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Abstract: The stability problem of the power system becomes increasingly important for the penetration
of renewable energy resources (RESs). The inclusion of electric vehicles (EVs) in a power system can
not only promote the consumption of RESs, but also provide energy for the power grid if necessary.
As a mobile energy storage unit (MESU), EVs should pay more attention to the service life of their
batteries during operation. A hierarchical distributed control strategy was proposed in this paper for
mobile energy storage clusters (MESCs) considering the life loss of each EV’s battery. This strategy was
divided into a two-layer control structure. Firstly, numerous EVs were divided into different clusters
according to their regional relationships. The lower layer adopted a distributed collaborative control
approach for allocating energy among EVs in the cluster. Under this condition, an aggregate EVs response
model was established and the characteristic of the MESC was analyzed. Secondly, the upper layer
applied the multi-agent consensus algorithm to achieve the optimal allocation among different clusters.
Therefore, the control strategy realized the two-way communication of energy between EVs and the
power grid, and ensured the optimal economical dispatch for the mobile energy storage system (MESS).
Finally, the simulation of testing examples verified the effectiveness of the proposed strategy.

Keywords: mobile energy storage system (MESS); multi-agent; consensus algorithm

1. Introduction

Faced with an energy crisis and serious environmental problems, countries are developing renewable
energy technologies in order to meet their domestic energy demand and strive for sustainable development.
However, the random and intermittent characteristics of renewable energy sources (RESs) impact the
power system reliability [1,2].

The introduction of energy storage devices effectively solves the problem of grid-connected
renewable energy generation [3,4]. However, the high investment and construction costs of energy
storage devices will increase the cost of the energy storage system (ESS). The application of electric
vehicles (EVs) as mobile energy storage units (MESUs) has drawn widespread attention under this
circumstance [5,6]. A large amount of EVs are connected to the power grid, which is equivalent
to controllable loads or the mobile energy storage cluster (MESC) that supports ancillary services.
By controlling the charging/discharging of EVs’ batteries, it could not only promote the consumption
of RESs, but also be beneficial to peak-load shifting and valley-filling [7,8]. Moreover, large amounts of
EVs can contribute to voltage regulation and frequency regulation when considering the characteristics
of energy storage [9]. According to the concept of vehicle-to-grid (V2G), the energy stored in the
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batteries of EVs can also be sent back to the power grid when there is a shortage of active power [10].
Since an EV is a carrier of batteries, the control strategy designed to allocate energy among EVs is
equivalent to the control method of an energy storage unit (ESU). Due to the unique advantages of
EVs in terms of their demand response (DR) and energy storage, the rational dispatch of energy in the
mobile energy storage system (MESS) will be an inevitable requirement for the development of smart
grids [11].

In terms of regulation control of ESUs, a past study [12] established a joint scheduling model
of a wind power storage hybrid system on multiple time scales and gave the production plan of the
hybrid system the day before and during that day. Another study [13] used a small optical storage joint
system, proposing a real-time economic dispatch method. In Hong et al.’s study [14] a method was
proposed for the optimal control of a battery’s ESS based on a model predictive control for a real-time
power fluctuation of a wind farm. However, the above studies all adopted the conventional centralized
control to solve the dispatch problem of the ESS. The corresponding ESS also was distributed because
of the decentralized distribution of RESs, and the scale of the ESS will continue to expand with
the continuous penetration of RESs. The conventional centralized control method may encounter
severe challenges. In order to achieve the optimal operating conditions, a large number of scheduling
commands and device feedback information will easily impose a substantial computational burden,
causing control center communication congestion or even dimensionalitycurse.

Compared with the conventional centralized control, the distributed control can realize the
sharing of global information in the system only by relying on the information interaction between
adjacent devices [15]. Applying the distributed control to the ESS can mitigate the dependence on the
control center and improve the robustness and flexibility of the system [16,17].

Due to the high cost of energy storage devices, not only the accurate release of the scheduling
commands, but also the life loss of the ESS need to be considered in distributed scheduling.
In Chen et al. [18], a distributed cooperative control strategy for the MESU that considered the life loss
cost of the EV’s battery was proposed, which could not only realize the optimal allocation of energy
among MESUs, but also guarantee minimum life loss cost of batteries. However, the scale of the MESS
considered in this paper [18] was relatively small and easily caused a dimensionality curse in the face
of numerous MESUs.

To fill this gap, this paper proposes a hierarchical distributed control strategy for determining the
optimal allocation of energy among MESCs. By using this method, the minimum life loss cost of the
MESS can be obtained in addition to meeting the demand of the power system.

The rest of the paper is as follows: the hierarchical distributed control method is presented in
Section 2, the overall mathematical formulation of the proposed control strategy is described in detail
in Section 3, simulation results are shown and discussed in Section 4 in order to verify the proposed
method and finally, the paper is concluded in Section 5.

2. Hierarchical Distributed Control

Chen et al. [18] proposed a distributed cooperative control strategy for MESUs that considered
the life loss cost. The ratio of the initial investment cost of the EV’s battery to the cycle life is defined as
the life loss cost of the EV’s battery. The goal is to minimize the life loss cost and realize the optimal
allocation of energy. On this basis, this paper proposes a hierarchical distributed control strategy
with a two-layer control structure. The lower layer establishes the corresponding aggregated model
according to the different energy allocation methods for batteries of EVs, and designs the distributed
control strategy. Using the distributed control strategy in Chen et al. [18], the optimal allocation of
energy was realized based on different response models in the lower layer.

The structure of the hierarchical distributed control is shown in Figure 1, which is divided into
two layers that include the upper layer and the lower layer. Before the scheduling command is issued,
the aggregated model of the MESC in the upper layer is modeled according to the parameters of the
batteries in the lower layer. When the scheduling command begins to be issued, the control center
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sends the energy information to the leader node in the upper layer. The consensus algorithm is run
after the leader node receives the information. Energy is allocated in the upper layer while ensuring
the minimum total scheduling cost of the system. As soon as the allocation of energy in the upper
layer is finished, all MESCs will serve as the control centers of the lower layer in order to transmit
the energy information to the leader node of the lower layer. The lower layer can perform the energy
allocation among EVs.
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3. MESC Model

3.1. Lower Layer Control Strategy

Considering the life loss cost of the EV’s battery, the lower layer adopts the distributed control
strategy based on the multi-agent consensus algorithm, where it regards numerous EVs as a multi-agent
system. The optimal energy allocation among EVs is realized by the information interaction between
the charging piles.

According to Chen et al. [18], the relationship between the life loss cost of the Li-ion battery and
output energy is described by:

Fv =
Cv

avQbv
N,v

·Qbv
v (1)

where v is the index of the EV, Fv denotes the life loss cost of the EV v, QN,v denotes the rated capacity
of the EV v, Qv is the amount of output energy released by the EV v, Cv is the initial investment cost of
the battery of the EV v. av and bv are coefficients.

As seen by Equation (1), during the discharge process, the smaller the amount of the power
discharged, the smaller the life loss cost. Therefore, the optimal economical dispatch can be realized by
allocating the energy of batteries reasonably.

The objective of the dispatch problem is to minimize the total cost of overall MESUs, which can
be formulated as below:

min Fagg =
n

∑
v=1

Fv(Qv) (2)

where n is the total number of EVs in the cluster and Fagg denotes the total life loss cost.
When EVs are connected to the power grid, the initial energy of each battery is related to the

driving distance, and the maximum energy is set by the owner.
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The optimization problem is subjected to the output energy limit constraint and energy balance
constraint:

Qv,min ≤ Qv ≤ Qv,max (3)

n

∑
v=1

Qv −QD = 0 (4)

where Qv,max and Qv,min are the maximum and minimum output energy, respectively, that each EV
can provide and QD denotes the total demand of the system.

In the distributed consensus algorithm, the incremental cost λv is the same as IF,v, where IF,v can
be obtained by calculating the partial derivative of the life loss cost Fv with respect to the output energy
Qv, which is represented as below:

IF,v =
∂Fv(Qv)

∂Qv
= λv i = 1, 2, . . . , n (5)

The incremental cost λv is considered as the consensus variable. According to Equations (1) and (5),
the output energy offered by each EV can be expressed as follows:

Qv = (
λvavQbv

N,v

Cvbv
)

1
bv−1

(6)

Combined with Equation (6), the output energy limit constraint can be rewritten as below:

Qv =


Qv,min (

λvavQbv
N,v

Cvbv
)

1
bv−1
≤ Qv,min

(
λvavQbv

N,v
Cvbv

)

1
bv−1

Qv,min < (
λvavQbv

N,v
Cvbv

)

1
bv−1

< Qv,max

Qv,max (
λvavQbv

N,v
Cvbv

)

1
bv−1
≥ Qv,max

(7)

When the incremental cost reaches the same value, the total cost is at its optimal value. The specific
process is described in detail in Chen et al. [18] and will not be repeated here.

The distributed control strategy seeks to minimize the total life loss cost. However, the following
energy allocation methods for the EVs’ batteries can also be adopted without considering the total life
loss cost:

1) The average allocation method: the required energy is equally allocated into each MESU and
the output energy that each MESU needs to offer can be obtained as follows:

Qv =
QD

n
(8)

where QD is the amount of energy required by the system.
2) The battery-capacity-based allocation method: the required energy is allocated according to the

proportional relationship of the battery’s capacity. Qv can be calculated by:

Qv =
QN,v

n
∑

w=1
QN,w

·QD (9)

where
n
∑

w=1
QN,w is the sum of the batteries’ capacity of all EVs.

While adopting the average allocation method or the battery-capacity-based allocation method,
λv = QD can be guaranteed, and QD is issued through the distributed consensus control strategy.
The controller calculates the required output energy according to Equations (8) and (9).
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The coefficients of the life loss cost function of batteries have a certain random distribution
characteristic when considering the difference among EVs and user habits. We assumed that the
coefficients of the life loss cost function were normally distributed. The relationship between the

total life loss cost Fagg and the total output energy Qagg =
n
∑

v=1
Qv during the release process could be

obtained as shown in Figure 2.
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It can be seen from Figure 2 that the total life loss cost and the output energy approximately follow
that of a quadratic function. The least squares method was used for fitting the relationship between
the life loss cost and the output energy of the cluster in order to establish the cost function model of
the MESC. The fitting function is shown as follows:

Fagg = αQ2
agg + βQagg + γ (10)

where α, β and γ represent the coefficients of the above quadratic function. The cost function curve of
the MESC will serve as the basis for implementing the distributed control strategy in the upper layer.

3.2. Upper Layer Control Strategy

In order to apply the multi-agent consensus algorithm to the MESS, the reasonable allocation of
energy between BESCs is coordinated and the minimum total cost of BESS is guaranteed. The definition
of the incremental cost λagg,i of cluster i is represented as follows:

Iagg,i =
∂Fagg,i(Qagg,i)

∂Qagg,i
= λagg,i (11)

where i is the index of the MESC, Fagg,i denotes the total life loss cost of cluster i, Qagg,i is the amount of
output energy released by cluster i and Iagg,i is equal to the incremental cost λagg,i during the operation
of the consensus algorithm.

The incremental cost consensus algorithm aims to minimize the total cost of the system while
the state of all nodes tends to be consistent. The consensus variable λagg,i can be obtained by using
Equations (10) and (11), which is shown as follows:

λagg,i = 2αiQagg,i + βi (12)
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The non-leader node interacts with each other following Equation (13):

λagg,i[k + 1] =
Nagg

∑
j=1

hijλagg,j[k] (13)

where Nagg represents the total number of clusters, λagg,j represents the information state of cluster j
that is adjacent to cluster i, hij is the element in the sparse iterative matrix H and the sparse iterative
matrix is obtained from the Laplacian matrix corresponding to the communication topology [18].

As seen by Equation (13), the current energy information of each battery can be obtained using
the incremental cost, Qagg,i, which can be calculated by:

Qagg,i =
λagg,i − βi

2αi
(14)

Additionally, ∆Q is defined to indicate the mismatch between the total energy demand of MESS
and the overall output energy of all the clusters in order to satisfy the energy balance constraint of the
clusters, which is expressed as below:

∆Q = QDagg −
Nagg

∑
i=1

Qagg,i (15)

Qaggmin,i ≤ Qagg,i ≤ Qaggmax,i (16)

where QDagg represents the total energy demand of MESS and Qaggmin,i and Qaggmax,i are the maximum
and minimum output energy, respectively, that each cluster can provide.

The updated rule for the leader node is shown as follows:

λagg,i[k + 1] =
Nagg

∑
j=1

hijλagg,j[k] + ε∆Q (17)

where ε is the convergence coefficient and is related to the convergence speed of the leader node.
The convergence rate of the consensus algorithm is related to the topology of the system communication
network. ∆Q is a sign that λ increases or decreases. If ∆Q > 0, it means that more energy needs to be
offered by the energy storage system and the current λagg should be increased, and vice versa.

In the consensus iteration process, Qagg,i is subject to the following constraint:

Qagg,i =


Qaggmin,i

λagg,i−βi
2αi

≤ Qaggmin,i
λagg,i−βi

2αi
Qaggmin,i ≤

λagg,i−βi
2αi

≤ Qaggmax,i

Qaggmax,i
λagg,i−βi

2αi
≥ Qaggmax,i

(18)

By following the updated rules described by Equations (13)–(18), λagg,i will asymptotically
converge to Iagg.

The flow chart of the hierarchical distributed collaborative control strategy is shown in Figure 3.
When the scheduling command is issued, the control center sends the energy information to the
leader node in the upper layer, and the MESCs can realize the optimal allocation by running the
consensus algorithm. After energy allocation is completed in the upper layer, each cluster then sends
the energy information obtained by itself to the leader node of the lower layer to allocate the energy
among EVs. In each iterative process of the consensus algorithm, the non-leader node only needs
to apply the consensus algorithm and guarantee the constraint condition. However, in addition
to implementing the above process, the leader node also needs to determine whether the balance
condition of Equation (15) is satisfied. If the total energy offered by the MESS is equal to the amount of
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energy demanded (|∆Q| < µ), the consensus algorithm is finished and each MESU releases energy
according to the information currently obtained by itself, otherwise the consensus algorithm continues
to run until the conditions are satisfied.
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4. Simulation Results

Based on the FREEDM microgrid system [19], this paper constructed a distributed energy storage
system as shown in Figure 4, and validated the proposed distributed consensus control strategy.
MESCs were separately connected to bus I, II, III, IV and V. The dotted line in Figure 4 indicates the
communication connection between the clusters. The types and quantities of EVs in each cluster are
shown in Table 1.

Table 1. The number and type of electric vehicles (EVs) connected to different buses.

Bus The Number of EVs BYDe6 Tengshi

I 32 21 11
II 44 24 20
III 28 15 13
IV 40 28 12
V 34 19 15
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By using the consensus algorithm and selecting the incremental cost of the cluster as the
consensus variable, the dispatch problem can be solved in a distributed manner. Figure 5 shows
the communication topology of the five-MESCs system, in which node 1~5 corresponded to cluster 1~5
in Figure 4. The incremental cost λagg,i of cluster i will be updated based on its neighbors’ incremental
costs. In addition, the leader node has to be selected, which will control whether to increase or decrease
the group incremental costs. In the example shown in Figure 5, node 3 was selected as the leader node
of the five-MESCs system according to the centrality principle [20].Energies 2019, 10, x   9 of 15 
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Figure 5. Communication topology of the five mobile energy storage clusters (MESCs) system.

An assumed topology of the EV charging piles in each node is shown in Figure 6, where the dotted
line indicates the communication connection and each charging pile can exchange information with
four adjacent charging piles (two left and two right). BYDe6 and Tengshi 2017 EVs use Li-ion batteries
as energy storage batteries, and their capacities are 82 kWh and 62 kWh, respectively. The initial
investment cost of the battery is 1300 yuan/kWh.
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The above information was used to construct an aggregated model. Methods for allocating output
energy of EVs adopt three allocation methods: the optimal allocation method based on the consensus
incremental cost, the average allocation method and the battery-capacity-based allocation method.
The coefficients of the function of the aggregated model are shown in Tables 2–4 for each allocation
method, respectively.

Table 2. The parameters of the five mobile energy storage clusters (MESCs) system using the optimal
allocation method based on the consensus incremental cost.

Node α β γ

1 0.0004 0.0849 −1.3760
2 0.0003 0.0715 −1.3610
3 0.0005 0.0738 −1.3071
4 0.0004 0.0737 −1.5293
5 0.0004 0.1030 −1.6182

Table 3. The parameters of the five-MESCs system using the average allocation method.

Node α β γ

1 0.0003 0.1402 0.1734
2 0.0002 0.1503 0.0632
3 0.0004 0.1484 0.1242
4 0.0003 0.1752 0.0624
5 0.0003 0.1645 0.0528

Table 4. The parameters of the five-MESCs system using the battery-capacity-based allocation method.

Node α β γ

1 0.0003 0.1276 0.2084
2 0.0002 0.1414 0.0728
3 0.0004 0.1379 0.1616
4 0.0003 0.1598 0.0693
5 0.0003 0.1531 0.0423

Assuming that a lack of energy occurred at t = 0 s, a scheduling command was issued, which was
required to supply energy about 500 kWh to the system in a short time.

Firstly, the hierarchical distributed cooperative control strategy proposed in this paper was tested.
After receiving the scheduling command, the five-MESCs system realized the optimal allocation of
the output energy in the upper layer through the distributed control. Then, after the nodes in the
lower layer received the energy information, the output energy was allocated by the corresponding
allocation strategy. A fixed step size of 0.02 s and a convergence coefficient of ε = 0.00005 were used.
It is worth mentioning that the aggregated model of the MESC was modeled based on the three
allocation methods given in Section 3.1: the optimal allocation method based on consensus incremental
cost, the average allocation method and the battery-capacity-based allocation method. The related
simulation results are shown in Figures 7 and 8.
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Figure 7. Consensus variables λagg,j in the upper layer for (a) the optimal allocation method based on
the consensus incremental cost, (b) the average allocation method and (c) the battery-capacity-based
allocation method.
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Figures 7 and 8 indicate that the system reached a steady state in a short time. At the same time,
the energy storage clusters could realize the optimal energy allocation according to the distributed
control strategy. No matter which method was used, energy can be efficiently allocated to each node in
the upper layer with its optimal cost.

The information of each node under different energy allocation methods is shown in Table 5.

Table 5. The energy information of each node under different allocation methods.

Node Optimal Allocation Based on the
Consensus Incremental Cost (kWh) Average Allocation (kWh) Battery-Capacity-Based

Allocation (kWh)

1 94.7762 116.1089 117.6006
2 134.2594 137.6080 132.6827
3 89.3234 86.5212 85.9543
4 111.3019 78.7278 84.2197
5 70.3390 81.0341 79.5427

It can be observed in Table 5 that the batteries that adopted different allocation methods in the
lower layer led to a different output energy in the upper layer. However, the total energy demanded by
the system was unchanged, so the total output energy was equal to the energy required by the system.
Eventually, the amount of output energy scheduled by each EV could be obtained by calculations.

The life loss cost under different allocation methods are shown in Table 6. As shown in Table 6,
the overall life loss cost of the five-MESCs system was at its minimal when adopting the optimal
allocation based on the consensus incremental cost method.

Table 6. The life loss cost of batteries under different allocation methods.

Allocation Method Cost (yuan)

Optimal allocation based on the consensus of
incremental cost 52.6900

Average allocation 93.2611
Battery-capacity-based allocation 87.5728

After the energy allocation in the upper layer was completed, the energy allocation among EVs
in the lower layer was performed. For example in cluster 4, the corresponding output energy was
111.3019 kWh and that corresponds to QD = 111.3019 kWh. The simulation curves are shown in
Figures 9 and 10 using the communication topology in Figure 6.
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In the above example, each EV charging pile only exchanged information with four adjacent
charging piles. If the information interaction capability changes, it will affect the communication
topology and the final response time. With the enhancement of the wireless communication capability,
each charging pile can exchange information with more adjacent charging piles based on the charging
piles distribution structure shown in Figure 6, which leads to a change in the communication topology.
The relationship between response time, consensus variable and output energy under different
communication capabilities is shown in Figure 11, where the number of charging piles that can
exchange information reflected the communication capability.
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As shown in Figure 11, the system converged to the target value more quickly and responded
more quickly to the scheduling command with the enhancement of the wireless signal communication
capability. However, when the number of charging piles were more than eight, there was no significant
change in the response time with increasing number of charging piles.

In order to illustrate the superiority of the hierarchical control, the following examples adopted
the non-hierarchical control method to allocate energy to all EVs. Compared with the hierarchical
distributed control method, all EVs directly participated in energy allocation, which made the structure
of the system more complicated, resulting in a slower convergence of the consensus algorithm in
the iterative process and a longer time to reach optimal results. The simulation curves are shown in
Figures 12 and 13.
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Figures 12 and 13 show the curves of the consensus variables and output energy of all EVs in the
system while adopting the non-hierarchical control method. As shown in Figure 12, the time taken
for the consensus variable to converge to the optimal value reached 800 s when the non-hierarchical
control was adopted. According to the curves of the output energy shown in Figure 13, the system
scheduling cost was about 47.56 yuan. Although the overall cost was slightly reduced, the total
response time under the hierarchical distributed control method (Figures 7 and 8 and Table 6) was less
than 5% of that when the control was non-hierarchical.

5. Conclusions

This paper proposed a hierarchical distributed collaborative control strategy for MESCs. Firstly,
the aggregate characteristics of EVs with different energy allocation methods adopted were analyzed.
According to the relationship between the scheduling cost and output energy, the function of the
aggregated model in the lower layer was constructed by the least squares method. The distributed
control strategy in the upper layer was then proposed with the aggregated model. In terms of
simulation, this paper started with the topology structure of theMESC, and analyzed the characteristics
of the distributed consensus algorithm in the convergence of the results and the time required.
The simulation results implied that the hierarchical distributed control strategy proposed in this
paper could not only realize the allocation of energy demanded in the system, but also optimize the
total scheduling cost and shorten the response time.
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