDh value for the same flat. A different regression model is built for each segment of energy
demand. Four different machine learning algorithms (Decision Tree, Support Vector Machine,
Random Forest, Artificial Neural Network) are used and compared in both layers. Compared to
the current state-of-the-art, this paper brings a contribution in the use of data mining techniques
for the asset rating of building performance, introducing a novel approach based on the use of
independent data-driven models. Such configuration makes the methodology flexible and adaptable
to different EPCs datasets. Experimental results demonstrate that the proposed methodology can
estimate the energy demand with reasonable errors, using a small set of building features. Moreover,
the use of Decision Tree algorithm enables a concise interpretation of the quantitative rules used
for the estimation of the energy demand. The methodology can be useful during both designing
and refurbishment of buildings, to quickly estimate the expected building energy demand and set
credible targets for improving performance.
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1. Introduction

Energy efficiency is a growing policy priority for many countries around the world, for both
economic and environmental reasons. In the 28 countries that are part of the International Energy
Agency (IEA), buildings are responsible for about the 21% of total final energy consumption (26%
in Italy) [1]. The amount of this energy used for heating and cooling systems is about 55% in the
residential sector (74% in Italy) [1]. Regulatory bodies in several countries took actions to reduce
wasteful energy consumption and greenhouse gas emissions and to encourage the use of renewable
sources and the design of energy efficient buildings [2].

In most cases, the building energy performance rating has been indicated as a cornerstone to
pursue the aforementioned aims. For instance, the Energy Performance of Buildings Directive (EPBD),
issued by the European Commission, makes the evaluation of energy performance compulsory for
new and existing buildings [2].

The EPBD provides member states with guidelines for the building energy performance certification
process, which includes energy performance rating and energy labeling. The former is based on a scale
of values referred to one or more significant parameters like Energy Use Intensity (EUI) and Primary
Energy Demand (PED), while the latter consists in the assignment of an energy performance class (or
label) to the building, based on the energy performance rating value. The EPBD lets member states
to define the actual implementation of its directives. In Italy the EPBD is currently implemented by
various national legislative decrees and technical standards, but there are different rating schemes
developed in local areas (regions and autonomous provinces) [3].

Among the existing rating systems worldwide, the Building Research Establishment’s Environmental
Assessment Method (BREEAM) developed in the United Kingdom in 1990, is the first and leading
assessment method. Leadership in Energy and Environmental Design (LEED) developed in the United
States in 1998, is nearly the dominant building assessment system (implemented in more than
40 countries). Other well-known methods include Comprehensive Assessment System for Building
Environmental Efficiency (CASBEE) of Japan, National Australian Built Environment Rating System
(NABERS), Building Environmental Assessment Method of Hong Kong (HK-BEAM), Green Mark of
Singapore, EcoProfile of Norway, Deutche Gesellschaft fur Nachhaltiges Bauen (DGNB) of Germany,
Green Building Label (GBL) of China [4–6].

The interest in buildings energy performance assessment is increased in the last years, especially
to estimate how different features affect the building efficiency. Indeed, from a design perspective,
it is very important to determine the effect of the building features on its future energy performance
in the early designing phase [7]. Similarly, for existing buildings, it could be useful to evaluate the
suitability of a refurbishment plan [8,9]. Whatever the used approach, estimating building energy
performance in a quick and reliable way, for different combinations of building features, is a key issue
for different actors including public authorities [10]. In this context, Energy Performance Certificate
(EPC) provides theoretical measure of how efficient a building could be if operated in standard
conditions. However, the performance gap, i.e., the difference between estimated and actual energy
performance could be significant. For instance, in [11] is stated that for the Swedish EPCs dataset the
assessed performance gap is about the 20% for energy consumption assessments. An EPC is therefore
not fully representative of the actual performance during operation but makes it possible to perform
comparisons and benchmarking analysis between buildings.

In this paper we propose the Heating Energy Demand Estimation for Building Asset Rating
(HEDEBAR) methodology providing the following features. (i) HEDEBAR allows the automatic
estimation of the Primary Energy Demand for space heating (PEDh) reported by Energy Performance
Certificates (EPCs) (calculated in “standard rating” conditions, according to EN ISO 13790 [12], UNI TS
11300-1 [13], and UNI TS 11300-2 [14]). (ii) Moreover, HEDEBAR allows to unfold the criteria adopted
during the asset rating of real buildings, through the extraction of the principal building features that
contribute to estimate the building energy demand. The purpose is twofold: (i) predictive, as we define
models for the robust energy rating of residential buildings, through the estimation of their PEDh;
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(ii) descriptive, as we provide an interpretation of the method used to issue EPCs, by highlighting the
main features that determine the energy demand of buildings.

The HEDEBAR methodology uses data from EPCs to learn the criteria used by the rating system
to issue them. It is based on the hypothesis that building features affect the energy demand in different
ways for different classes of building energy efficiency. Therefore, a two-layer approach is defined to
differentiate the analysis of buildings that belong to distinct segments of energy demand (i.e., distinct
ranges of PEDh value) and to eventually increase the precision in predicting the PEDh value. In
the first layer a classification problem is considered to estimate the segment of energy demand of the
building to be analyzed. Then, in the second layer a regression problem is considered to estimate the
PEDh value for the same building. We build a different regression model for each segment of energy
demand. The proposed two-layer approach allows us to increase the prediction accuracy with respect
to a single layer model, which disregards the possible segment of energy demand of the building.

As a case study, the HEDEBAR methodology has been validated on a dataset of real EPCs of
almost 90,000 flats in the Piedmont region of Italy [15–17] released as open data by the Piedmont
region. These data are available on a Web platform developed by CSI Piemonte (the Information System
Consortium) and are regulated by the Piedmont Region authority (Sustainable Energy Development
Sector).Experimental results obtained on such open data demonstrated that HEDEBAR allows
estimating PEDh with a reasonable error by only analyzing a small set of 10 building features. Extracted
knowledge, human-readable, can be easily exploited by different stakeholders during the decision
making process, e.g., public authorities and regulatory bodies should plan future energy policies that
leverage on specific building features [18].

The proposed methodology can be useful for designers and building stakeholders to estimate
PEDh and to set reference threshold values for physical input variables. Due to the large dimension
of the adopted dataset, the information provided can be considered representative of residential
dwelling stock in Piedmont. Moreover, the proposed models are based on statistical variables easy to
be adaptable to different datasets. Moreover the developed models can be profitably used by local
authorities for a preliminary and quick estimation of PEDh as a function of different values of few
influencing attributes in order to perform benchmarking analysis or energy savings scenario analyses.

The paper is organized as follows: Section 2 analyses relevant works in the analysis of data from
energy performance assessment; Section 3 describes the HEDEBAR methodology adopted to find a
model for the characterization of heating energy demand; Section 4 shows the experimental results,
which are then discussed in Section 5.

2. Related Work

Three main types of buildings energy performance assessment are commonly acknowledged [19]:
Energy benchmarking, i.e., the comparison of Energy Performance Indicators (EPIs) of a building with a
sample representative of similar buildings; Energy rating, i.e., the evaluation and classification of the
building energy performance according to predefined criteria; and Energy labeling, i.e., the assignment
of an energy performance class (or label) to the building, according to a scale of values defined for
some relevant parameter (e.g., EUI, PED).

Energy rating can be implemented in the following ways: (i) measured (or operational) rating, based
on real metering on-site [20] and (ii) calculated rating, based on ideal energy use. Measured rating is
mostly used in the operation and maintenance phases of existing buildings [21]. Calculated rating
is more suitable in the design phase of new buildings, in particular with the aid of Building Energy
Simulation (BES) software like in the case of LEED and BREEAM rating systems [6,22]. Calculated
rating is further divided into asset rating and tailored rating. While asset rating methods consider
standard usage patterns and climatic conditions and can be shaped either to building designs or to
existing buildings, tailored ratings consider actual conditions and usage patterns for the buildings
under analysis.
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Within the scientific context, several research activities have been carried out on buildings energy
performance assessment, for: (i) predicting energy demand [7,10,23] and energy class [24], (ii) rating
and benchmarking [25–28], (iii) individuating representative buildings for different classes of energy
performance [29–31], (iv) characterizing the relationship between energy demand and relevant building
features [32–34], and (v) improving existing methods, also using new model based on data mining
algorithms like regression models, decision trees, neural networks, and clustering [24,32,35–38].

Several works have proposed a benchmarking of different types of buildings. Dall’O’ et al. [25]
analyse a real data set of energy certificates to assess the energy performance, to detect anomalies in the
registered certificates and to quantify the energy retrofit potential in existing buildings. Chung et al. [26]
developed a benchmarking process for energy efficiency of commercial buildings by means of Multiple
Regression Analysis (MRA). Gao and Malkawi [29] use clustering to classify buildings according to
multiple features, like physical properties, environmental conditions, occupancy. Lara et al. [30] adopt
the cluster analysis to find out a few samples representative of about 60 buildings, in order to optimize
the energy retrofit measures. Hong et al. [27] use an approach based on case-based reasoning, MRA,
ANN and GA, to produce a methodology for operational rating with higher explanatory power and
higher prediction accuracy at the same time. A parallel research effort by Acquaviva et al. [39] has
been devoted to efficiently compute inter- and intra-building performance indicators on fine-grained
thermal energy consumption data for a large set of buildings located in a major Italian city. Tso and
Yau [37] compared the accuracy of linear regression, ANN, and decision tree in predicting average
weekly electricity consumption during both summer and winter in Hong Kong. Koo et al. [7] use
the finite element method to estimate the heating and cooling energy demand of buildings, using
data about building envelope design. In [10] a decision tree is used to model the real consumption of
residential buildings in order to predict the energy use of newly designed buildings. Melo et al. [24] use
ANN to improve the accuracy of surrogate models for labeling purposes, based on simulations results.
Khayatian et al. [35] tackle the problem of uniformity of criteria among different certificates, therefore
they use ANNs to predict the heating energy demand and to validate a dataset of energy certificates.

The analysis of real data from EPC databases has been performed in various countries [11]. The
authors in Fabbri et al. [40] discuss about the effects of EPBD Directive and Italian EPC system
on the real estate market prospective. The study presented in Hjortling et al. [41] provides an
energy consumption baseline for buildings in Sweden, using data from 186k energy performance
certificates issued for commercial buildings and based on energy bills rather than on theoretical
calculations. The paper shows that real energy consumption is often higher than the one stipulated
by the building code. The methodology presented in Xiao et al. [42] exploits a cluster analysis of
the energy consumption (EUI excluding District Heating) of office buildings in China, to study its
statistical distribution characteristics. It was found that the distribution of energy consumption has
quite different characteristics than in Japan and the US. Other analyses of EPCs aimed at defining
the current energy consumption baseline of existing buildings in Greece and Spain are presented
respectively in Dascalaki et al. [43] and Gangolells et al. [44].

Compared to the current state-of-the-art, this paper brings a contribution in the use of data mining
techniques for the asset rating of buildings, both in methodological and analytical terms. From the
methodological perspective, the paper proposes a novel approach to characterize the heating energy
demand of buildings using multiple independent models for different building segments. From the
analytical perspective, the proposed approach estimates the heating energy demand with reasonable
errors, using a small set of building features and generating interpretable models that provide useful
information about the most relevant features affecting energy demand.

3. Data Analysis Methodology

The HEDEBAR (Heating Energy Demand Estimation for Building Asset Rating) methodology
estimates the heating energy demand of residential flats as a model of a few influencing features available
within Energy Performance Certificates (EPCs).
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HEDEBAR considers different building features that affect the energy demand. It is based on the
hypothesis that the impact of each feature over the energy demand varies for different segments of
values of the same energy demand. Hence, a two-layer approach has been defined to model this aspect.
The logical components of HEDEBAR are represented in Figure 1 and they are briefly described below.

Figure 1. The proposed HEDEBAR methodology for automatic asset rating.

Data collection and preprocessing includes all the preliminary tasks necessary to provide the proper
data set to the algorithms that operate in the later phases. Specifically, the Data collection component
takes data from the energy certificates and other contextual information. Data preprocessing includes
removing records with errors and missing values; discarding features that are useless to energy
demand modeling; and enriching the resulting data set with contextual information not included in
EPCs. These steps are better described in Section 3.2.

The Segment estimation is the first phase of the two-layer approach. Different classification
algorithms have been trained during this step, to learn a classification model that properly assigns
flats to different predefined segments of energy demand, considering only the selected features.

The Local energy demand prediction is the second phase of the two-layer approach. It uses regression
algorithms to learn a regression model for estimating the heating energy demand considering only the
selected features. An independent regression model for each segment of the first layer has been trained
and tested.

During the two phases of the two-layer approach, the performance of each algorithm has been
assessed in order to select the best one. When two or more algorithms have similar prediction
performances, the one generating the most interpretable, i.e., human-readable model is preferred.

The two-layer approach provides a twofold output: the classification and regression models for the
analyzed flats, useful to understand the features with the highest explanatory power with respect to
the energy demand and to highlight the differences among the segments; the heating energy demand
prediction for new flats.
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3.1. Flat Characterization

The EPC includes the different features of a building affecting its energy performance as well
as the variables used to quantify its energy demand. The feature selection process has been driven
by previous experiences on EPCs datasets analysed by the authors [15,16] with the aim of using few
input variables that are also easy to be collected. The following four main categories of input variables
were identified for the purpose of the analysis: (i) geometry, (ii) envelope, (iii) time, and (iv) system. The
categories are briefly described below, while Table 1 reports the relevant features for each of them.

Geometry. The variables in this category describe the different geometric features of the flat, which
have an impact on its energy performance. The category includes variables such as average ceiling
height, heat transfer surface and heated gross volume of the flat.

Envelope. The features in this category are related to the physical properties of the building (i.e., the
thermal transmittance values of the opaque and transparent building envelope). In this category
are also considered the dynamic characteristics of the building envelope through the variable qenv .
This variable is expressed as an ordinal attribute that ranges from 1 to 5. The five quality classes are
related to specific numerical ranges of time lag and decrement factor that can be extracted from a table
provided in DM 26/6/2009 [45].

Time. This category includes time variables such as the building construction year.

System. This category includes features related to the heating system (i.e., the average system global
efficiency for space heating). The average global efficiency of the heating system is calculated on
the basis of the standard values of efficiency for each sub-system (generation, distribution, control,
emission) according to UNI TS 11300-2 [14].

Among all the variables considered in this study, the Primary Energy Demand for space heating
PEDh has been selected as the target variable of the analysis. PEDh (expressed in kWh/m2y) is an
energy related variable defined for benchmarking purposes. It is an estimation of the amount of real
energy consumption of a flat in standard use conditions and it contributes to assign an energy class
label to the flat. The PEDh value is estimated starting from the remaining explanatory variables included
in Table 1 and can be used to compare different flats. In particular, similar pools of input variables
proved to be robust enough for modeling in an effective way the building energy demand [15,16].
The PEDh value refers to the period of a heating season and it is normalized by the flat floor area.
PEDh contributes to the evaluation of the overall Primary Energy Demand of flats (PED) together
with the Primary Energy Demand for domestic hot water (PEDw). The heating energy demand is
evaluated considering a building energy balance. The modelling of the building geometry considers
real shapes and self or over shading of other buildings. The quasi steady-state calculation method
is based on the monthly balance of heat losses (transmission and ventilation) and heat gains (solar
and internal) evaluated in monthly average conditions. Transmission heat losses are estimated taking
into account opaque and transparent surfaces and as well as the thermal bridging effect. In “Standard
Rating”, parametric values depending on floor area or heated net volume are taken into account when
evaluating the ventilation rate and internal heat gains. The dynamic effects on the net heating energy
demand are taken into account by introducing the dynamic parameters, utilization factor and an
adjustment of the set-point temperature for intermittent heating/cooling or set-back. These parameters
depend on the thermal inertia of the building, on the ratio of heat gains to heat losses and on the
occupancy/system management schedules. The annual PED for space heating is calculated from the
net energy demand through different system efficiencies (emission, control, distribution, generation)
considering the thermal losses in the various sub-systems. For the heating season, the average system
efficiency is defined as the ratio between the annual net energy and the annual PED for heating. The
PED includes also the electrical energy demand of auxiliary systems.
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Table 1. List of features selected to characterize and estimate the heating energy demand with the
HEDEBAR asset rating methodology.

Category Name Symbol Unit Range

Explanatory variables

Floor area A m2 IR+

Heat transfer surface S m2 IR+

Geometry Average ceiling height H m IR+

Gross Heated Volume V m3 IR+

Aspect ratio R m−1 IR+

Average U-value of vertical
opaque envelope Uo W/m2K IR+

Envelope Average U-value of
the windows Uw W/m2K IR+

Quality of building envelope qenv - {1, 2, 3, 4, 5} ⊂ IN

Time Construction year yc y IN

System Average global efficiency for
space heating ηh - [0, 1] ⊂ IR

Target variable

Energy Normalized primary energy
demand for space heating PEDh kWh/m2y IR+

3.2. Data Preprocessing

The whole raw data set gathered from EPCs usually includes many building features, represented
through variables of different data types such as numeric (integer or real), nominal, textual, and
boolean. However, some features could be not relevant for the subsequent data analysis and their
inclusion in the features set would increase the complexity of the generated models. Most of the not
selected variables are poorly related with the PEDh (e.g., textual descriptions, address of the flat) or
include attributes with a high explanatory potential that are not so easy to be assessed without running
a simulation in advance (e.g., heat losses for transmission, ventilation and infiltration). Moreover, data
sets derived from energy certificates filled by auditors could contain imputation errors which can
badly affect the quality of the extracted knowledge.

To address the above issues and to improve both accuracy and usefulness of the data analytics
phase, HEDEBAR includes a preprocessing step. This step aims to (i) clean the original data collection
to remove outliers and errors in data and (ii) enrich data with additional contextual information to cope
with external environmental conditions that could differently affect the estimation of the PEDh value
for each flat. These steps are better described below.

Data cleaning. The whole data set is firstly inspected based on the advice of domain experts to remove
the less relevant features. In addition, on the selected input variables a data cleaning analysis was
performed. The data cleaning phase is crucial in order to ensure the robustness of the analysis. In fact,
EPCs datasets can be characterized low quality (in terms of attribute inconsistencies) [11]. However,
the domain expertise in the energy and buildings field can prevent or at least limit inconsistency issues.
According to [11] the consistency checks considered in this study are:

(i) Constraint rules for columns (e.g., area or volume cannot be negative); (ii) Domain expert
analysis of values of the attributes (e.g., physical thresholds of system efficiency or thermal
transmittance); (iii) Statistical checks (e.g., outlier detection though box plots).

Data enrichment. Data collected from the energy certificates are enriched with additional contextual
information acquired from external data sources. To cope with external environmental conditions that
could differently affect the estimation of the PEDh value for each flat, PEDh has been recalculated
according to a reference standard climatic condition. In particular, all the EPCs issued in Piedmont
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region are evaluated for both the standard climatic conditions of the actual city (in which the building
is located), and the one of Turin. The PEDh considered as target variable in this study is then expressed
for all flats as if they were located in Turin considering the same standard monthly outdoor temperature
and solar radiation. Therefore, comparisons among flats can be done regardless of their actual location.
However, if it is necessary to assess the performance of a flat in a city different from Turin, a data
scaling based on standard Degree Days (DD) can be considered a valuable procedure. Specifically, to
scale the estimated PEDh it is possible to multiply it for the ratio between the standard DD value of
the city where the flat is located and the ones of Turin.

3.3. Two-Layer Approach for the Estimation of Heating Energy Demand

The HEDEBAR methodology makes use of the features from energy certificates as explanatory
variables to predict the PEDh value of a flat.

The impact of each feature on the PEDh value can vary over different classes of energy efficiency.
To cope for this aspect, distinct ranges of PEDh value, called segments of energy demand or simply
segments, can be defined to partition the data set into groups of flats with more uniform energy
efficiency. This segmentation allows HEDEBAR to analyze independently the different classes of flat
energy demand (e.g., low, medium, and high).

The estimation of the PEDh value is structured in HEDEBAR as a two-layer approach, including
two phases named Segment estimation and Local energy demand prediction. The two phases are applied in
sequence to accurately predict the PEDh value of a flat:

• Firstly, the Segment estimation phase identifies the expected (discrete) segment of energy demand
of the flat. The approach considers a set of reference segments of energy demand of a flat. This
task has been modeled as a classification problem. A classifier is used to assign each flat to the
corresponding (discrete) segment of energy demand based on its features.

• Then, the Local energy demand prediction phase predicts the (continuous) numeric value of PEDh for
the flat, based on its features. This second task is formulated as a regression problem. A different
regression model is trained in advance for each segment of energy demand.

Thus, in HEDEBAR a new flat (with unknown energy demand PEDh) is first classified into a
segment of energy demand through the Segment estimation phase. Then, the PEDh value of the flat is
estimated through the Local energy demand prediction phase, using the regression model assigned to
that segment.

To generate the classification and regression models used in the two phases, the HEDEBAR system
can easily integrate most classification and regression algorithms currently available in literature. To
select the most appropriate algorithms, two complementary aspects were considered: (i) the ability
of the algorithm to accurately predict the segment of energy demand and the PEDh value for a flat, and
(ii) the interpretability of the model it generates. Based on these criteria, we selected four reference
algorithms to be evaluated for integration in the two phases of HEDEBAR: Artificial Neural Network
(ANN), Support Vector Machine (SVM) [46], Reduced Error Pruning Tree (REPT), and Random Forest (RF).
ANN and SVM methods provided good performances for both classification and regression tasks
in several applications. However, these methods generate non-interpretable models and are usually
characterized by high computational cost for building the model. REPT and RF methods have good
performances as well, but with overall lower computational costs. Moreover, REPT algorithm generates
an interpretable model, which makes possible a better understanding of the relationship between the
features and the energy demand. Finally, all the four algorithms have a good degree of robustness to
outliers and missing values in the data set, even if in HEDEBAR these issues are handled in advance
in the data preprocessing phases. The open source Rapid Miner v5.3.0 toolkit [47] and the statistical
software R [48] have been used for the development of the classification and regression algorithms.
The following paragraphs provide an overview of the main characteristics of four algorithms.
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Artificial Neural Network (ANN). Inspired by the structure and behavior of biological neural
networks, Artificial Neural Networks (ANNs) are often used to model complex relationships between
input and output variables or to find patterns in data. An ANN consists of an interconnected group of
nodes (neurons), organized in different layers, which receive inputs from other nodes and return as
output a value computed as a function of suitably weighted inputs. A very popular type of ANN is
the feed-forward neural network, where information moves through neurons only in forward direction,
from the input to the output nodes.

The training of ANN is usually performed through back-propagation algorithm: the final outputs
are compared with the correct values of training samples to compute the value of a predefined
error-function. The error is then fed back through the network to adjust the weights of each connection
in order to reduce the value of the error function. After repeating this process for a sufficiently
large number of training cycles, the network usually converges to some state where the error of the
calculations is small [49].

Support Vector Machine (SVM). Based on the work of Vladimir Vapnik in statistical learning
theory [50], Support Vector Machines (SVMs) are a set of supervised learning methods, which can
be used for classification or regression. A SVM model represents data samples as points in space,
separated by a set of hyperplanes, so that the samples of the different categories are divided by a clear
gap that is as wide as possible. Intuitively, a good separation is achieved by the hyperplane that has
the largest distance to the nearest training data points of any class (functional margin), since, in general,
the larger is the margin the lower is the generalization error of the classifier. When the samples are not
linearly separable, soft-margin SVMs allow for classification errors during the training, to produce a
more generic model for new data [51].

SVMs map samples into a higher-dimensional space, where presumably the separation is easier.
However, the computational and storage requirements of SVMs increase rapidly with the number of
training vectors and with the space dimension. To keep the computational load reasonable, SVMs use
a kernel function K(x,y) that simplifies the computation of dot products in terms of the variables in the
original space. The kernel function can be of different type such as linear, polynomial, sigmoid [49].

Reduced Error Pruning Tree (REPT). Reduced Error Pruning Tree (REPT) [52] is a fast decision tree
learning algorithm that builds classification or regression trees using information gain or variance
reduction as splitting criterion. More specifically, it generates multiple trees and it picks the best one,
that will be considered as the representative. REPT uses reduced error pruning with back fitting method
to prune the tree. At each iteration, a validation subset is used to estimate the Mean Square Error
(MSE) on the predictions made by the tree. Starting at the leaves, each node is replaced with its most
popular class and if the prediction accuracy is not affected then the change is kept.

Optimized for speed, REPT only sorts values of numeric attributes once at the beginning of the
model preparation. Reduced error pruning has the advantage of simplicity and speed, moreover the
representation of the data in form of a tree has the advantage, compared with other approaches, of
being meaningful and easy to interpret.

Random Forest (RF). Random Forest is a combination of tree predictors such that each tree depends on
the values of a random vector sampled independently and with the same distribution for all trees in
the forest [53]. The generalization error for forests converges almost surely to a limit as the number
of trees in the forest becomes large. RF is based on bagging, a technique for reducing the variance
of an estimated prediction function. Indeed, RF fits a number of decision tree classifiers on various
sub-samples of the data set (and also on various subsets of features) and uses averaging to improve
the predictive accuracy and to control over-fitting. The resulting model is a voting model of all the
random trees in the forest.
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4. Case Study

In this section we validate the effectiveness and the usability of the proposed HEDEBAR
methodology focusing on the following aspects: (i) the ability to correctly estimate the segment
of energy demand for each flat, and (ii) the ability to accurately predict the PEDh value for each
flat. The experimental analysis also addresses (iii) the selection of the classification and regression
algorithms integrated in the two layers of the system, (iv) the comparison with a single layer approach
in terms of prediction error and overall execution time, (v) the impact of the system configuration
parameters, and (vi) the explanation of the main variables that determine the membership of flats into
segments and their PEDh values.

We experimentally evaluated HEDEBAR on a real data collection of EPCs issued in 2013 for
buildings located in the Piedmont region, North West of Italy. The data set includes approximately
90,000 energy certificates, of flats located across the 8 provinces of the Piedmont region.

4.1. Characterization of Flat Segments

As explained in the methodology section, the data set has been partitioned into different segments
according to the values of variable PEDh with the aim of grouping together flats with similar
energy efficiency.

Specifically, three reference segments have been considered representing respectively low energy
demand flats (segment s1), high energy demand flats (s2), and very high energy demand flats (s3). Data set
splitting into segments has been done considering also the reference value range of PEDh specified
in [15,16]. Segment s1 includes flats with PEDh values between 0 and 100 kWh/m2y, while flats in
segment s2 have 100 kWh/m2y ≤ PEDh ≤ 300 kWh/m2y, and in segment s3 PEDh ≥ 300 kWh/m2y.

The three segments result into sets with the following cardinalities. The larger segment is s2

including 39,003 flats, followed by s1 with 25,930 flats, and the s3 with 21,176 flats.
The dataset has been split into three segments to identify representative groups of energy

performance certificates representing flats with similar performances. Specifically, a group represents
flats with low energy demand, the second includes flats with medium-high energy demand, while the
last one includes flats with very high energy demand. The three segments also allow guaranteeing
a significant number of flats in each group together with a variable distribution for each feature
under analysis. A number of segment higher than three should lead to very small groups of energy
performance certificates with a limited data variability for each variable. In this case an estimation
model for a segment should not be general (i.e., data overfitting). A small number of segments should
lead to the definition of complex estimation models of heating energy demand. In this case derived
models could not be easily understood and quickly exploited by a domain expert.

Box plots in Figure 2 show the distribution for some interesting variables (i.e., average U-value
of vertical transparent envelope, average global efficiency for space heating, construction year, and
aspect ratio) separately for each segment under analysis. In general, all segments present a good
variability range for each variable under analysis. Specifically, segment s1 includes a set of residential
flats characterized by a low energy demand. In fact, flats in this group are characterized by the
lowest values of Uw (median 2.11, IQR [1.75, 2.76]), Uo (median 0.45, IQR [0.33, 0.67]) and R (median
0.6, IQR [0.4, 0.7]); and the highest values of ηh (median 0.81, IQR [0.73, 0.87]) and yc (median 2004,
IQR [1970, 2009]). On the other hand, segment s3 includes flats characterized by a very high energy
demand, represented by the highest values of Uw (median 3.66, IQR [2.80, 4.62]), Uo (median 0.98,
IQR [0.83, 1.04]) and R (median 0.9, IQR [0.7, 1.0]); and the lowest values of ηh (median 0.68 range
[0.60, 0.73]) and of yc (median 1962, IQR [1940, 1973]. Finally, segment s2 is characterized by median
values and IQRs of the five variables that lie between those of the two previous segments.
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Figure 2. Box plots of the values of 5 input variables evaluated for each of the three different segments
of energy demand.

Figure 3 shows the distribution of the certificates across the 8 Piedmont provinces, separately for
each segment. The three charts are quite similar to each other, demonstrating that the geographical
distribution is very similar across the three segments.

Figure 3. Distribution of the buildings across the 8 provinces of the Piedmont region for each of the
three different segments of energy demand.

4.2. Segment Estimation

The classification task aims at assigning each new flat into the correct segment of energy demand.
The classes of the classification task are the three segments presented in Section 4.1, identified by
the nominal labels s1, s2, and s3. All the four classification algorithms integrated in HEDEBAR (i.e.,
ANN, REPT, RF and SVM) have been experimentally evaluated for the classification of flats. The
algorithm providing the classification model with the best classification performance has been selected
as reference for this phase.

To validate the results of the classification process four established performance measures [54]
have been considered. The overall quality of the classification model is evaluated in terms of accuracy.
This measure counts the total number of flats correctly assigned to their corresponding segment.
However, the unbalanced distribution of flats in the three segments could lead to a biased value of
accuracy, as it could be mostly influenced by bigger segments. Therefore, other measures have been
also used for a more accurate evaluation of the classification model. Per-class classifier predictions were
evaluated according to precision, recall, and F1-measure. Precision(si) indicates the percentage of flats
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that are correctly revealed as in segment si. Recall(si) indicates the number of flats assigned to segment
si with respect to the total number of flats actually in si. The F1-measure(si), which is computed as
the harmonic average of Precision(si) and Recall(si), quantitatively estimates the balancing between
Recall(si) and Precision(si). In the experiment evaluation, we computed the precision, recall, and
F1-measure values for each class label corresponding to each of the three segments.

A good trade-off between recall and precision is needed to properly predict the PEDh values for a
new flat. On the one side, high precision values on most (all) segments are crucial to foster an accurate
prediction of the PEDh values in the subsequent regression task. Indeed, the correct classification
of a flat into the corresponding segment facilitates the subsequent prediction of the PEDh value for
the flat. In fact, this prediction is performed through a model trained using data of flats with similar
energy performance. A low Precision(si) value indicates that many flats were mistakenly classified into
segment si. This would result in erroneous predictions of PEDh values in the second step. On the other
hand, achieving high recall values on most segments is desirable as well. A low Recall(si) indicates
that few flats of segment si are correctly classified into si, and they have been wrongly assigned to a
segment other than s1. This wrong assignment would result into an erroneous predictions of PEDh
values due to the selection of a less appropriate prediction model in the second step.

Table 2 reports the results achieved by the four classification algorithms integrated into HEDEBAR.
It shows the accuracy on the overall data set as well as precision, recall, and F1-measure for the
three segments.

Table 2. Overall classification accuracy and precision, recall and F1-measure for each segment of ANN,
REPT, RF and SVM algorithms.

ANN REPT RF SVM

Overall
Accuracy (%) 67.51 82.03 85.67 67.24

Segment s1
Precision (%) 77.71 87.70 90.52 82.49

Recall (%) 70.03 83.84 87.27 61.97
F1-measure (%) 73.67 85.73 88.87 70.77

Segment s2
Precision (%) 62.11 80.40 82.65 60.68

Recall (%) 75.54 80.56 85.49 81.74
F1-measure (%) 68.17 80.48 84.05 69.56

Segment s3
Precision (%) 68.65 78.60 83.58 70.62

Recall (%) 49.62 82.53 81.96 46.98
F1-measure (%) 57.60 74.93 82.76 56.42

The RF classifier provides the highest accuracy value (85.67%) followed by REPT (82.03%), ANN
(67.51%) and SVM (67.24%). Moreover, RF achieves also the best F1-measure on all segments (88.87%,
84.05%, and 82.76% in segments s1, s2 and s3 respectively). More in detail, RF obtains the highest
precision value for all segments (90%, 82.65%, and 83.58% for segments s1, s2, and s3 respectively).
RF also provides the highest recall values for two segments (87.27% and 85.49% for segments s1 and
s2 respectively), while the recall obtained on segment s3 (81.96%) is very close to the value provided
by algorithm REPT (82.53%), which is the highest recall value over the four algorithms. Since the RF
classifier achieves the highest values for almost all performance parameters, we chose it as reference
algorithm for creating the model which classifies a new flat into the corresponding segment.

REPT is the second best algorithm for almost all performance parameters, providing accuracy,
precision and recall values lower than those of RF, but still more than acceptable. An additional key
point of REPT is the fact that this algorithm builds an interpretable classification model. This model is
a decision tree from which human-readable classification rules can be extracted. Thus, domain experts
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can use the model not only to automatically classify a flat into the corresponding segment but also to
analyze the most relevant properties that characterize each segment as well as to understand why a
flat has been classified into a segment (see Section 4.5.1).

The SVM and ANN algorithms provide the worst values for all performance parameters, which
are significantly lower than those obtained with RF and REPT algorithms.

Therefore, according with the experimental evaluation we decided to include two different
classification models into the Segment estimation layer of the HEDEBAR framework. The RF classifier is
used to automatically label a new flat with the corresponding segment. Based on the assigned segment,
the proper regression model is selected in the subsequent layer (Local energy demand prediction) to
predict the PEDh value for the flat. Instead, the REPT model is used to provide domain experts with
a qualitative analysis of the impact of variables characterizing flats on the primary heating energy
demand. This aspect is further discussed in Section 4.5.1.

4.3. Local Energy Demand Prediction (PEDh)

The regression task aims at estimating the value of PEDh for a flat. In HEDEBAR a different
regression model for PEDh prediction is created for each of three segments s1, s2, and s3. The ANN,
REPT, RF and SVM algorithms have been experimentally evaluated for the creation of the regression
model for each segment.

Table 3 displays the mean prediction errors of the four algorithms in predicting PEDh for each
segment as well as the mean errors averaged over the three segments. The prediction error is the
difference between the real value and the predicted value of PEDh. Three different measures of
prediction error, among those commonly used in literature, have been calculated: (i) Mean Absolute
Error (MAE) is the mean of all the absolute values of the errors obtained with the test samples; (ii) Mean
Absolute Percentage Error (MAPE) expresses the mean absolute error in percentage terms; (iii) Root Mean
Square Error (RMSE) is the square root of the mean of the square of all the errors obtained with the
test samples. While MAE refers only to the mean value of the distribution of absolute errors, RMSE is
affected also by the standard deviation of such distribution. Compared to MAE, RMSE amplifies and
severely punishes large errors.

Table 3. Errors in predicting PEDh for ANN, REPT, RF, and SVM algorithms and for each flat segment.

ANN REPT RF SVM

Overall
RMSE (kWh/m2) 39.85 33.12 33.83 38.40
MAE (kWh/m2) 29.67 22.21 22.35 27.41

MAPE (%) 27.02 16.64 16.89 21.52

Segment s1
RMSE (kWh/m2) 30.99 21.99 22.16 28.95
MAE (kWh/m2) 23.04 13.45 13.88 18.83

MAPE (%) 40.76 20.25 20.47 27.32

Segment s2
RMSE (kWh/m2) 37.80 29.72 30.87 37.03
MAE (kWh/m2) 28.23 20.57 21.52 28.02

MAPE (%) 22.33 14.75 15.62 20.37

Segment s3
RMSE (kWh/m2) 49.76 47.69 49.84 50.31
MAE (kWh/m2) 38.78 36.26 37.53 37.76

MAPE (%) 20.87 15.90 17.18 17.19

The REPT algorithm produces the overall lowest error values for the three measures (MAPE =
16.64%, RMSE = 33.12 kWh/m2y, MAE = 22.21 kWh/m2y) and it has also the best performance in
each segment. In relative terms, REPT performs better in segments s2 and s3, where MAPE is 14.75%,
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and 15.90% respectively, while it has a substantially lower performance in segment s1, where MAPE
= 20.25%. The second best algorithm is RF, with an overall MAPE of 16.89%, while SVM and ANN
provide higher error values (MAPE = 21.52% and MAPE = 27.02% respectively). Therefore, the REPT
algorithm has been selected for local energy demand prediction, in order to better characterize groups
of flats with similar features.

Figure 4 analyses more in depth the distribution of prediction errors, by reporting the box plots
for absolute error and percentage error of the four algorithms over the three segments. The difference
between REPT and the other algorithms is clear especially in segments s1 and s2.

(a) Absolute error for segment s1 (b) Absolute error for segment s2 (c) Absolute error for segment s3

(d) Percentage error for segment s1 (e) Percentage error for segment s2 (f) Percentage error for segment s3

Figure 4. Box plots of absolute error and percentage error of estimation of energy demand for each
algorithm and for the three different flat segments.

4.4. Performance Comparison with a Single Layer Approach for PEDh Prediction

In this section we compare the performance in the prediction of the PEDh value between the
two-layer approach used in HEDEBAR and a single layer approach. This latter approach exploits a unique
regression model for all three segments, instead of building different models tailored to each segment.
The ANN, REPT, RF and SVM algorithms have been evaluated to build the regression model for PEDh
prediction with the single layer approach. The configuration setting for the single layer approach is
discussed in Section 4.6.

Results for the two-layer and single layer approaches are reported in Tables 3 and 4, respectively.
The experimental evaluation showed that, as for the two-layer approach, also for the single layer
approach the best performance for PEDh prediction is obtained using the REPT algorithm. However,
the REPT algorithm applied to the overall data set provides a model with MAPE value equal to 21.26%
(see Table 4). Instead, using the two-layer approach the REPT models tailored to each segment result
into a significantly lower overall MAPE value, equal to 16.64% (see Table 3). Also the RMSE and
MAE values are significantly higher with the single layer approach (respectively, 37.37 kWh/m2 and
26.10 kWh/m2) than with the two-layer approach (respectively, 33.12 kWh/m2 and 22.21 kWh/m2).
These results demonstrate the suitability of the two-layer approach used in HEDEBAR. In fact, the
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segmentation of the entire data set into groups of flats with similar energy demand allows to build
differentiated models, which can more precisely predict the PEDh value for a flat in the segment.

Table 4. Errors in predicting PEDh for ANN, REPT, RF and SVM algorithms using a single step regression.

ANN REPT RF SVM

RMSE (kWh/m2) 45.33 37.37 38.03 42.65
MAE (kWh/m2) 30.01 26.10 26.36 28.34

MAPE (%) 27.46 21.26 21.53 23.67

4.5. Interpretation of the Energy Demand Estimation Models

This section provides a qualitative analysis of the impact of explanatory variables (building
features) on the dependent variable, (heating energy demand). The analysis makes use of the REPT
model, which has the advantage of providing interpretable decision trees. To better understand how
the REPT algorithm models the relationship between input variables and the heating energy demand,
we illustrate the first levels of the obtained decision trees.

4.5.1. Segment Estimation Model

The descriptive power of the REPT model comes from its capacity of putting in evidence the
features that mostly affect the energy demand, according to the analyzed certification system.

The REPT model is represented by a tree graph, made of nodes and leaves connected by edges. In
the REPT model built in HEDEBAR for segment estimation, each path of the tree includes a subset
of building features. The leaf node of a path represents the predicted class label, corresponding to
the energy demand segment s1, s2 or s3 in this study. Therefore, each tree path includes a subset of
features describing the buildings in one of the three segments.

A common way to build such trees is based on a recursive partitioning method. It consists in a
forward step-wise approach where at each node the best split (according to input split variable, and
the split value) is automatically evaluated by the algorithm for maximizing homogeneity in its child
nodes. In this way the selection of split variables and split values consists in a data-driven process that
does not require a manual selection by the analyst. As an example, the node including the construction
year feature (yc) can include the value 2007 as splitting value. The two outgoing edges for the node are
associated to two distinct sets of values for yc such as for example yc < 2007 and yc ≥ 2007. Thus, each
path includes a subset of variables, together with their corresponding ranges of values, describing the
buildings associated with the segment label appearing in the leaf node of the path. For the classification
of a new flat, the tree path composed of all the edges with splitting rules satisfying the features of
the flat is selected. The segment label appearing in the leaf node of the path is used to estimate the
segment of energy demand for the flat.

The first four levels of the REPT model are illustrated in Figure 5 (please refer to Table 1 for the
interpretation of input variable symbols). It is possible to observe that the average U-value of vertical
opaque envelope parameter (Uo) is the one mostly affecting the energy demand. Also the aspect ratio (R)
and the construction year (yc) appear at the first three levels of the tree. Average U-value of the windows
(Uw) and average global efficiency for space heating (ηh) appear only at the fourth level. In general, the
splits closest to the root node are the most important ones. This is the reason why only the upper
portion of the classification tree is shown in Figure 5.
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Figure 5. REPT model of the classification phase. The first four levels of the tree are illustrated and, for
each path, the histogram illustrates the number of leaves assigned to each segment.

To further facilitate the interpretation of the tree model and to highlight the characteristics of
each segment, the classification rules that summarize the main paths of the tree were extracted. The
model developed for segment estimation has an overall size of 342 nodes with a maximum depth
of 20 levels. Identify the most significant paths of the tree means to extract from the set of decision
rules the ones that involve a significant number of records and reach high values of accuracy. These
rules bring out the most representative building properties of each segment together with their ranges
of values. Rules are extracted by traversing tree paths and they are structured in two parts: (i) the
rule antecedent includes the buildings features and the corresponding ranges of values; (ii) the rule
consequent includes the energy demand segment associated to flats that satisfy the conditions of the
rule antecedent. Table 5 resumes the subset of rules selected as reference example from the REPT
model. Specifically, for each segment we selected the rules with the highest classification accuracy
among those that classify at least 500 flats. For the selected paths, the classification accuracy, i.e., the
percentage of flats classified into the correct segment, ranges from 74.7% to 93.7%.

Table 5. Main rules of the REPT model for classification. For each row, intervals are specified only
for the variables used by the corresponding rule. The last column contains the segment assigned by
the rule.

Rule Antecedent Rule Consequent

Uo yc R Uw ηh qenv Segment

[0, 0.37[ [2007,+∞[ [0, 2.15[ ⇒ s1
[0.56,+∞[ [1992,+∞[ [0.5, 0.68[ [0, 0.77[ ⇒ s2
[0.78,+∞[ ]−∞, 1991] [0.63, 0.98[ [3.41,+∞[ [0, 0.75[ [2, 5] ⇒ s3

Rules like those in Table 5 are an important source of information about the classification model.
Therefore, by examining these decision rules, the significant factors influencing PEDh can be identified
also by a non-expert user and it is possible to roughly estimate the segment of a new flat.

For instance, the rule for segment s1 is based on the average U-values of vertical opaque envelope
(Uo) and of the windows (Uw) and on the construction year (yc). More specifically, the rule states that,
if Uo < 0.37 W/m2K and Uw < 2.15 W/m2K, the building envelope guarantees a very high level
of thermal insulation and low heat dissipation. Moreover, flats that satisfy this rule were built with
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construction standards adopted from 2007 onwards, thus guaranteeing an overall energy efficiency
that is classified into segment s1.

The rule for segment s2 includes also the aspect ratio (R) and the average global efficiency for
space heating (ηh). This rule shows that, for high energy demand flats, R has intermediate values,
while the ηh is always lower than 0.77. The average U-value of vertical opaque envelope (Uo) has a
minimum value of 0.56 W/m2K, which is higher than the maximum value used in the previous rule of
s1 (0.37 W/m2K), thus implying always a higher thermal transmittance. Moreover, the rule includes
high energy demand flats constructed since 1992, i.e., the minimum construction year for this rule is 15
years lower than the one for the previous rule (2007).

The rule selected for segment s3 has very high values of aspect ratio (R), starting from a minimum
of 0.63 m−1 which is almost equal to the maximum value for s2 (0.68 m−1). Additional negative factors
are represented by the high lower bounds for U-values (Uo, Uw) and the construction year (yc) always
before 1991.

4.5.2. Local Energy Demand Prediction Models

Figure 6 depicts the first three levels of the REPT regression models of Local energy demand
estimation for the three flat segments. Variables of splitting rules associated to the tree nodes are almost
the same of the classification model represented in Figure 5, however their importance vary according
to the segment. The tree for segment s1 has a single variable for each level, i.e., U-value of vertical opaque
envelope (Uo) at the first, aspect ratio (R) at the second, and U-value of the windows (Uw) at the third,
thus providing a simple and easily interpretable model. In segment s2 the average global efficiency for
space heating (ηh) has a higher importance than in s1, as it appears at the third level of the tree. The
same variable appears in most of the rules of the same level in segment s3. Here average U-value of the
windows (Uw) is considered only for the most efficient flats (with Uo < 0.76 W/m2K and R < 0.89 m−1),
while for those with higher energy demand, the average global efficiency for space heating (ηh) becomes
more significant.

The splitting value of average U-value of vertical opaque envelope (Uo) increases from segment s1

to segment s3, meaning that flats belonging to the first segment are characterized by higher thermal
insulated walls.

(a) Segment s1

Figure 6. Cont.
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(b) Segment s2

(c) Segment s3

Figure 6. REPT models for each of the 3 flat segments.

4.6. Parameter Tuning of Algorithms

This section describes how the main parameters of the four algorithms considered in this study
were tuned in order to reach the lowest values of prediction error both in the Segment estimation
and Local energy demand prediction phases in the HEDEBAR framework. The same tuning procedure
has been used also for the configuration of the single layer approach considered for performance
comparison and described in Section 4.4.

For both phases, the prediction error was assessed using the k-fold cross-validation method, with
k = 10. Therefore, the input dataset for the target phase has been split into k subsets of the same
size. In turn, 1 subset is used for testing and the remaining k − 1 are used for training. Hence, k
independent training and test iterations are performed. For each iteration, the training set is used by
the four algorithms to generate the classification or regression models, according to target phase in the
HEDEBAR framework. Then, the test set is used to evaluate the capacity of each classification and
regression model to predict respectively the segment of energy demand and the PEDh value of new
flats. The overall error value after the k iterations is computed as the mean of the errors of the k tests.

The procedure for tuning the optimal configuration for each of the four algorithms used in
HEDEBAR produced similar values of parameter settings for the creation of the classification and
regression models. These parameter settings turned out to be the optimal configuration even for
the single layer approach. As an example, this section describes the results of parameters tuning for
the creation of the regression model used in the Local energy demand prediction phase. The parameter
tuning procedure is aimed at minimizing the values of the prediction errors MAPE, MAE, and RMSE
(Figure 7).
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(a) ANN algorithm with respect to the size of the
hidden layer.

(b) REPT algorithm with respect to the minimum
number of instances per leaf M.

(c) RF algorithm with respect to the number of trees.
(d) SVM algorithm with respect to the complexity
constant C.

Figure 7. Overall Local energy demand prediction errors of the algorithms for different values of
their parameters.

For the ANN algorithm, a single hidden layer of variable size was considered, since using more
than one layer did not provide any significant improvement of accuracy. Some common rules of thumb
for the size of the hidden layer in the ANN are suggested by different works like [55], where the
number of neurons are related to the number of input and output variables. Overall, the size of the
hidden layer should be high enough to let the ANN model the problem correctly, but also low enough
to ensure generalization. An increasing number of neurons was used during the tests, ranging in the
interval [4, 100] until the prediction error starts to grow due to over-fitting. The other parameters of the
ANN are: learning_rate = 0.3, training_cycles = 103, ε = 1× 10−5. The values of RMSE, MAE and
MAPE for different sizes of the hidden layer are reported in Figure 7a. 16 neurons for the hidden layer
provide the lowest values of the three errors.

In the REPT algorithm, the dimension of the pruning subset was set to one third of the training
set, hence with three folds in the algorithm (N = 3). No maximum tree depth has been set instead.
The information gain was used as splitting criterion. The REPT algorithm was tuned by varying the
minimum number of instances per leaf (M ∈ {10, 20, 30, 40, 50}). The values of RMSE, MAE and
MAPE are reported in Figure 7b. The three error measures slightly, yet constantly, increase together
with M. Therefore M was set equal to 10.

In the RF algorithm, the previous settings of REPT was used for all the decision trees. The variation
of prediction error was assessed with respect to the number of trees I in the range [10, 100]. The values
of RMSE, MAE and MAPE are reported in Figure 7c. I = 70 provides the lowest error values.

For SVM regression, a linear kernel function was considered and the variation of prediction
errors, with respect to the complexity constant C, was assessed. This variable is used to set a degree of
tolerance for misclassification of training samples. A too large value of complexity constant can lead to



Energies 2019, 12, 1273 20 of 25

over-fitting, while too small values may result in over-generalization. Values for C have been selected
in the range [0, 10]. The other parameter settings of the SVM are: max_iterations = 104, convergence
ε = 1× 10−3. The values of RMSE, MAE and MAPE are reported in Figure 7d. The trends of the three
error measures are nearly constant with a slightly lower value of RMSE for C = 0.

5. Discussion and Conclusions

In this paper, the HEDEBAR methodology for the automatic asset rating of flats energy efficiency
has been described. We recall that the analysis has been possible thanks to the availability of open
data of Energy Performance Certificates. HEDEBAR proposes a two-layer approach to compute the
ideal Primary Energy Demand for space heating (PEDh) of flats according to the certification scheme used
to issue their EPCs. In this section we discuss the results obtained through HEDEBAR, addressing
the results achieved using the proposed two-layer approach, and the interpretation and the possible
exploitation of the extracted knowledge.

Accurate estimation of the flat energy demand with a reduced features set. Experimental results
demonstrated the ability of the HEDEBAR methodology to estimate the PEDh value for a flat. PEDh is
not the actual energy consumption of a flat, but its primary energy demand calculated in standard
conditions. It is a significant parameter for the comparison of flats based on their features. The
estimated values of PEDh are precise enough to provide a dependable assessment of flat energy
efficiency for different values of the features characterizing flats.

From a methodological perspective, the experimental evaluation demonstrated that the two-layer
approach used in HEDEBAR performs significantly better than a single layer algorithm in estimating
the PEDh (MAPE values are respectively 16.64% and 29.82%). Therefore the segmentation of the
initial data collection into different groups of flats with similar energy demand allows to produce
differentiated models, which fit better the specific features of the respective segments.

The predictive performance of the HEDEBAR methodology is similar to the one
of Khayatian et al. [35], where ANNs are used to predict the PEDh value, using EPCs related to
the Lombardy region. Indeed, even if the experimental evaluation has been conducted on different
datasets, HEDEBAR and the approach in [35] provide comparable results (MAPE equal to 16.64%
HEDEBAR and to 14.44% in [35]). However, differently from [35], HEDEBAR estimates the value of
PEDh in two steps using the REPT algorithm, which provides an interpretable model.

Modular approach able to integrate various algorithms and applicable to EPCs from other
certification schemes. The HEDEBAR approach can make use of various classification and regression
algorithms and can be used also to analyze data of EPCs issued according to other certification schemes.

The performed experimentation puts in evidence the algorithms with the best performances
among those which were tested. In the Segment estimation phase, RF algorithm has the highest
classification accuracy, while, in the Local energy demand prediction phase, REPT algorithm has the
lowest error values in predicting PEDh. REPT also has a good classification accuracy. Therefore, RF in
the first and REPT in the second phase turned out to be the most suitable combination of algorithms
for the estimation of PEDh from the variables included in the EPC data set.

Interpretation of the energy demand estimation models. A key advantage of HEDEBAR is the use
of REPT algorithm, whose decision tree models make results understandable and exploitable also for
non-domain experts. Useful information can be obtained from this model as it helps to discover in a
straightforward way energy patterns among large dataset. The algorithm automatically selects the
different attributes for generating split rules and the ones closest to the root node can be assumed as
the most influencing attributes. Therefore, the performance improvement brought by the two-layer
approach, especially to the REPT algorithm, provides the HEDEBAR methodology with both a good
estimation precision and a set of interpretable models of energy demand. Resulting models pointed
out the most relevant features according to the considered rating system.
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In the Segment estimation layer, 5 features out of 10 (average U-values of opaque envelope and of
the windows, aspect ratio, construction year, and average global efficiency for space heating) appear in the
first four levels of the decision tree and can be considered as the most relevant ones of the model.
Indeed, they were preferred to other variables for splitting the initial flat set since they generate
more homogeneous subsets in terms of PEDh value, thus allowing the overall model to reach a more
accurate segmentation of the flat set. The characteristics of the three segments of energy demand are
also summarized by means of short decision rules, which bring out the most representative building
properties and their ranges of values for each segment. With a view to improving the efficiency of
a flat, the model makes possible to individuate the features that mostly cause its membership to a
specific energy demand segment. A proper change of their values, when possible (e.g., by means of
targeted refurbishment actions), can substantially increase the energy efficiency of the flat. For some
flats, bringing the values of few features within the appropriate ranges causes their reassignment to a
lower segment.

In the Local energy demand prediction layer, 4 features out of 10 appear in the first three levels
of the three decision tree models (the same as in Segment estimation except construction year). The
differentiated analysis highlighted the main features impacting on PEDh for different segments of
energy demand. In this case, the U-value of vertical opaque envelope (Uo) has demonstrated to be one
of the most important variables for all segments. Indeed Uo is at the first level of all the three REPT
models, with increasing splitting values from s1 to s3. The aspect ratio (R) is also a significant variable,
as it appears in the second level of all the three REPT models. The average U-value of windows (Uw) is
more important for low levels of energy demand (segment s1), where the contribution of heat loss
through windows can make the difference. On the other hand, the relevance of the overall efficiency of
the heating system (ηh) is evident only for high and very high energy demand flats (segments s2 and s3).

Possible exploitation of HEDEBAR findings. Energy demand estimation is crucial to assess the
energy performance in buildings and represents the first step to make any decision for enhancing
their efficiency. The proposed approach has the advantage of learning a model from data about
previous certificates that is then applied to new flats. The methodology can concretely help domain
experts to evaluate the possible improvements of energy efficiency of flats. To this purpose, data
driven models are useful for quickly estimating the expected building energy demand and in setting
credible targets for improving performance [56]. In general, designers and authority planners should
exploit such tools capable to suggest them where put their effort, among large stocks of buildings,
and which could be the most convenient retrofitting strategies. In this way it is possible to plan
future financial investment policies that leverage on specific building features and help devising
more targeted actions to improve energy efficiency for different segments of buildings. Moreover the
proposed methodological process allows to extract, by means of interpretable models (i.e., decision
trees), useful and understandable knowledge regarding the expected energy performance of buildings
according to few physical driving variables . Such benchmarks should be the reference for the building
owners to improve the energy performance when it is poor and for technicians to identify the optimal
cost-effective energy saving opportunities.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BREEAM Building Research Establishment Environmental Assessment Method
CASBEE Comprehensive Assessment System for Building Environmental Efficiency
DD Degree Days
DGNB Deutche Gesellschaft fur Nachhaltiges Bauen of Germany
EPBD Energy Performance of Buildings Directive
EPC Energy Performance Certificate
EPI Energy Performance Indicator
EUI Energy Use Intensity
GA Genetic Algorithm
GBL Green Building Label of China
HK-BEAM Hong Kong-Building Environmental Assessment Method
IEA International Energy Agency
IQR Interquartile Range
LEED Leadership in Energy and Environmental Design
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MRA Multiple Regression Analysis
MSE Mean Square Error
NABERS National Australian Built Environment Rating System
PED Primary Energy Demand
PEDh Primary Energy Demand for space heating
PEDw Primary Energy Demand for hot water
REPT Reduced Error Pruning Tree
RF Random Forest
RMSE Root Mean Square Error
SVM Support Vector Machines
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