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Abstract: In traditional sensorless control of the interior permanent magnet synchronous motors
(IPMSMs) for medium and high speed domains, a control strategy based on a sliding-mode observer
(SMO) and phase-locked loop (PLL) is widely applied. A new strategy for IPMSM sensorless control
based on an adaptive super-twisting sliding-mode observer and improved phase-locked loop is
proposed in this paper. A super-twisting sliding-mode observer (STO) can eliminate the chattering
problem without low-pass filters (LPFs), which is an effective method to obtain the estimated back
electromotive forces (EMFs). However, the constant sliding-mode gains in STO may cause instability
in the high speed domain and chattering in the low speed domain. The speed-related adaptive
gains are proposed to achieve the accurate estimation of the observer in wide speed range and the
corresponding stability is proved. When the speed of IPMSM is reversed, the traditional PLL will lose
its accuracy, resulting in a position estimation error of 180◦. The improved PLL based on a simple
strategy for signal reconstruction of back EMF is proposed to ensure that the motor can realize the
direction switching of speed stably. The proposed strategy is verified by experimental testing with a
60-kW IPMSM sensorless drive.

Keywords: interior permanent magnet synchronous motor (IPMSM); sensorless control; adaptive
algorithm; super-twisting sliding mode observer (STO); phase-locked loop (PLL)

1. Introduction

Recently, interior permanent magnet synchronous motors (IPMSMs) have been extensively
utilized in the fields of electromechanical drives, electric vehicles, and numerical control servo systems
due to their robustness, high efficiency, high power density, and compactness [1–4]. The usage of
position sensors decreases the reliability and increases the cost and volume of IPMSM drives. In order
to overcome these shortcomings caused by the use of mechanical position sensors, sensorless control
technology has become one of the important research directions in related fields [5,6]. Generally,
sensorless control strategies can be divided into two categories. The first one is called signal injection
methods [7–9]. This method is based on the salient pole effect of the motor, which is mainly used
in zero and low speed domains. The second one is called back EMF based methods [10–19], which
utilizes the estimated back EMF signals to obtain the position information of the motor. Because the
magnitude of back EMF is in proportion to the speed of the motor, the performance of back EMF
based methods at ultra-low and zero speed is extremely poor [11]. Hence, back EMF based methods
and signal injection methods are usually combined to achieve sensorless control for a whole speed
range [12–14]. Back EMF based methods primarily includes the model adaptive method (MRAS) [16],
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the Kalman filtering method (EKF) [17], and the sliding mode observer (SMO) [2,18,19], etc. Compared
with MRAS and EKF, SMO has simpler structure and stronger robustness. Hence, SMO is extensively
applied in sensorless control strategy [19].

The signum function used in traditional SMO can introduce high frequency harmonics into the
estimated signals, which eventually lead to the inevitable chattering phenomenon. Therefore, low-pass
filters (LPFs) are commonly utilized to smooth the estimated signals. However, the LPFs in turn
bring the disadvantages of phase delay of estimated signals. In [20], signum function is utilized to
reduce the SMO chattering phenomenon caused by sigmoid function. In [21], an adaptive filter is
proposed to reduce the negative effects of LPFs. However, these methods cannot completely avoid
phase delay caused by LPFs. In [22,23], the super-twisting algorithm is proposed to eliminate the
chattering phenomenon caused by signum function. The super-twisting sliding mode observer (STO)
can effectively eliminate the sliding-mode chattering phenomenon without compromising robustness
and avoid the use of LPFs. In [24], the stability of STO is further analyzed by using the Lyapunov
function and the corresponding stability conditions are given. In [25], the sensorless control strategy
based on STO and resistance identification is proposed for SPMSM. Resistance identification enhances
the robustness of the super-twisting sliding mode observer. Although STO performs well in reducing
chattering, there is still a problem to be solved. When the constant sliding-mode gains are adopted in
this method, the sliding-mode gains should be big enough to meet the stability condition in the wide
speed range. But the large sliding-mode gains will lead to a large chattering phenomenon, especially
in a low speed domain [19].

Traditionally, the position information is obtained by the estimated back electromotive forces
through arc-tangent method directly. However, the arc-tangent function makes position information
susceptible to harmonics and noises. In order to improve estimation performance, the quadrature
phase-locked loop algorithm is proposed in [6], which is called the traditional PLL in this paper.
High-order harmonics can be filtered out due to the special structure of PLL. When the speed of
IPMSM is reversed, the traditional PLL will lose its accuracy, resulting in a position estimation error of
180◦. The reason for such drawback is that the sign of the back EMFs has an effect on the sign of the
equivalent position error [26,27]. To solve the aforementioned problem, Refs. [26,27] proposed a kind
of PLL, which constructs the equation of the equivalent position error based on tangent function. Such
a scheme may overcome the problem, but it brings complexity to the algorithm and it is vulnerable to
harmonics and noises due to the introduction of a tangent function.

In this paper, a new strategy based on adaptive super-twisting sliding mode observer and
improved PLL for IPMSM sensorless control is proposed to overcome aforementioned limitations.
Super-twisting sliding-mode observer is utilized to obtain the estimated back electromotive forces.
Moreover, speed-related adaptive gains are proposed to achieve accurate estimation in a wide speed
domain so that they widen the speed range of the super-twisting sliding-mode observer. On the basis
of existing stability conditions in [24], the stability of the proposed adaptive STO is proved in this
paper. To improve the shortcomings of the above-mentioned two kinds of PLL, a simple strategy for
signal reconstruction of back EMF is proposed. Based on this strategy, the improved PLL can overcome
the limitation of speed reversal existing in traditional PLL without the introduction of tangent function.
Besides, the improved PLL has simple structure, great steady performance, and transient response.
Finally, the proposed strategy based on adaptive STO and improved PLL is verified by experimental
testing with a 60-kW IPMSM sensorless drive.

2. Adaptive Super-Twisting Sliding-Mode Observer

For the sake of convenience, magnetic saturation is neglected and it is assumed that the flux
linkage distribution is perfectly sinusoidal. The model of IPMSM is shown in Figure 1. The ABC, αβ

and dq frames represent the natural, the stationary, and the rotating reference frames, respectively.
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Figure 1. The model of interior permanent magnet synchronous motors (IPMSM). 

The mathematic model of IPMSM in αβ stationary reference frame is expressed as 

𝑢𝛼 = 𝑅𝑖𝛼 + 𝐿𝑑

𝑑𝑖𝛼

𝑑𝑡
+ 𝜔𝑒(𝐿𝑑 − 𝐿𝑞)𝑖𝛽 + 𝑒𝛼 (1) 

𝑢𝛽 = 𝑅𝑖𝛽 + 𝐿𝑞

𝑑𝑖𝛽

𝑑𝑡
− 𝜔𝑒(𝐿𝑑 − 𝐿𝑞)𝑖𝛼 + 𝑒𝛽 (2) 

where 𝑢𝛼,𝑢𝛽 are stator voltages; 𝑖𝛼,𝑖𝛽 are stator currents; R is stator resistance; 𝜔𝑒 is electrical rotor 

speed; 𝜓𝑓  is PM flux linkage; and 𝐿𝑑 ,𝐿𝑞  are stator inductances. 𝑒𝛼  and 𝑒𝛽  are the 𝛼𝛽-axis back 

EMFs of IPMSM, satisfying 𝑒𝛼 = −𝐸𝑠𝑖𝑛𝜃  and 𝑒𝛽 = 𝐸𝑐𝑜𝑠𝜃 .  𝜃  is the rotor position and 𝐸  is the 

amplitude of back EMF [28], satisfying 

𝐸 = (𝐿𝑑 − 𝐿𝑞) (𝜔𝑒𝑖𝑑 −
𝑑𝑖𝑞

𝑑𝑡
) + 𝜔𝑒𝜓𝑓 (3) 

2.1. Super-Twisting Algorithm 

A. Levant proposed the super-twisting algorithm to eliminate the chatter caused by the signum 

function in [23] and [29]. The fundamental form of this algorithm is written as follows: 

𝑑�̂�1

𝑑𝑡
= −𝑘1|�̂�1−𝑥1|sign(�̂�1−𝑥1) + �̂�2 + 𝜌1 (4) 

𝑑�̂�2

𝑑𝑡
= −𝑘2sign(�̂�1−𝑥1) + 𝜌2 (5) 

where 𝑥𝑖, �̂�𝑖, 𝑘𝑖, sign(), and 𝜌𝑖 are state variables, estimation of state variables, sliding-mode gains, 
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Figure 1. The model of interior permanent magnet synchronous motors (IPMSM).

The mathematic model of IPMSM in αβ stationary reference frame is expressed as

uα = Riα + Ld
diα
dt

+ ωe
(

Ld − Lq
)
iβ + eα (1)

uβ = Riβ + Lq
diβ

dt
−ωe

(
Ld − Lq

)
iα + eβ (2)

where uα, uβ are stator voltages; iα, iβ are stator currents; R is stator resistance; ωe is electrical rotor
speed; ψ f is PM flux linkage; and Ld,Lq are stator inductances. eα and eβ are the αβ-axis back EMFs of
IPMSM, satisfying eα = −Esinθ and eβ = Ecosθ. θ is the rotor position and E is the amplitude of back
EMF [28], satisfying

E =
(

Ld − Lq
)(

ωeid −
diq
dt

)
+ ωeψ f (3)

2.1. Super-Twisting Algorithm

A. Levant proposed the super-twisting algorithm to eliminate the chatter caused by the signum
function in [23,29]. The fundamental form of this algorithm is written as follows:

dx̂1

dt
= −k1|x̂1 − x1|sign(x̂1 − x1) + x̂2 + ρ1 (4)

dx̂2

dt
= −k2sign(x̂1 − x1) + ρ2 (5)

where xi, x̂i, ki, sign(), and ρi are state variables, estimation of state variables, sliding-mode gains,
signum function, and perturbation terms, respectively. The corresponding conditions of the stability of
the super-twisting algorithm have been educed in [24]. If ρ1 and ρ2 in Equations (6) and (7) satisfy the
following conditions:

ρ1 ≤ δ1|x1|
1
2 , ρ2 = 0 (6)

where δ1 is a positive constant and the sliding-mode gains k1 and k2 meet the condition:

k1 > 2δ1, k2 > k1
5δ1k1 + 4δ2

1
2(k1 − 2δ1)

(7)

the stability of the system can be guaranteed.
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2.2. Super-Twisting Sliding Mode Observer for IPMSM Sensorless Control

To estimate the back EMFs conveniently, the mathematic mode of IPMSM shown in Equations (3)
and (4) is organized into the current model:

diα

dt
= − R

Ld
iα −ωe

Ld − Lq

Ld
iβ +

uα

Ld
− eα

Ld
(8)

diβ

dt
= − R

Ld
iβ + ωe

Ld − Lq

Ld
iα +

uβ

Ld
−

eβ

Ld
(9)

The estimated currents are taken as state variables in Equations (4) and (5), then the STO for
IPMSM sensorless control be represented as

dîα

dt
= − R

Ld
îα − ω̂e

Ld − Lq

Ld
îβ +

uα

Ld
− k1

Ld

∣∣iα

∣∣ 1
2 sign

(
iα

)
− 1

Ld

∫
k2sign

(
iα

)
dt (10)

dîβ

dt
= − R

Ld
îβ + ω̂e

Ld − Lq

Ld
îα +

uβ

Ld
− k1

Ld

∣∣iβ

∣∣ 1
2 sign

(
iβ

)
− 1

Ld

∫
k2sign

(
iβ

)
dt (11)

where iα = îα − iα, iβ = îβ − iβ and ˆ represents the estimated variable. It should be noticed
that, differently from the STO for SPMSM sensorless control in [26], the perturbation term
ρ1 in Equation (4) for IPMSM sensorless control is replaced by − R

Ld
îα − ω̂e

Ld−Lq
Ld

îβ + uα
Ld

and

− R
Ld

îβ + ω̂e
Ld−Lq

Ld
îα +

uβ

Ld
, respectively.

By substituting the perturbation terms into Equation (6) and taking estimated currents as state
variables, Equation (6) can be reformulated as

− R
Ld

îα − ω̂e
Ld − Lq

Ld
îβ +

uα

Ld
≤ δ1

∣∣îα∣∣ 1
2 (12)

− R
Ld

îβ + ω̂e
Ld − Lq

Ld
îα +

uβ

Ld
≤ δ1

∣∣îβ

∣∣ 1
2 (13)

If δ1 is large enough, the stable conditions can be guaranteed easily. By subtracting Equations (8)
and (9) from Equations (10) and (11) respectively, the state equations of the current estimation errors
can be obtained:

diα

dt
= − R

Ld
iα −

Ld − Lq

Ld

(
ω̂e îβ −ωeiβ

)
− k1

Ld

∣∣iα

∣∣ 1
2 sign

(
iα

)
− 1

Ld

∫
k2sign

(
iα

)
dt +

eα

Ld
(14)

diβ

dt
= − R

Ld
iβ +

Ld − Lq

Ld
(ω̂e îα −ωeiα)−

k1

Ld

∣∣iβ

∣∣ 1
2 sign

(
iβ

)
− 1

Ld

∫
k2sign

(
iβ

)
dt +

eβ

Ld
(15)

when STO reaches the sliding surface, it is approximately considered that the estimated value is equal
to the actual value (ω̂e ≈ ωe, îα ≈ iα and îβ ≈ iβ). Then the equivalent control law of the back EMFs is
expressed as

êα = k1
∣∣iα

∣∣ 1
2 sign

(
iα

)
+
∫

k2sign
(
iα

)
dt (16)

êβ = k1
∣∣iβ

∣∣ 1
2 sign

(
iβ

)
+
∫

k2sign
(
iβ

)
dt (17)

The linear term k1
∣∣iα

∣∣ 1
2 sign

(
iα

)
determines the convergence rate of the STO and the integral

term
∫

k2sign
(
iα

)
dt is related to the suppression of chattering phenomena. Hence, k2 usually has a

large value.
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2.3. Adaptive Super-Twisting Sliding Mode Observer for IPMSM Sensorless Control

Although STO performs well in reducing chattering, there is still a problem to be solved. When
the constant sliding-mode gains are adopted in this method, the sliding-mode gains should be large
enough to meet the stable conditions when the IPMSM runs at high speed. However, due to the
excessive sliding mode gains, the performance of the STO in the low speed domain will be seriously
deteriorated [19]. In order to extract accurate rotor position in wide speed range, the STO for IPMSM
with speed-related adaptive gains is proposed in this paper. The speed-related adaptive gains k1 and
k2 are adopted as

k1 = l1ω∗e , k2 = l2ω∗e
2 (18)

ω∗e =


ωemin 0 ≤ ω̂e < ωemin

LPF(ω̂e) ωemin ≤ ω̂e ≤ ωemax

ωemax ω̂e > ωemax

(19)

where l1 and l2 are adaptive coefficients, ωemax is the maximum electrical rotor speed of motor, ωemin
is the minimum electrical rotor speed allowed by the STO for back EMFs observation. The first-order
LPF in the STO is utilized to smooth the gain variations and improve the robustness of the observer in
the transient process. Its cut-off frequency is determined according to ωemax and switching frequency.
The stability of adaptive STO is proved as follows:

In Equations (12) and (13), compared with uα
Ld

and
uβ

Ld
, R

Ld
îα, ω̂e

Ld−Lq
Ld

îβ, R
Ld

îβ and ω̂e
Ld−Lq

Ld
îα can be

neglected. Then, the perturbation terms can be simplified as

ρ1(iα) ≈
uα

Ld
, ρ1

(
iβ

)
≈

uβ

Ld
(20)

then, Equation (6) can be rewritten as

|ρ1(iα)| ≈
∣∣∣∣uα

Ld

∣∣∣∣ ≈ ωeψ f

Ld
≤ δ1

∣∣îα∣∣ 1
2 (21)

when STO reaches the sliding surface,
∣∣îα

∣∣ 1
2 is in a certain range and ω∗e ≈ ωe. δ1 is replaced by λωe in

Equation (21), Equation (21) can be rewritten as

|ρ1(iα)| ≈
∣∣∣∣uα

Ld

∣∣∣∣ ≈ ωeψ f

Ld
≤ λ

∣∣îα∣∣ 1
2 ωe (22)

This formula can be satisfied by choosing a large λ. Substituting δ1 = λωe, k1 = l1ωe and
k2 = l2ω2

e into Equation (7), Equation (7) can be rewritten as

k1 = l1ωe > 2δ1 = 2λωe (23)

k2 = l2ωe
2 > k1

5δ1k1 + 4δ2
1

2(k1 − 2δ1)
= l1

5λl1 + 4λ2

2l1 − 4λ
ωe

2 (24)

It is obvious that when the adaptive coefficients l1 and l2 satisfy the condition l1 > 2λ and

l2 > l1
5λl1+4λ2

2l1−4λ , the stability conditions of adaptive STO can be satisfied. The black diagram of adaptive
STO for IPMSM sensorless control is shown in Figure 2.
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Figure 2. The black diagram of adaptive super-twisting sliding-mode observer (STO) for IPMSM
sensorless control.

3. Acquisition of Position Information

Traditionally, the position information is obtained by the estimated back electromotive forces
through arc-tangent method directly.

θ̂e = −arctan·( êα

êβ
) (25)

The electrical rotor speed can be calculated by ω̂e =
dθ̂e
dt . However, the estimated position and

speed is susceptible to noise and harmonics because of the usage of arc-tangent method. Especially
when êβ crosses zero, the obvious estimation errors may be produced. Ref. [6] proposed the quadrature
phase-locked loop algorithm to mitigate the adverse effect. In this paper, this algorithm is called the
traditional PLL.

3.1. Traditional PLL

The transfer function of the traditional PLL can be written as

G(s) =
θ̂e

θe
=

EKps + EKi

s2 + EKps + EKi
(26)

where Kp is the proportional gain, Ki is the integral gain. The structure of the traditional PLL is
represented in Figure 3.
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The bode diagram of Equation (26) with different E is shown in Figure 4. As shown in Figure 4, E
varies with the rotor speed, so the bandwidth of the PLL is influenced by the operating frequency of
motor. This could make the design of system parameters more difficult and deteriorate the accuracy of
the position estimation. Therefore, the normalization of the back EMFs is necessary.
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By normalizing the estimated back EMF, the equivalent position error ∆e can be written as

∆e = 1√
ê2

α+ê2
β

[
−êα cos

(
θ̂e
)
− êβ sin

(
θ̂e
)]

= −êαn cos
(
θ̂e
)
− êβn sin

(
θ̂e
)

= sin(θe) cos
(
θ̂e
)
− sin

(
θ̂e
)

cos(θe)

= sin
(
θe − θ̂e

)
≈ θe − θ̂e

(27)

where êαn and êβn are the normalized back EMFs, and the closed-loop transfer function of the traditional
PLL with back EMF normalization can be obtained by

G(s) =
θ̂e

θe
=

Kps + Ki

s2 + Kps + Ki
(28)

The traditional PLL has the characteristics of LPF. High-order harmonics can be filtered out
due to the special structure of phase-locked loop. However, when the speed of IPMSM is reversed,
the traditional PLL will lose its accuracy, resulting in a position estimation error of 180◦. When the
parameters of PLL are set for one direction of rotation, the estimation of rotor position is correct for this
direction only and an error of 180◦ will be produced in the other direction. Such a drawback makes the
traditional PLL not suitable for applications where the motor needs to switch the direction of rotation.
The theoretical analysis of the above problem is shown in Section 3.3.

3.2. Tangent-Based PLL

To solve the aforementioned problem, Refs. [26,27] proposed a kind of PLL scheme, which
constructs the equivalent position error equation based on tangent function.

∆e =

êα
êβ
− sin ( θ̂e

2 )

cos ( θ̂e
2 )

1+ êα
êβ
· sin ( θ̂e

2 )

cos ( θ̂e
2 )

=
tan (θe)−tan ( θ̂e

2 )

1+tan (θe)· tan ( θ̂e
2 )

= tan
(

θe − θ̂e
2

) (29)

The structure of the tangent-based PLL is shown in Figure 5. When the system achieves the steady
point, rotor position can be calculated as

θe =
θ̂e

2
(30)
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This kind of PLL can solve the reversal problem. However, it increases the complexity of the
algorithm. And it is vulnerable to harmonic and noise interference due to the introduction of tangent
function. Especially, during êβ crosses zero and the rotor position crosses ±π

2 , the obvious estimation
error may occur.

3.3. Improved PLL

The improved PLL is based on a simple EMF signals reconstruction strategy. The structure of the
improved PLL is depicted in Figure 6 and the equation of the equivalent position error in the proposed
scheme can be expressed as

∆e = −êαn êβn cos
(
2θ̂e
)
+

(êαn
2−êβn

2)
2 sin

(
2θ̂e
)

= 1
2 [sin(2θe) cos

(
2θ̂e
)
− sin

(
2θ̂e
)

cos(2θe)]

= 1
2 sin

(
2
(
θe − θ̂e

)) (31)

when the system reaches the stable point, ∆e can be derived as

∆e = 1
2 sin

(
2
(
θe − θ̂e

))
≈ θe − θ̂e

(32)
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In the positive speed range of the motor,

êαn = − sin(θe), êβn = cos(θe) (33)

and the dynamic equations of the traditional PLL with back EMF normalization are represented as

deθ

dt
= eω (34)
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deω

dt
= −Kp cos(eθ)eω − KI sin(eθ) (35)

where eθ = θe − θ̂e, eω = ωe − ω̂e. The phase trajectory of the traditional PLL for positive speed is
shown in Figure 7a. As shown in Figure 7a, there are three equilibrium points in the system, which are
(0,0), (π,0) and (−π,0). Among the three equilibrium points, only (0,0) is stable point. The others are
saddle points. That means the trajectories in the phase trajectory of traditional PLL for positive speed
will move to the origin. In other words, eθ and eω can converge to (0,0) in limited time, which meets
the requirements of estimation performance.Energies 2019, 12, 9 of 18 
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But when the direction of rotation is reversed, the symbols of the back EMF change and the same
symbolic change can be detected on the equivalent position error signal ∆e:

êαn = sin(θe), êβn = − cos(θe) (36)

∆e = −êαn cos
(
θ̂e
)
− êβn sin

(
θ̂e
)

= − sin(θe) cos
(
θ̂e
)
+ sin

(
θ̂e
)

cos(θe)

= sin
(
θ̂e − θe

)
≈ −(θe − θ̂e)

(37)

And the dynamic equations of the traditional PLL are rewritten as

deθ

dt
= eω (38)
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deω

dt
= Kp cos(eθ)eω + KI sin(eθ) (39)

The phase trajectory of the traditional PLL for negative speed is given in Figure 7b. The system
has the same three equilibrium points, which are (0,0), (π,0) and (−π,0). However, (0,0) changes
into saddle point and (±π,0) become stable points. The trajectories in the nonlinear system depart
from (0,0) to reach the stable points (±π,0) so that the system produce a position estimation error of
180◦. Although this problem can be solved by resetting the gains of the PI controller, it is difficult to
implement in real-time control system. Therefore, the traditional PLL cannot meet the requirements of
applications where the motor needs to switch the direction of rotation.

The phase trajectory of the tangent-based PLL for both positive and negative speed is shown in
Figure 7c. More details can be found in [26,27]. In this kind of PLL system, (0,0), (π,0), and (−π,0)
are three stable points. By setting the proper parameters of PI regulator, eθ and eω can converge to
(0,0). That means the tangent-based PLL can solve the reversal problem. But due to the introduction
of tangent function, it is vulnerable to harmonic and noise interference. Especially when êβ crosses
zero and the position crosses ±π

2 , the obvious estimation errors will be produced. This algorithm is
difficult to adopt in practice.

Compared with the traditional PLL and the tangent-based PLL, the improved PLL makes the
speed reversal of motor not cause the symbolic change of the equivalent position error ∆e by using a
simple back EMF signals reconstruction strategy without tangent function. The dynamic equations are
the same for both positive and negative speed and can be represented as

deθ

dt
= eω (40)

deω

dt
=

1
2
[
−Kp cos(2eθ)2eω − KI sin(2eθ)

]
(41)

There are five equilibrium points in the system, which are (0,0), (±π,0) and (±π
2 ,0). In order to

confirm the properties of equilibrium points in the system conveniently, the nonlinear equation of state
is linearized. The Jacobian matrix J(eθ , eω) for (40) and (41) is represented as

J(eθ , eω) =

[
0 1

2Kp sin(2eθ)eω − KI cos(2eθ) −Kp cos(2eθ)

]
(42)

Substituting (eθ , eω) = (0, 0) and (eθ , eω) = (±π, 0) into (42) respectively, the expression is the
same at these points:

J(eθ , eω)(eθ ,eω)=(0,0),(±π,0) =

[
0 1
−KI −Kp

]
(43)

The eigenvalues of (43) can be expressed as

λ1 =
−Kp +

√
K2

p − 4KI

2
, λ2 =

−Kp −
√

K2
p − 4KI

2
(44)

Because Kp > 0 and KI > 0, λ1 and λ2 have negative real parts. That means (0,0) and (±π,0) are
stable points.

Substituting (eθ , eω) =
(
±π

2 , 0
)

into Equation (42) respectively, the expression is the same at
these points:

J(eθ , eω)(eθ ,eω)=(± π
2 ,0) =

[
0 1

KI Kp

]
(45)
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The eigenvalues of Equation (45) can be expressed as

λ1 =
Kp +

√
K2

p + 4KI

2
> 0, λ2 =

Kp −
√

K2
p + 4KI

2
< 0 (46)

Because λ1 > 0 and λ2 < 0,
(
±π

2 , 0
)

are saddle points in the system. In summary, among the
five equilibrium points, (0,0) and (±π,0) are stable points and (±π

2 ,0) are saddle points. The phase
trajectory of the improved PLL for both positive and negative speed is shown in Figure 7d. Similar
to the tangent-based PLL, each of these stable points is a focal point that the neighborhood phase
trajectories will be attracted to. Moreover, because there is no introduction of the arctangent function,
this method has better robustness than the tangent-based PLL. By selecting the appropriate gains of
the PI regulator, eθ and eω will converge to the origin. That means the motor can switch the speed
direction steadily by adopting the proposed PLL.

4. Experimental Results

The control diagram of proposed sensorless control strategy for IPMSM based on adaptive STO
and improved PLL is shown in Figure 8. The double closed-loop vector control is adopted. The details
of the adaptive STO and the improved PLL are shown in Figures 2 and 6, respectively.
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Table 1. Parameters of the IPMSM. 

Parameter Value 

Flux linkage 0.225Wb 

d/q-axis inductor 

Resistance 

Pole pairs 

Rated power 

Rated speed 

0.95/2.05mH 

0.1Ω 

4 

60kW 

3000rpm 

Figure 8. The control diagram of proposed sensorless control strategy for IPMSM.

An experimental prototype is shown in Figure 9 and the corresponding experimental platform
was established as shown in Figure 10. The platform is mainly composed of two water-cooled IPMSMs,
one rectifier, two inverters, and three controllers. The motor 1 is connected with inverter 1, and the
proposed strategy is implemented by the controller 1. The motor 2 is a load motor which is controlled
by the inverter 2, which is controlled by controller 2. Table 1 lists the parameters of the IPMSM. A 540 V
dc-link voltage is obtained by the PWM rectifier for testing and verifying the performance of the
proposed strategy. The rectifier is controlled by controller 3. In the experiment, TMS320F2812 DSP is
adopted to carry out the new sensorless control strategy. All signals are converted by a digital-to-analog
chip (TLV5610) and displayed on a digital oscilloscope. The traditional two-level inverter topology is
adopted [30]. Switching frequency of the inverter and sampling frequency of the control system are set
to 10 kHz. A rotary decoder (PGA411-Q1) is employed to obtain the actual position and speed of the
motor, which are used for comparing and verifying the performance of the proposed strategy.
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Table 1. Parameters of the IPMSM.

Parameter Value

Flux linkage 0.225 Wb
d/q-axis inductor

Resistance
Pole pairs

Rated power
Rated speed

0.95/2.05 mH
0.1 Ω

4
60 kW

3000 rpm

4.1. Experimental Results of Adaptive Super-Twisting Sliding Mode Observer

The performances of the STO with constant sliding-mode gains in different speed ranges are
presented in Figures 11 and 12. The parameters of the STO are k1 = 15 and k2 = 60, 000 and the
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parameters of the PI regulator in the PLL are Kp = 250 and Ki = 20, 000. Since the STO is based on the
back electromotive forces model, the performance of STO is unreliable in ultra-low and zero speed
domains. In this paper, IF control is adopted to ensure the start-up for IPMSM sensorless control. The
threshold of speed that transiting from IF control to sensorless control is set to 300 r/min. The Figure 11
shows the performance of STO with no load from 0 to 1000 rpm.lo The IPMSM starts up in open-loop
by using IF control at 1 s and switches to sensorless control at 2 s. Obviously, the estimation errors are
large in the process of start-up and it takes about 1 s for the observer to get accurate rotor position
information. When the IPMSM operates at 1000 r/min under sensorless control, the speed estimation
error is within ±8 r/min and the position estimation error is between 1.08◦ and 7.2◦. The estimated
back EMFs have good sinusoidal properties. This means the STO with k1 = 15 and k2 = 60, 000 can
operate perfectly at 1000 r/min.
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Figure 11. The performance of STO with no load from 0 to 1000 rpm. (a) Actual and estimated speed,
speed estimation error, and position estimation error. (b) Estimated back electromotive forces (EMFs)
and Actual and estimated position. The waveforms in (b) at 1000 r/min are zoomed in (c).
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Figure 12. The performance of STO in wide speed range. (a) The performance of STO with no load from
1000 r/min to 300 r/min in closed-loop. (b) The performance of STO with no load from 1000 r/min to
1800 r/min in open-loop.

The performances of the STO with k1 = 15 and k2 = 60, 000 from 1000 r/min to 300 r/min in
closed-loop and from 1000 r/min to 1800 r/min in open-loop are shown in the Figure 12. In the process
of motor speed decreasing from 1000 r/min to 300 r/min, the error of speed and position estimation
increases significantly. That is because excessive sliding-mode gains lead to the large chattering of the
estimated signals, resulting in severe chattering of the motor. It is dangerous to test the STO for the
IPMSM in high speed range and closed-loop, so the speed is raised from 1000 r/min to 1800 r/min
in open-loop. The corresponding performance is given in Figure 12b. The STO becomes unreliable
at about 1700 r/min. At about 1700 r/min, the position estimation error jumps abruptly from 10.8◦

to −40◦ and the estimated speed has a large flutter. This means the IPMSM cannot operate at high
speed over 1700 r/min in closed-loop. That is because the sliding-mode gains are too small to meet the
stability conditions of STO. Experimental results presented in Figure 12 illustrate that the performance
of STO in low and high speed range is limited by the constant sliding-mode gains and it is necessary
to adopt speed-related adaptive sliding-mode gains.

The adaptive coefficients of the observer can be calculated by l1 = k1
ωe

and l2 = k2
ω2

e
. The STO

with k1 = 15 and k2 = 60, 000 can operate perfectly at 1000 r/min (ωe ≈418.9 rad/s). So in this paper,
l1 = 15

418.9 ≈ 0.036 and l2 = 60,000
418.92 ≈ 0.342. After applying the proposed adaptive STO, the IPMSM

works well in wide speed range and closed-loop as shown in Figure 13. Throughout the operation, the
speed estimation error is within ±10 r/min and the position estimation error is less than 10.8◦. It is
obvious that the position and speed estimation errors are significantly lower than the observer with
constant sliding-mode gains, when the IPMSM runs in low and high speed range.
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Figure 12.  The performance of STO in wide speed range. (a) The performance of STO with no load 
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Figure 13. The performance of adaptive STO with no load in closed-loop under variable speed: raises
from 0 r/min to 1000 r/min, drops to 300 r/min, and raises to 1800 r/min.

The dynamic performance of adaptive STO at 1800 r/min is shown in Figure 14. A 40 N·m load is
enabled at 3 s and disabled at 6.2 s. The estimated speed can track the actual speed accurately and
the estimated position error is less than 10.8◦ in the course of operation. The DC error of the position
estimation increases by about 5◦ after loading and this is due to the mismatch of parameters caused
by the increase of current after loading [12,31]. Hence, the performance of the adaptive STO could
be verified.
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Figure 14. The dynamic performance of adaptive STO at 1800 r/min.

4.2. Experimental Results of the Proposed Improved PLL

The performances of traditional PLL, tangent-based PLL, and proposed improved PLL when
the IPMSM turns from positive speed to reverse speed in open-loop are shown in Figure 15. For
comparative purposes, three kinds of PLL operate under the same conditions: Kp = 250 and
Ki = 20, 000. The speed command is turned from 600 r/min to −600 r/min at 0.6 s.
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Figure 15. The performance of (a) traditional PLL, (b) tangent-based PLL, (c) improved PLL in open-

loop from 600r/min to -600r/min. 
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Figure 15. The performance of (a) traditional PLL, (b) tangent-based PLL, (c) improved PLL in
open-loop from 600 r/min to −600 r/min.

As shown in Figure 15a, The estimated speed follows the actual speed accurately, when the
rotation direction of the motor is positive. But when the speed of IPMSM is reversed, the conventional
PLL loses its accuracy and produces a large position estimation error (180◦). This prevents the motor
from turning from positive speed to reverse speed in closed-loop. The performance of tangent-based
PLL is shown in Figure 15b. Although tangent-based PLL can solve the speed reversal problem,
the introduction of division and tangent functions increases the complexity of the algorithm and
makes the tangent-based PLL vulnerable to harmonic and noise, especially when the back EMF
crosses zero and the position crosses ±π

2 where an obvious estimation error may occur. Excessive
speed and position chattering shown in Figure 15b means the algorithm cannot be adopted in
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practice. The performances of the proposed improved PLL in open-loop and closed-loop are shown in
Figures 15c and 16, respectively. It is clearly that the improved PLL has great performance when the
IPMSM turns from positive speed to reverse speed. Thus, the effectiveness of the proposed improved
PLL can be verified.Energies 2019, 12, 17 of 18 
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Figure 16. The performance of proposed improved PLL in closed-loop from 600r/min to −600r/min. 

5. Conclusions 

A new strategy for IPMSM sensorless control based on adaptive STO and improved PLL is 

proposed in this paper. STO is utilized to obtain the estimated back electromotive forces and the 

speed-related adaptive gains are proposed to achieve the accurate estimation of the observer in wide 

speed range. Moreover, the improved PLL based on a simple strategy for signal reconstruction of 

back EMF is proposed to overcome the limitation of speed reversal existing in traditional PLL without 

the introduction of tangent function. The experimental results show that the speed range of the super-

twisting sliding-mode observer can be widened by adopting the proposed adaptive algorithm and 
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