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Abstract: This paper proposes oscillation propagation factors to analyze power oscillations caused by
the interharmonics of doubly fed induction generators (DFIG) at different points in the power system.
First, a dynamic model of the DIFG is built, including the asynchronous generator, its transmission
system, converters and the control systems. Then, the state space expression is formed by deducing
the input and output matrices. From this, the oscillation propagation factor is proposed and
denoted to exhibit the propagation mechanism of interharmonics in the view of frequency domain,
by deducing the multi-input-multi-output transfer functions matrix. Along with this, the sensitivity
of propagation is calculated for adjusting the parameters to block the oscillation propagating path.
Finally, the modified four machine system with two DFIGs and the New-England 39 bus system with
two DFIGs is used as a test system to verify the effectiveness of the oscillation propagation factor.
From this the simulation results demonstrate that the subsynchronous interharmonics of DFIGs
injected into the grid will propagate to the different points of the system and results in oscillation of
the power. The oscillation propagation factor could quantize the oscillation magnitude propagating
from one point to other point in the wind integrated power system.

Keywords: oscillation propagation factor; DFIG; subsynchronous oscillation; interharmonics;
frequency characteristic

1. Introduction

New energy sources such as wind power and photovoltaic cells have become an important part of
the power system. With the continuous increase of the proportion of new energy sources, the stability
of the power system caused by the access of new energy has attracted wide attention [1–3]. Wind power
is one of the best solutions for new energy generation [4]. At present, doubly fed induction generator
(DFIG) and permanent magnet synchronous generator (PMSG) are the mainstream machine types for
wind power generation [5]. In order to improve the stability and reliability of the wind integrated
power system, it is necessary to make a much deeper study on the phenomenon of subsynchronous
oscillation in the doubly-fed induction generation system.

The DFIG rotor-side converters and grid-side converters contain high power electronics. When the
random variation of wind speed causes the frequency variation of the DFIG rotor excitation current,
due to the switching effect during the conversion or regulation process, the rotor current frequency and
the grid frequency will cause the subsynchronous frequency interharmonics in the DFIG current [6,7].
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Reference [7] shows that the DFIG can act as a source of significant subsynchronous interharmonic
current emissions. When the interharmonic current is injected into the grid, it will cause
voltage, current and power to oscillate, causing various faults and the instability of the power
system [8]. Subsynchronous oscillation caused by DFIG has been studied in terms of damping
and impedance, such as eigenvalue analysis [9,10], frequency scanning method [11,12], and equivalent
impedance [13–15]. References [9,10] analyze and control the subsynchronous oscillation based on
eigenvalue analysis. Frequency scanning method is performed to investigate subsynchronous control
interaction [11,12]. An impedance-based analysis approach is used to characterize subsynchronous
oscillation [13–15]. At present, there is no literature to quantitatively study the propagation law of
DFIG subsynchronous interharmonics.

The rest of the paper is structured as follows: Section 2 gives the dynamic model of DFIG.
In Section 3, a small signal state space model for the power system is derived from the DFIG model,
the synchronous generator state equation and the network equation considering the load. Then we
calculate the system transfer function matrix and define the oscillation propagation factor to analyze
the system power oscillation. Section 4 validates the effectiveness of the oscillation propagation factor
based on the 4-machine 2-area system and the New-England 39 bus system. The discussion and
conclusion are provided in Sections 5 and 6 respectively.

2. Dynamic Model of Wind Integrated Power System

The doubly fed induction generator structure is shown in Figure 1. It mainly includes
asynchronous generator, transmission system, rotor-side converter, grid-side converter and control
system [16,17].

Energies 2018, 11, x 2 of 17 

 

frequency and the grid frequency will cause the subsynchronous frequency interharmonics in the 
DFIG current [6,7].  

Reference [7] shows that the DFIG can act as a source of significant subsynchronous 
interharmonic current emissions. When the interharmonic current is injected into the grid, it will 
cause voltage, current and power to oscillate, causing various faults and the instability of the power 
system [8]. Subsynchronous oscillation caused by DFIG has been studied in terms of damping and 
impedance, such as eigenvalue analysis [9,10], frequency scanning method [11,12], and equivalent 
impedance [13–15]. References [9,10] analyze and control the subsynchronous oscillation based on 
eigenvalue analysis. Frequency scanning method is performed to investigate subsynchronous control 
interaction [11,12]. An impedance-based analysis approach is used to characterize subsynchronous 
oscillation [13–15]. At present, there is no literature to quantitatively study the propagation law of 
DFIG subsynchronous interharmonics.  

The rest of the paper is structured as follows: Section 2 gives the dynamic model of DFIG. In 
Section 3, a small signal state space model for the power system is derived from the DFIG model, the 
synchronous generator state equation and the network equation considering the load. Then we 
calculate the system transfer function matrix and define the oscillation propagation factor to analyze 
the system power oscillation. Section 4 validates the effectiveness of the oscillation propagation factor 
based on the 4-machine 2-area system and the New-England 39 bus system. The discussion and 
conclusion are provided in Sections 5 and 6 respectively. 

2. Dynamic Model of Wind Integrated Power System  

The doubly fed induction generator structure is shown in Figure 1. It mainly includes 
asynchronous generator, transmission system, rotor-side converter, grid-side converter and control 
system [16,17]. 

Asynchronous 
generator Is

Ir
Ir3

Us

C Udc

Ur Lr3

U1

Rotor-side 
converter

Grid-side 
converter

IWUW

Xr3

 
Figure 1. Doubly fed induction generator (DFIG) based wind energy system. 
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Ignoring the transient process of the motor stator flux, according to the DFIG flux and voltage 
equations [16,18], the dynamic model of the asynchronous generator is (1). 
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In Figure 1, Us is the stator voltage of DFIG, Is is the stator current; Ur is the rotor voltage, Ir is
the rotor current; U1 is the AC side voltage of the grid-side converter, and Ir3 is the AC side current of
the grid-side converter. Lr3 is the filter between the AC side of the grid-side converter and the line.
Xr3 is the filter reactance. C is the capacitance value of the intermediate capacitor, and Udc is the DC
voltage of the capacitor. UW is the DFIG bus voltage; IW is the DFIG bus injection current. The positive
direction of the physical quantity uses the generator convention.

Ignoring the transient process of the motor stator flux, according to the DFIG flux and voltage
equations [16,18], the dynamic model of the asynchronous generator is (1).

dE′d
dt = − Rr

Xrr
E′d + slE′q +

RrX2
m

X2
rr

Iqs − Xm
Xrr

Uqr
dE′q
dt = −slE′d −

Rr
Xrr

E′q −
RrX2

m
X2

rr
Ids +

Xm
Xrr

Udr
dsl
dt = 1

TJ
[Te − Tm − D(sl − s0)]

(1)
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where E′d and E′q are the d-axis and q-axis components of the stator transient voltage, respectively; Udr
and Uqr are the d-axis and q-axis components of the rotor winding voltage, respectively; Ids and Iqs are
the d-axis and q-axis components of the stator winding current, respectively; sl is the slip; Rr is the
rotor winding resistance; Xm is the excitation reactance; Xrr = Xm + Xr, where Xr is the rotor leakage
reactance; TJ is the inertia time constant of the whole drive; Te is the electromagnetic torque; Tm is the
mechanical torque; D is the damping coefficient; s0 is the slip at steady state, ω0 is the synchronous
angular frequency.

Considering the DC voltage dynamics, the dynamic model of the intermediate capacitor C in
Figure 1 is:

dUdc
dt

=
Pr − Pr3

CUdc
(2)

where Pr is the active power from the rotor-side converter to the intermediate capacitor; Pr3 is the
active power from the intermediate capacitor to the grid-side converter.

The dynamic model of the filtered reactance is:

dIdr3
dt = Iqr3 + (Ud1 −Uds)/Xr3

dIqr3
dt = −Idr3 +

(
Uq1 −Uqs

)
/Xr3

(3)

where Idr3 and Iqr3, are the d-axis and q-axis components of the current on the AC side of the grid-side
converter, respectively; Ud1 and Uq1 are the d-axis and q-axis components of the AC side voltage of the
grid-side converter, respectively;

The control objective of the rotor-side converter is to achieve decoupling independent control
of the active power and reactive power on the stator side by controlling the excitation voltage [19].
The control block diagram of the rotor-side converter is available from [17].

The dynamic model of the rotor-side converter is:

dx1
dt = Ki1(P∗s − Ps)

dx2
dt = Ki2(Q∗s −Qs)
dx3
dt = Ki3(I∗qr − Iqr)

dx4
dt = Ki4(I∗

dr
− Idr)

(4)

where x1, x2 x3 and x4 are the introduced state variables; Ki1, Ki2 Ki3 and Ki4, are the integral coefficients
of the corresponding PI controller; Ps and Qs are the active and reactive powers of the stator winding,
respectively; Idr and Iqr are the d-axis and q-axis components of the rotor winding current, respectively.
The superscript * indicates the reference value of the corresponding physical quantity.

The control objective of the grid-side converter is to maintain the intermediate capacitor voltage
as stable, and control the reactive power exchange between the rotor side and the grid to zero [20].
The control block diagram of the grid-side converter is available from [16].

The dynamic model of the grid-side converter is:

dx5
dt = Ki5(U∗dc

−Udc)
dx6
dt = Ki6(I∗

dr3
− Idr3)

dx7
dt = Ki7(I∗

qr3
− Iqr3)

(5)

where x5, x6 and x7 are the introduced state variables; Ki5, Ki6 and Ki7 are the integral coefficients of
the corresponding PI controller.
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3. Oscillation Propagation Factor

3.1. The Linearization Model

The DFIG dynamic models (1)–(5) are linearized to obtain a small-signal model of DFIG:

d∆XW
dt = AW∆XW + BW∆UW

∆IW = CW∆XW + DW∆UW
(6)

In (6), ∆XW = [∆E′d, ∆E′q, ∆sl , ∆Udc, ∆Idr3, ∆Iqr3, ∆x1, ∆x2, ∆x3, ∆x4, ∆x5, ∆x6, ∆x7]
T is the DFIG

state variable; ∆UW = [∆Ud, ∆Uq]
T is the DFIG bus voltage, and ∆IW = [∆Id, ∆Iq]

T is the DFIG bus
injection current.

According to (6), the mathematical model of all DFIGs in the wind integrated power system is (7).

d∆XD
dt = AD∆XD + BD∆UD

∆ID = CD∆XD + DD∆UD
(7)

where AD = diag{AW1, AW2 , · · · , AWn} is the state matrix; BD = diag{BW1, BW2, · · · , BWn}
is the input matrix; CD = diag{CW1, CW2 , · · · , CWn} is the output matrix; DD =

diag{DW1, DW2 , · · · , DWn} is the direct transfer matrix; ∆XD = [∆XW1, ∆XW2, · · · , ∆XWn]
T is

the state vector; ∆UD = [∆UW1, ∆UW2, · · · , ∆UWn]
T is the DFIG voltage vector; ∆ID =

[∆IW1, ∆IW2, · · · , ∆IWn]
T is the DFIG current vector; n is the number of DFIGs in wind integrated

power system.
The synchronous generator and its excitation system use a fourth order model. The linearized

synchronous generator state equation is (8).

d∆XG
dt = AG∆XG + BG∆UG

∆IG = CG∆XG + DG∆UG
(8)

where ∆XG is the synchronous generator state vector; ∆UG is the bus voltage vector of synchronous
generator; ∆IG is the synchronous generator injection current vector; AG, BG, CG and DG are state
matrix, input matrix, output matrix, and direct transfer matrix, respectively.

The load uses the constant impedance model. The power network equation considering load is (9)

∆I = Y∆U (9)

where ∆U = [∆UD; ∆UG; ∆UL], ∆I = [∆ID; ∆IG; 0]; Y =

 YDD YDG YDL
YGD YGG YGL
YLD YLG YLL

 is the node admittance

matrix considering the load.
By combining (7), (8) and (9), (10) can be obtained.

d∆X
dt = A∆X + B∆U
0 = C∆X + D∆U

(10)

where ∆X = [∆XD, ∆XG]
T , A = diag{AD, AG}, B = [diag{BD, BG}, 0], C = [diag{−CD,−CG}, 0]T ,

D =

 YDD −DD YDG YDL
YGD YGG −DG YGL
YLD YLG YLL

.
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The active power injected into the grid by DFIG is PW :

PW = Ps + Pr3

Ps = IdsUds + IqsUqs

Pr3 = Idr3Uds + Iqr3Uqs

(11)

By linearizing (11), we get,

∆PW = Ids0∆Uds + Uds0∆Ids + Iqs0∆Uqs + Uqs0∆Iqs+

Idr30∆Uds + Uds0∆Idr3 + Iqr30∆Uqs + Uqs0∆Iqr3
(12)

According to the mathematical model of DFIG, we get (13):

∆Ids =
1

X′∆E′q − 1
X′∆Uqs

∆Iqs = − 1
X′∆E′d +

1
X′∆Uds

(13)

where X′ = Xss − X2
m/Xrr is the transient reactance of DFIG. Xss = Xm + Xs, Xs is the stator leakage

reactance. Substituting (13) into (12), the active power of DFIG can be written as (14).

∆PW = CPW∆XW + DPW∆UW (14)

By combining (9), (10) and (14), the small-signal state space model of the whole system can
be obtained:

d∆X
dt = A∆X + B∆u

∆y = C∆X + D∆u
(15)

where ∆y = [∆PW1, ∆PW2, · · · , ∆PWk]
T is the output vector; k is the number of generators in wind

integrated power system; ∆u is the input vector; A = A− BD−1C is the state matrix; B is the input
matrix; C is the output matrix; D is the direct transfer matrix.

3.2. Oscillation Propagation Factor

The Laplace transform is performed on the (15) and the initial condition is considered to be zero:

∆X(s) = (sI−A)−1B∆u(s)
∆y(s) = C∆X(s) + D∆u(s)

(16)

Eliminate ∆X(s) in (16), then the transfer function matrix between the output variable ∆y and the
input variable ∆u is:

W(s) = C(sI−A)−1B + D (17)

where W(s) is a matrix function. The matrix element Wij(s) represents the sinusoidal response from
the jth element ∆uj of the input variable to the ith element ∆yi of the output variable. For the jth
element ∆uj of the input variable with angular frequency ω, the amplitude of the ith element ∆yi of
the output variable is

∣∣Wij(jω)
∣∣, the phase shift is ∠Wij(jω), and the total response ∆yi is equal to the

linear sum of the individual input responses:

∆yi =
r

∑
j=1

Wij(s)∆uj (18)

After the DFIG interharmonics are injected into the grid, the resulting disturbances will respond
at different points in the power system. In the multi-input-multi-output systems, we define oscillation
propagation factors to characterize the effects of the input variable disturbances with different
frequencies on the oscillations amplitude of the output variables. The oscillation propagation factor is
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the ratio of an element of the output vector to the input vector. The oscillation propagation factor ki(s)
of the ith element of the output variable is denoted and calculated by (19) [21].

ki(s) = 20 log10

(
|∆yi|
‖∆u‖2

)
= 20 log10


∣∣∣∣∣ r

∑
j=1

Wij(s)∆uj

∣∣∣∣∣
‖∆u‖2

 (19)

In (19), the unit of ki(s) is dB; |∆yi| is the magnitude of the ith element of the output vector and
‖∆u‖2 is the 2 norm of the input vector. The larger the oscillation propagation factor, the stronger is
the influence of the system disturbance at this point, and the larger the amplitude of the output vector
element oscillation. Equation (17) can be expressed as:

W(s) =
1

|sI−A| [Cadj(sI−A)B + D|sI−A|] (20)

It can be seen that when the elements Wij(s) of the transfer function matrix W(s) do not have zero
pole cancellation, the pole of the transfer function Wij(s) is the same as the eigenvalue of the system
state matrix. Consider the zero-polar format of the transfer function Wij(s):

Wij(s) = K

l
∏

v=1
(s− zv)

n
∏

u=1
(s− pu)

(21)

Substitute s = jω into (21) and replace pole pu with the eigenvalue λu = σu + jωu(u = 1, 2 · · · n)
of the state matrix A. Then, we obtain the magnification

∣∣Wij(jω)
∣∣ of the transfer function Wij(jω),

that is the amplitude gain of output.

∣∣Wij(jω)
∣∣ = K

l
∏

v=1
|jω− zv|

n
∏

u=1
|jω− σu − jωu|

(22)

When the angular frequency ω of the input variable approaches the angular frequency ωu of the
system, the factor |jω− σu − jωu| in the denominator of (21) decreases, so the amplification factor∣∣Wij(s)

∣∣ increases and the oscillation propagation factor becomes larger. And when ω = ωi, the smaller
σi, that is, the smaller the damping ratio, the larger the oscillation propagation factor.

The sensitivity D(ω) of oscillation propagation factor to system parameters is calculated
as follows:

D(ω) =
∂ki(s)

∂p
=

∂ki(jω)

∂p
(23)

where ki(s) is the oscillation propagation factor of generators; ω is the angular frequency; p is the
system parameters, such as the active power of the DFIGs and the PI controller parameters of these
DFIGs. The sensitivity can be solved by perturbation theory. Sensitivity indicates the influence of
system parameters changes on the system oscillation propagation factor. The positive and negative
sensitivity reflects the increase and decrease of the oscillation propagation factor when the system
parameters fluctuate. The magnitude of the sensitivity reflects the degree of influence of system
parameters on the oscillation propagation factor.
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4. Simulation Results and Analysis

In order to verify the validity of the oscillation propagation factor proposed in this paper,
the propagation of the subsynchronous oscillation in the test system is analyzed by the oscillation
propagation factor. When the interharmonic frequency is changed, and when the system damping
ratio is changed, the oscillation propagation factor is calculated to compare the strength of the
subsynchronous oscillation of each generator.

4.1. Two Area Four Machine System

The modified 4-machine 2-area system [22] with two DFIGs is shown in Figure 2. The DFIG
parameters are listed below. Rotor winding resistance Rr = 0.0013 p.u. Excitation reactance
Xm = 2.6 p.u. Rotor leakage reactance Xr = 2.9 p.u. Filter reactance Xr3 = 5 p.u. Capacitance C
= 13.29 p.u. Inertia time constant TJ = 3.4 p.u. The small-signal stability analysis was performed on the
system of Figure 2, and seven oscillation modes were obtained, as shown in Table 1. The active power
of DFIGs and the input vector are PDFIG1 = 0.4p.u., PDFIG2 = 0.4p.u.,u = 0 in Table 1. Eigenvalues for
each mode are given in the form λu = σu ± jωu, from which the frequencies fu = ωu

2π and the damping
ratios ζu = −σu√

σu2+ωu2
are derived. The real part of the system eigenvalue is negative, and the system is

small-signal stable.
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Figure 2. 4-machine 2-area test system with two DFIGs.

Table 1. System oscillation modes.

Mode Eigenvalue Angular Frequency (Rad/s) Damping Ratio

1 −0.3364 ± 90.8578j 90.8578 0.0037
2 −0.1806 ± 89.5917j 89.5917 0.0020
3 −0.1297 ± 75.1461j 75.1461 0.0017
4 −0.2758 ± 74.9510j 74.9510 0.0037
5 −0.0368 ± 13.3422j 13.3422 0.0028
6 −0.0403 ± 12.4648j 12.4648 0.0032
7 −0.0355 ± 6.5300j 6.5300 0.0054

4.1.1. Frequency Domain Simulation Results

The interharmonic d and q axis components obtained by Park’s transformation [23] are sinusoidal,
and the phase of the d-axis component lags behind the phase of the q-axis component π

2 . Therefore,
the input ∆u is as shown in (24).

∆u =

[
Ai cos(ωt)

Ai cos(ωt + π
2 )

]
(24)

where Ai is the amplitude of interharmonic; ω is the angular frequency of interharmonic.
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Assume interharmonic currents from DFIG1 is with the angular frequency of ω rad/s and
amplitude of 0.001 p.u. is injected to the power grid. The output power of each DFIG and synchronous
generator is taken as the output variable, and the system transfer function is established. The oscillation
propagation factor is shown in Figure 3. Figure 4 shows the oscillation propagation factors for different
generators near the oscillation frequency of system mode 1–4.
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It can be seen from Figures 3 and 4 that the oscillation propagation factors of the output power
of the same generator are different for input variables of different angular frequency. When the
angular frequency of the input variable is the same, the oscillation propagation factors of the output
power of each generator are also different. When the input variable angular frequency is close to
the oscillation angular frequency of system mode 1–4, the oscillation propagation factors of each
generator exceed 0 dB, and the interharmonics of the DFIG are amplified by the system propagation.
When the input variable frequency is close to the frequencies of mode 3 and 4, the amplitude of
the output power oscillation of the DFIG is larger than the amplitude of the synchronous generator
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output power oscillation. When the input variable frequency is close to the frequencies of mode 1
and 2, the amplitude of the output power oscillation of the DFIG is smaller than the amplitude of the
synchronous generator output power oscillation. The oscillation propagation factor of DFIG2 is given
in Figure 5.
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The abscissa of the red dotted line in Figure 5 is the system oscillation angular frequency.
The abscissa of the three maximum points of the oscillation propagation factor of DFIG2 is 90.79 rad/s,
89.61 rad/s and 75.12 rad/s, respectively. These three angular frequency are almost equal to the
system oscillation angular frequencies of mode 1, 2 and 3 in Table 1, respectively. When the
inter-harmonics injected into the power network of the DFIG approaches these frequencies, resonance
occurs, and a large amplitude power oscillation takes place. When the amplitude of the fluctuation
of the inter-harmonic current becomes larger or smaller, the amplitude of the power oscillation also
increases or decreases. The proportional relationship between the two amplitudes does not change,
and corresponds to the ordinate value of the oscillation propagation factor characteristic curve at each
frequency point.

The effect of the output power of DFIGs on the oscillation propagation factor is analyzed below.
When the DFIG1 output power reduces by 25%, the small-signal analysis result is shown in Table 2.
The active power of DFIGs and the input vector are PDFIG1 = 0.3p.u., PDFIG2 = 0.4p.u.,u = 0.
The sensitivity with system subsynchronous oscillation frequency respect to DFIG active power and
the PI controller parameters of DFIGs is shown in Figure 7. From Figure 7, it can be seen that the
sensitivity of the oscillation propagation factor to the active power of DFIG2 is positive, indicating that
as the active power of DFIG2 decreases, the oscillation propagation factor will decrease. The active
power of DFIG2 is more sensitive to mode 4, which demonstrates that regulation of the active power
of DFIG2 could block the oscillation propagation path.

When the interharmonic currents from DFIG1 are injected to the power grid, the oscillation
propagation factor of DFIG2 output power near the frequency of modes 1–4 is shown in
Figure 6. The abscissa of the dotted line in Figure 6 is the system oscillation angular frequency.
Comparing Tables 1 and 2 after reducing the DFIG power, the damping ratio of system mode
1 decreases, and the damping ratios of system mode 2 and 3 increase. As can be seen from
Figure 6, the oscillation propagation factor at the system angular frequency of mode 1 is increased.
The oscillation propagation factor at the system angular frequency of mode 2 and 3 are decreased.
The larger the system damping ratio, the smaller the oscillation propagation factor.
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Table 2. System oscillation mode.

Mode Eigenvalue Angular Frequency (Rad/s) Damping Ratio

1 −0.2973 ± 90.9755j 90.9755 0.0033
2 −0.2285 ± 89.8449j 89.8449 0.0025
3 −0.2367 ± 75.1553j 75.1553 0.0031
4 −0.2539 ± 74.9392j 74.9392 0.0034
5 −0.0373 ± 13.3797j 13.3797 0.0028
6 −0.0403 ± 12.4733j 12.4733 0.0032
7 −0.0395 ± 6.3194j 6.3194 0.0062
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4.1.2. Time Domain Simulation Results

In order to verify the accuracy of the oscillation propagation factor analysis, the time domain
simulations are carried out. The interharmonic currents from DFIG1 are injected at bus 6.
The interharmonic current angular frequency is 89.64 rad/s, which is simulated under the condition
that the original system and DFIG1 power are reduced respectively. The simulation results are shown
in Figure 8.
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When the amplitude of the active power oscillation is almost constant, the amplitude of the
power oscillation can be obtained from the ordinate of the curve in the figure. The oscillation
propagation factor can then be calculated based on (19), the definition of the oscillation propagation
factor. In Figure 8, the interharmonic current at the original system bus 6 causes DFIG2 active power
oscillation, the oscillation amplitude is 0.0124, and the oscillation propagation factor is 8.77, which is
basically the same as the oscillation propagation factor 1018.75/20 = 8.66 at 89.61 rad/s in Figure 5.
After the power of DFIG1 is reduced, the system damping increases, the oscillation propagation factor
decreases, and the power oscillation amplitude decreases. The dynamic frequency domain analysis
method based on transfer function can quantitatively describe the proportional relationship between
the amplitude of power oscillation and the amplitude of interharmonic current.
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4.2. New England 39 Bus System

The New-England 39 bus system [24] with two DFIGs is shown in Figure 9. The parameters of
DFIGs in New-England 39 bus system are same as that in 4-machine 2-area system. The small-signal
stability analysis was performed on the system shown in Figure 9, and the subsynchronous oscillation
modes were obtained as shown in Table 3. The active power of DFIGs and the input vector are
PDFIG1 = 0.4p.u., PDFIG2 = 0.4p.u.,u = 0 in Table 3.

Table 3. System subsynchronous oscillation mode.

Mode Eigenvalue Angular Frequency (Rad/s) Damping Ratio

1 −0.5060 ± 90.4108j 90.4108 0.0056
2 −0.5494 ± 91.0655j 91.0655 0.0060
3 −0.4586 ± 74.7992j 74.7992 0.0061
4 −0.5610 ± 75.0893j 75.0893 0.0075
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4.2.1. Frequency Domain Simulation Results

The subsynchronous harmonics injected into the grid by DFIG1 are taken as input variables,
and the active power of each generator is the output variable. The frequency response of each generator
is as shown in Figure 10.
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Figure 10. Oscillation propagation factor of each generator.

It can be seen from Figure 10 that when the interharmonic frequency is close to the oscillation
frequency of the system, the oscillation propagation factors of each generator increase. Near the
system subsynchronous frequency, the oscillation propagation factors of the two DFIG and part of the
generator exceed 0 dB, and the output power is greatly affected by the subsynchronous oscillation
caused by the interharmonics. When the input variable frequency is close to the frequencies of mode 3
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and 4, the amplitude of the output power oscillation of the DFIG is larger than the amplitude of the
synchronous generator output power oscillation. When the input variable frequency is close to the
frequencies of mode 1 and 2, the amplitude of the output power oscillation of the DFIG is smaller than
the amplitude of the synchronous generator output power oscillation. The oscillation propagation
factor of DFIG2 is given in Figure 11.
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Figure 11. Oscillation propagation factor of DFIG2.

The abscissa of the red dotted line in Figure 11 is the system oscillation angular frequency.
In Figure 11, the two maximum value points of the DFIG2 oscillation propagation factor are 90.77 rad/s
and 74.91 rad/s, respectively, which are close to the system oscillation angular frequency. When the
interharmonic frequency is in the low frequency band, the power oscillation of DFIG2 is hardly caused.
When the subsynchronous frequency interharmonics of the DFIG1 are injected into the power network,
resonance is induced, and a large amplitude power oscillation of DFIG2 occurs.

The sensitivity with subsynchronous oscillation frequency respect to DFIG active power and
the PI controller parameters of DFIGs are shown in Figure 12. Changes in controller parameters
can cause changes in the propagation factor, and the amplitude of the oscillation of DFIGs changes.
From Figure 12 it can be seen that Ki1 is highly sensitive to the oscillation mode 3 and mode 4,
which means the regulation of Ki1 is effective for reducing the propagation aptitude. For the mode 1
and mode 2, Ki1 is not sensitive, and the sensitivity is almost equal to zero, which means the regulation
of Ki1 could not help for reducing the propagation aptitude of mode 1 and mode 2. By this way,
the parameters could be optimized to satisfy the engineering requirements.

4.2.2. Time Domain Simulation Results

In the MATLAB, a time domain simulation model of New-England 39 bus System with two
DFIGs is established, and an inter-harmonic current with an angular frequency of 90.77 rad/s and
an amplitude of 0.001 is injected at bus 6. The DFIG2 active power simulation results are shown
in Figure 13. The blue curve is the time domain simulation result of DFIG2 active power when the
DFIG1 power is increased by a factor of 2. After the power of DFIG1 is increased, the system damping
increases, the oscillation propagation factor decreases, and the power oscillation amplitude decreases.
In Figure 13, the interharmonic current at bus 6 causes DFIG2 active power oscillation, the oscillation
amplitude is 0.0039, and the oscillation propagation factor is 2.76, which is basically the same as the
oscillation propagation factor 108.866/20 = 2.78 at 90.77 rad/s in Figure 11.
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5. Discussion

The evaluation of hazard degree of the subsynchronous oscillation needs to identify the
propagation range of the subsynchronous oscillation. In order to maintain the stability of the
power system, different methods are required according to different subsynchronous oscillation
propagation ranges. The method for dealing with subsynchronous oscillation of power system
is: When the oscillation propagation factor of the synchronous generator is larger than a given
value, the subsynchronous oscillation propagation range includes the synchronous generators.
The subsynchronous oscillation caused by the interharmonics is serious, and the DFIG that causes the
subsynchronous harmonics needs to be shed [25]. When the synchronous generator is not included
in the subsynchronous oscillation propagation range, the subsynchronous oscillation caused by the
interharmonics is less harmful. It is not necessary to shed the DFIG that causes the subsynchronous
harmonics. We can adjust the operating parameters of the DFIGs or take other measures.

Meanwhile, if a detailed electromagnetic transient model is established for a complete actual
power system, it will take a lot of time to determine the subsynchronous oscillation propagation range
by time domain simulation analysis. The method can quickly determine the subsynchronous oscillation
propagation range by linearizing the transient model and using the oscillation propagation factor.
When the DFIGs output is different, the oscillation propagation factor is different, then the oscillation
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amplitude at a different frequency is different. According to the participation factor [22], only the state
variables with the highest participation in the oscillation mode can be obtained, but according to the
oscillation propagation factor, the correlation degree between each generator and the oscillation with
any frequency can be obtained. Through the sensitivity curve, it can be known that the change of the
controller parameters will cause the change of the oscillation propagation factor, and the amplitude of
the oscillation of DFIG2 will change.

6. Conclusions

The oscillation propagation factor which could characterize the subsynchronous oscillation
magnitude propagation, is proposed in this paper. The interharmonics injected into the grid by DFIG
will cause continuous oscillation of power. The oscillation propagation factor based on frequency
domain method is used to study the propagation characteristics of DFIG interharmonic injected
into the grid. The main conclusions are as follows: The oscillation propagation factor can quantify
the strength of the subsynchronous oscillation, and could give the propagation intensity to different
directions or different devices. The oscillation propagation factor generally has a maximum point at the
oscillation frequency of the system, and the amplitude of the power oscillation increases significantly.
The sensitivities of the operating parameters and system parameters to the oscillation propagation
factor are deduced to give the guidance for blocking the oscillation propagation path.
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