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Abstract: Tip leakage vortex (TLV) in a transonic compressor rotor was investigated numerically
using detached-eddy simulation (DES) method at different working conditions. Strong unsteadiness
was found at the tip region, causing a considerable fluctuation in total pressure distribution and flow
angle distribution above 80% span. The unsteadiness at near choke point and peak efficiency point is
not obvious. DES method can resolve more detailed flow patterns than RANS (Reynolds-averaged
Navier–Stokes) results, and detailed structures of the tip leakage flow were captured. A spiral-type
breakdown structure of the TLV was successfully observed at the near stall point when the TLV
passed through the bow shock. The breakdown of TLV contributed to the unsteadiness and the
blockage effect at the tip region.
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1. Introduction

Driven by the pressure gradient inside the clearance of the rotor and casing, tip leakage is
an unavoidable phenomenon in the field of turbomachinery, which scholars have studied for a
long time in both compressible [1–4] and incompressible [5–8] fields. As for axial compressors,
tip leakage flow plays an even more significant role due to its close relationship with loss and stall
characteristics [9,10], which are highly valued in the design or analyzing processes. Aiming at reducing
the impact of tip leakage flow, plenty of flow control methods (such as air injection [11], bleeding [12],
casing treatment [13] and plasma actuation [14]) have been studied in recent years.

As for low-speed compressors, flow structures as well as unsteadiness of tip leakage vortex (TLV)
have been widely studied and certain achievements were obtained through numerical efforts and
experiments. As the flow coefficient decreases, the interface between the TLV and the incoming flow
moves upstream [15], and the trajectory of which will be aligned with the leading edge when the
rotor finally encounters a spike-type stall inception [16]. The criterion for spike-initiated numerical
stall that leading-edge spillage and trailing-edge backflow are both essential was proved effective in
low-speed compressor experiments [17]. Leading-edge spillage was later found to be an accompanying
phenomenon, whose fundamental cause is probably the tornado-like vortex, resulted from the
interaction between TLV and leading-edge separation [18]. In rotors with a large gap, attention was also
paid to the effects of double-leakage tip clearance flow, which generates a vortex rope and subsequent
extra mixing loss in the adjacent blade passage [19]. With the increase of stage loading, the importance
of tip leakage flow in high-speed or transonic compressor has been increasingly emphasized. There are
indeed similarities in the basic structures and mechanisms of the TLV in low-speed compressors
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and transonic ones. Nevertheless, conclusions for tip leakage flow in low-speed compressors are
not entirely suitable for transonic ones, due to further larger pressure gradient and the existence of
shock wave. When the TLV crosses the shock, it interacts both with the shock wave and with the
pressure-side secondary flows generating a leakage-interaction-region of low speed, high entropy
and high turbulence [2]. The interaction results in extra complexity and less stability in the tip flow
field, which is considered a hot spot. Strong self-induced unsteadiness was found in the TLV with a
characteristic frequency near 60% BPF (blade passing frequency) [4,20,21] and the oscillation of passage
shock was revealed as well [22]. Moreover, the casing boundary layer along with the blade surface
boundary layer may participate in the interacting process [23], especially at near stall point where a
shock-induced separation inside the boundary layer is likely to happen in most cases. Under these
circumstances, the TLV and its interaction can make a great impact on the overall performance and
eventually lead to a spike-type stall inception in transonic compressors [24].

Despite the considerable efforts made by scholars in turbomachinery community, the complete
mechanism of TLV and its influence on the tip flow field are still not fully understood, especially in
transonic compressors. Previous investigations have shown that the interaction between the shock and
TLV contributes a lot to the unsteadiness in the tip flow field, but failed to reveal this interacting process
in detail. On the other hand, Reynolds-averaged Navier–Stokes (RANS) method is routinely adopted in
most simulations among previous studies; however, traditional turbulence models have native defects
in predicting the unsteady and vortical flows such as the TLV [25]. As a result, DES (detached-eddy
simulation) method is thought to be an alternative in capturing separated or vortical flow with bearable
cost [26]. Up to now, many scholars [18,27–30] have applied DES methods to the turbomachinery field
and achieved satisfactory results.

In this paper, we carried out DES investigations of a transonic compressor rotor, focused on
the structure of the TLV, the interaction with shock wave as well as the unsteady characteristics.
Due to the limits of computing resources, a single-row DES calculation was adopted. This paper
is organized as follows: the compressor and the numerical method chosen in the present study
are demonstrated in Section 2, with the validation results shown in Section 3.1. Section 3.2 mainly
deals with the unsteadiness related to the TLV. Detailed structures of the TLV at different working
conditions are shown in Section 3.3, focused on the vortex breakdown phenomenon at near stall point.
Section 4 mainly deals with the mechanism of leakage vortex breakdown. Finally, a short conclusion is
drawn in Section 5.

2. Methodology

2.1. Testing Case

The compressor investigated in the present study is an in-house 1.5-stage transonic axial
compressor with 22 rotor blades and a tip clearance of 0.82% chord length, which is modeled from
the first stage of an F-class gas turbine. Its schematic structure and design parameters are shown in
Figure 1 and Table 1, respectively.

Figure 1. Schematic structure of the 1.5-stage compressor.
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Table 1. Design parameters of the compressor.

Parameter Value Unit

Rotor blade number 22 -
Rotating speed 24,840 rpm

Mass flow 12 kg/s
Total pressure ratio 1.3 -
Tip Mach number 1.25 -

Tip clearance 0.82% chord length

2.2. Mesh for DES Calculation

The computational domain is the rotor part (indicated by red dashed line in Figure 1) with inlet
and outlet boundaries extended for one-axial chord and two-axial chord, respectively. An unstructured
hex-dominant mesh is employed in the DES calculation. As shown in Figure 2, a relatively coarse
grid with a refined tip region is adopted to make a trade-off between the flow field resolution and
the calculating resources required. To capture the detailed structure of the TLV, the local grid scale at
the tip region needs to be at least an order of magnitude smaller than the tip clearance scale in three
dimensions, which would be a great challenge if we use a conventional structured mesh. The final
mesh is an hybrid grid containing hexahedrons, tetrahedrons, and prisms, with a total element number
of 12.3 million, 10 nodes applied in boundary layers to ensure y+ < 1 and 27 nodes applied in the tip
clearance region with ∆x+, ∆y+, ∆z+ < 20.

Figure 2. Overview of the detached-eddy simulation (DES) Computational Grid.

2.3. Solver Theory and Calculation Settings

A commercial solver package, FLUENT (14.0, ANSYS, Inc., Canonsburg, PA, USA), was used in
the present work, which is a three-dimensional, time-accurate code with implicit second-order scheme,
long applied to the field of axial compressors and tip leakage flow [31–37]. The compressible forms of
the Reynolds-averaged Navier–Stokes equations were solved in the fluid domain with gravity and
volumetric heat source neglected:

∂ρ̄
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+

∂

xj
(ρ̄ũj) = 0 (1)
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∂

∂xj
[(λ + λ′)

∂T̃
∂xj

] (3)

where τij is the viscous stress tensor, τ′ij is the Reynolds stress tensor, and λ′ = −Cp(µt/Prt) is the
turbulent thermal conductivity.



Energies 2019, 12, 954 4 of 20

The ideal air was chosen as the fluid material, which follows the equation of state:

p̄ = ρ̄
Rm

M
T̃ (4)

The properties of air are: molecular weight M = 28.966 g/mol, specific heat capacity at the constant
pressure Cp = 1004.4 kJ/(kg · K), thermal conductivity λ = 0.0261 W/(m · K), and dynamic viscosity µ

is determined by the Sutherland’s formula [38].
The constitutive equations of Newtonian fluid were adopted to model the viscous stress term:

τij = 2µS̄ij −
2
3

µS̄kkδij (5)

where S̄ij = [(∂ūi/∂xj + ∂ūj/∂xi)/2] is the deformation rate tensor. The Reynolds stress term was
modeled using the Boussinesq hypothesis, as follows:

τ′ij = 2µtS̄ij −
2
3
(ρk + µtS̄kk)δij (6)

For the detached-eddy simulation, the DES97 model, first developed by Spalart et al. [39],
was adopted in the present study with a default DES coefficient CDES of 0.65 [40]. In the DES97 model,
the near-wall distance d in the original S-A turbulence model [41] has been replaced by the DES length
scale d̃, as shown in Equation (7):

Dν̃

Dt
= cb1S̃ν̃ +

1
σ
[∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2]− cw1 fw(

ν̃

d̃
)2 (7)

where ν̃ is the working viscosity and ν is the kinematic viscosity. S̃ is a function of another scalar S̄
which can be chosen from the vorticity magnitude or the deformation rate [41]. cb1, cb2, cw1, σ and fw

are coefficients of the S-A turbulence model, whose definitions can all be found in [41]. The DES length
scale d̃ is defined as follows:

d̃ ≡ min(d, CDES∆) (8)

where ∆ is the local grid scale and CDES is a coefficient in this model. According to Equation (8),
DES length scale d̃ will recover to the near-wall distance d when d� ∆. This always happens inside a
boundary layer so that the original S-A turbulence model is activated. Nevertheless, in the mainstream
with high Reynolds number, the production term will balance with the destruction term [39] so that
Equation (7) becomes:

νt = (
cb1C2

DES
cw1 fw

)∆2S̄ ∝ ∆2S̄ (9)

If S̄ is defined as the deformation rate and we choose CDES properly, Equation (9) can be the
Smagorinsky-Lilly model [42] for LES:

νSGS = 2Cs∆2S̄ (10)

where S̄ is the deformation rate. It is worth noting that the RANS equation and the LES equation are
formally identical at some time. Taking Equation (2) for example, once a suitable turbulence model is
introduced into the momentum equations, the equation itself will no longer carry any information
concerning their derivation (averaging). This is true if we always adopt eddy viscosity models in
RANS or LES. The tensor τ′ij can be the Reynolds stress for RANS when we consider the superscript
“˜” as “time-averaging”. Whereas, τ′ij can also be the sub-grid-scale stress for LES when the superscript

was treated as “spatial-filtering”. In general, the DES length scale d̃ acts as a switch for RANS and LES.
Therefore, the DES97 model can use LES method in the mainstream and activating RANS method
(with S-A turbulence model) inside the boundary layer.
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We conduct DES calculations at three working conditions, namely near choke point (NC),
peak efficiency point (PE) and near stall point (NS), as shown in Table 2. The physical time of each time
step is 1× 10−6 s, which is small enough to include at least 110 time steps in one blade passing period.
Mass flow rate and static pressure were monitored during the calculation to ensure a good convergence.
Pressure monitors are located on the tip region of the rotor, with eight points on the casing and one
on the blade tip, as shown in Figure 3. As for boundary conditions, adiabatic nonslip-wall conditions
were adopted for all solid walls. Radial distributions of total pressure, total temperature, and flow
angles were given at the inlet using UDF (user-defined function) files. Static pressure distribution was
specified at the outlet.

Table 2. Calculation settings.

Parameter Setting

Computational domain One R1 passage
Rotating speed 22,000 rpm, 24,840 rpm

Working condition NC, PE, NS
Solver FLUENT
Model DES97

Time step 1× 10−6 s
Inner iteration 15

Figure 3. Monitor points in DES calculation (red: on casing, blue: on blade tip).

2.4. Grid Independence Study

The grid independence study was based on RANS calculations with 7 sets of grids at PE, shown in
Table 3. The current mesh for DES is the NO.7 grid, which is confirmed to be grid-independent
according to Figure 4. We may conclude that the current mesh for DES can provide us a
grid-independent result in RANS region. However, the LES region is naturally grid-dependent
because the cut-off scale is related to local grid scale. A finer mesh always means a better resolution
of the flow field. So an appropriate mesh for LES should meet the requirements of ∆x+, ∆y+, ∆z+,
which has already been checked in Section 2.2.

Table 3. Grids in the grid independence study.

Mesh No. 1 2 3 4 5 6 7

Elements/million 0.19 0.47 0.80 1.16 2.87 5.83 12.30
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(a) Overall parameters (b) Radial distribution

Figure 4. Grid independence study.

3. DES Results

3.1. Validation

DES results are compared with the experimental data as well as multistage RANS results to ensure
a reasonable prediction of the overall flow field, as shown in Figure 5. Please note that the point NS1
and point NS2 were both at near stall conditions. These two points were at same working conditions
except for the outlet static pressure. We slightly raised the static pressure (1kPa on average) at the
outlet boundary for NS1 then we got NS2, aimed at further approaching the stall limit. Numerical
calculations have a good prediction for the performance trend of the compressor at different rotating
speeds, especially for the total pressure ratio. As for DES results, the maximum deviations of averaged
mass flow rate and total pressure ratio at three working conditions are 0.25% and 0.94%, respectively.
Other flow details were compared with corresponding RANS results. Figures 6 and 7 shows radial
distributions of total pressure ratio and relative flow angle. Parameter distributions of the DES results
were consistent with RANS results, indicating the predictions of averaged flow field are not worse
than those of RANS. In addition, Figure 8 shows the comparison of relative Mach contour at 99.3%
span (slightly below the blade tip) at near stall point at design speed. These two results near the top
region have no conflicts in the shock location or the leakage flow behavior, indicating tip leakage
flow was correctly captured in DES calculations. In general, DES results are relatively reliable in the
present simulation and can be used for following analysis of the tip leakage flow. Besides, there is no
experimental data at the design speed. So we conducted the DES calculation at 22,000 rpm instead and
compared it to the experimental data aiming to validate the numerical method.

(a) Total pressure ratio (b) Isentropic efficiency

Figure 5. Comparison of overall performance.
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Figure 6. Comparison of total pressure ratio distribution.

(a) NC (b) PE (c) NS

Figure 7. Comparison of relative flow angle distribution. NC: near choke point; PE: peak efficiency
point; NS: near stall point.

Figure 8. Relative Mach contour at 99.3% span at NS (left: DES, right: RANS).

Moreover, the correct switch of LES and RANS is critical in DES calculations and needs to be
checked in the present study to reduce the impact of grid-induced separation(GIS) and grey area
problems of the model itself. A criterion to distinguish LES region from RANS region is as follows:

ξDES =
d̃− d

CDES∆− d
∈ [0, 1] (11)
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where ξDES = 1 indicates LES method is switched on and ξDES = 0 for RANS. Figure 9 shows LES and
RANS regions in DES calculations at 90% span, with LES switched on in the mainstream and RANS
used inside the boundary layer as expected. Other locations such as 10%, 50% spans and axial cuts
were also checked at different working conditions. The switch is appropriate, and no considerable
separation was found in the flow field, which contributes to the credibility of present calculations.

Figure 9. LES and RANS regions in DES results at 90% span.

3.2. Unsteadiness at NS Point

The tip leakage flow in high-speed compressors has self-induced unsteadiness features [4,43].
In present calculation, by monitoring nine static pressure points, it is found that the fluctuations at NS
point is much stronger than PE point and NC point. Therefore, the following part will mainly focus on
the unsteadiness at NS condition.

Figure 10 shows the static pressure convergence history of different monitoring points.
Point 1, 2 and 5 experienced weaker pressure fluctuation than the rest. It is worth noting that point
1 and 2 are exactly in the initial trajectory of the TLV and in front of the shock near suction side,
while point 5 is at the leading edge and after the bow shock. For transonic rotors, it is typical that the
TLV starts from the leading edge of tip blade, traveling towards the adjacent pressure side. It passes
through and interacts with the bow shock, then imprints on the adjacent pressure side, and finally
develops downstream along the blade surface. In other words, these three points mentioned above
are far away from the interaction region of TLV and the shock, indicating that neither the TLV nor the
shock alone is the root cause of the unsteadiness. In addition, points 6 to 9, which experienced strong
fluctuations in static pressure, are also located along the trajectory of TLV. However, what makes a
difference is that these points are all located after the shock wave. From this aspect, it is exactly the
interaction between TLV and the shock that leads to the unsteadiness of the tip region. The detailed
reasons will be explained in next section.

Figure 11 shows the spectrum of some representative monitor points at near stall point, which is
the result of the fast Fourier transform of the time series data. The frequency characteristics of each
point are not the same. Wide though the frequency bands are, they do share some similarities,
that is, peak values appeared near two specific frequencies 0.64 BPF and 1.80 BPF. It is worth
noting that the former is close to the characteristic frequency of tip leakage flow in typical transonic
compressors, for instance, 0.6 BPF [44] for NASA Rotor 37 and 0.57 BPF [4,20] for Darmstadt Rotor
1. Other monitoring points with large fluctuation, such as point 8 and point 9, have similar results
as well.
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Figure 10. Static pressure history at NS in DES calculation.

(a) Point 3 (b) Point 6

Figure 11. Amplitude spectrum of certain monitor points at NS.

The unsteadiness near the tip region inevitably affected the performance of the compressor and is
the critical reason for the fluctuation in overall parameters at near stall point, as shown in Figure 12.
T1 to T6 are six different moments with the same time interval 5× 10−5 s, whose corresponding
frequency is about 2.2 BPF. Obvious unsteady feature exists above 80% span with a fluctuation range of
about 10 degrees for the outlet flow angle and 0.1 (about 6.5% of the time-averaged total pressure ratio)
for the total pressure ratio, while the unsteadiness is weak in the middle and root span, indicating that
tip leakage flow is an essential factor causing instability at NS point. Nevertheless, there is no obvious
fluctuation of the static pressure rise coefficient among the whole blade height range, which means the
unsteadiness of the top flow field is mainly caused by the fluctuation of kinetic energy and can be a
proof for the wake-like nature of the TLV when passing through the shock [45].

Figure 13 is the top view of R1 shroud with blade profile imprinted. We chose a certain axial
location (red line) and obtained its circumferential distribution of static pressure in one period,
as shown in Figure 14, taking circumferential angle as the abscissa. There are two low pressure
regions, one is at about −1 degrees (indicated by the black arrow) and the other is from −4.5 to
−7 degrees (indicated by the red arrow). The former region is at the tip clearance region, very little
influenced by the unsteadiness, while the latter experienced a strong oscillation at different time steps,
with the valley traveling from the left side to the right side then returning to the left side. According to
Figure 13, the latter region is near the pressure side of the tip blade, exactly located in the TLV trajectory
after the shock, on its way to hit the adjacent pressure side and to develop downstream. The oscillation
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of pressure valley indicated that the TLV was no longer stable at NS point and was oscillating in the
blade passage.

(a) Outlet flow angle (b) Total pressure ratio (c) Pressure rise coefficient

Figure 12. Parameter distributions at NS.

Figure 13. Circumferential line location on the shroud surface.

Figure 14. Circumferential distribution of casing pressure at a certain axial location.

Figure 15 can illustrate the above phenomena more clearly, with black dash-dotted line indicated
the same axial location in Figure 13. Interacted with the shock and the parallel small vortex,
TLV started to swing tangentially at a distance after the shock. This resulted in a small oscillation,
developing downstream with an increasing amplitude. As is known, TLV has a lower static pressure
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value and a lower axial velocity than the mainstream. Every time the trajectory of TLV swept over a
certain point, that location would experience a drop in static pressure as well as axial velocity, which is
the cause of the oscillation in Figure 14. Eventually, it caused the oscillation of overall parameters such
as outlet flow angle, pressure ratio, or efficiency.

(a) T1 (b) T2 (c) T3 (d) T4 (e) T5 (f) T6

Figure 15. Casing Pressure Contour in One Period at NS.

In general, the unsteadiness of the rotor at NS point is mainly manifested at the tip region,
closely related to the TLV. The unsteady characteristics in middle span or root span can be totally
ignored in comparison. Neither the TLV nor the shock alone is the origin of the unsteadiness. It was
found that the TLV became unstable after the interaction with the shock and experienced a stronger
oscillation when developing downstream. The most unstable region in this transonic rotor is near the
pressure side of the tip blade, which is similar to the conclusions [4] for Darmstadt Rotor 1.

3.3. Detailed Structure of Tip Leakage Flow

DES calculation can obtain detailed information of the top flow field than RANS and may provide
some clues for the unsteady characteristic mentioned above. The general structure of tip leakage
flow can be clearly observed in Figure 16, with shock position indicated by dashed line. The vortex
structures are in three different forms as the operating condition changes.

At the NC point, there are two shocks, one is the bow shock near the leading edge and the other is
the passage shock near the trailing edge. Under this condition, the pressure gradient in the tip clearance
is relatively small and the TLV started from the leading edge is weak as well. As a result, the vortex
core was slenderer in Figure 16a and vanished directly after the bow shock. Meanwhile, the TLV was
too weak to draw downstream leakage fluid into, which led to another vortex system after the middle
chord of the blade. At PE point, however, the blade load increased and the leading-edge TLV became
stronger, so that most leakage fluid can be drawn into the main leakage vortex. The characteristics of
the TLV were kept so well in the developing process that the vortex core remained continuous when
passing through the shock with a slight expansion in volume, which indicates a stable flow state at PE
point. At NS point, the entire top flow field had a very rich flow pattern, and there were many small
vortex structures after the shock. Some of the small vortices were developed from the main leakage
vortex. The other parts were from the secondary leakage, that is, after imprinting the pressure surface
of the adjacent blade, the TLV leaked to the next blade passage again through the tip clearance of the
adjacent blade.
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(a) NC (b) PE (c) NS

Figure 16. λ2 Isosurface at tip region of R1 (colored by relative Mach number).

The complex flow field at top region is consistent with the strong unsteadiness mentioned above
at NS point. The static pressure oscillation in Figure 15 was caused by the “shedding” of small vortices
after the shock. The small vortices did not exist at NC point or PE point and mainly came from the
main leakage vortex, which is probably caused by the interaction with the shock. When passing though
the bow shock, the TLV at NS point changed from a single solid core to many separate vortices.

Figure 17 is the helicity distribution of different crossflow planes at near stall point, which is used
to characterize the intertwining degree of the fluid around TLV core, with the blade surface colored
by static pressure, the shock position indicated by the black dotted line, and the beginning of the
TLV indicated by the black arrow. The vortex core before the shock was concentrated and slowly
increasing in volume. After the shock, the helicity distribution was dispersed and not concentrated
anymore, which indicated that the fluid no longer moved around the vortex core tightly after the
shock. The distance between the four crossflow planes can be approximated as isometric, but the
helicity distribution before and after the shock surface is quite different, which means that the vortex
core experienced an abrupt change in its internal structure. Combined with the vortex structure in
Figure 16c, we can conclude that a vortex breakdown took place after the interaction between TLV and
the shock.

Figure 17. Helicity distribution on crossflow planes at NS (with blade surface colored by static pressure).

The breakdown process can be clearly illustrated in Figure 18, which is a transient λ2 isosurface
colored by relative Mach number. It is confirmed that the TLV changed to a three-dimensional structure
and was not axisymmetric anymore when passing through the shock. The vortex core changed its
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direction to a perpendicular path and started to rotate around the original one when developing
downstream, which is the typical structure of a spiral-type breakdown. The structure after the onset of
the breakdown process is not stable, with rotating phase related to the flow time, thus causing strong
unsteadiness. This contributes a lot to our understanding of the oscillation after the shock in Figure 15
that the previous view on the unsteady flow behavior of the leakage vortex may be incomplete.
The unsteadiness is not a two-dimensional phenomenon inside the S1 plane, but a three-dimensional
structure in nature. The underlying reason behind is the spiral-type vortex breakdown after the
interaction with the shock.

Figure 18. Sketch for spiral-type breakdown of TLV at NS.

To the author’s knowledge, this is probably the first time that a detailed structure of the breakdown
process for the TLV in a transonic compressor is obtained in numerical investigations. In addition,
PIV (particle image velocimetry) measurements of another transonic compressor near stability limit
were conducted [46], whose results are in great agreement with the present calculation results, as shown
in Figure 19.

(a) (b)

Figure 19. Spiral vortex breakdown at NS.. (a) PIV results [46]; (b) DES results in the present study.

4. Discussion

Vortex breakdown is a very complex flow phenomenon and is an independent branch in fluid
mechanics. The interaction of a streamwise vortex and a normal or oblique shock under supersonic
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conditions could lead to a vortex breakdown phenomenon. The interacting process and mechanisms
were widely studied [47–50]. Recently, lots of efforts [51–55] have been made extending the state of
knowledge regarding onset, internal structure and mode selection of vortex breakdown. In the present
study, a shock-induced spiral-type vortex breakdown was found at NS. We will deal with the related
structure of the breakdown process in this section.

In transonic compressors, the shock wave in the rotor passage can provide a large adverse pressure
gradient, with a great influence on the streamwise velocity in the vortex core. As shown in Figure 20,
subfigure (a) is the λ2 isosurface, which illustrates the breakdown process. Subfigure (b) is streamwise
velocity contour at the same viewpoint, which indicates the component of relative velocity in the
vortex trajectory direction, and subfigure (c) demonstrates the surface streamline. The corresponding
cut plane is represented by the red point line in the top view and the location of the bow shock near the
suction surface is characterized by the black dashed line. The vortex breakdown is clearly observed in
the upper figure with its initial location indicated by the red circle. The breakdown location was not
at the shock surface exactly, but at a certain distance downstream, which is in qualitative agreement
with experimental results in Figure 19a. Leibovich [56] pointed out that this axial interval is several
vortex-core diameters in length. It is worth noting that the initial location of vortex breakdown in
(a) coincided with the location S1 in (b) where the streamwise velocity of the vortex core was zero,
which indicates that the breakdown of the leakage vortex is closely related to the stagnation point in
the center of vortex core. Please note that there were not only one stagnation point in (b). Along with
subfigure (c), we could observe a recirculation zone between the two stagnation points S1 and S2.
This is consistent with the direct numerical simulation of vortex breakdown in swirling jets and wakes
by Ruith et al. [52].

Figure 20. Structures Related to the Breakdown of TLV at NS.

Figure 21 is the swirl velocity vector of the TLV, demonstrating the rotating direction of the TLV
before and after the breakdown. For clarity, the adjacent blade was hidden, and the larger images of
the dashed zones might have a different view point. Whether before or after the breakdown point,
the vortices were temporally rotating in the same direction as the initial TLV, except for the induced
vortex in (b). However, the helices after breakdown were coiling in the opposite direction (more clear
in Figure 18). This is similar to the findings of Pasche et al. [57] who conducted experiments on
obstacle-induced spiral vortex breakdown. The breakdown helices originating at a locally wake-like
profile have negative winding sense [52]. Of course, the TLV had a wake-like profile in nature and the
breakdown structure in the present study contributed to this view.
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Figure 21. Swirl velocity vector on the λ2 isosurface.

The causes of vortex breakdown are very complicated. The generation of the recirculation bubble
of the vortex breakdown remains unclear but the spiraling motion of the flow behind the recirculation
bubble comes from a global unstable mode of the flow [53]. The same mechanism is also observed
without recirculation bubble [57], the spontaneous spiraling motion is due to a self-sustained instability.
At present, it is consistent to conclude that the reverse pressure gradient and the strength of the
vortex itself are crucial factors in the vortex breakdown process [48]. The adverse pressure gradient
characterizes the deceleration of the vortex core along the streamwise direction. Criteria for vortex
breakdown based on the interaction between the Rankine vortex and the normal shock waves were
proposed by Mahesh [58], Smart and Kalkhoran [49] and other scholars. As shown in Figure 22,
the abscissa is the freestream Mach number, reflecting adverse pressure gradient in the streamwise
direction. The ordinate is the swirl ratio before the shock, which reflects the intensity of the vortex.
The swirl ratio is defined as follows:

τ =
Λmax

Va
(12)

where Λmax is the maximum swirl velocity component and Va is the streamwise velocity component in
the vortex core.

Figure 22. Limit curve for normal shock wave/vortex interaction.

The interaction between the TLV and the bow shock in the transonic compressor could be
simplified to the interaction of normal shock and vortex. Both the compressor in the present paper
(red marks) and Rotor 37 (blue marks, [44]) exceeded the breakdown limit at NS conditions, and the
breakdown of leakage vortex did occur in the detailed flow field. In addition, at PE point and NC
point, the vortex breakdown phenomenon was not observed in the present calculation, which is still in
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good agreement with the breakdown criterion. As the operating point moves to the NS point, the swirl
ratio will increase sharply with the increase of the leakage vortex intensity, while the change of Mach
number in the axial direction of the vortex core is not obvious. Therefore, transonic rotors with heavy
blade loading are likely to experience leakage vortex breakdown at NS point.

We could use the mechanism for the shock-induced breakdown to illustrate the interacting process
between the TLV and the bow shock or the breakdown process of the TLV in transonic compressors.
When the vortex passes through the shock, the streamwise velocity decreases rapidly due to the strong
adverse pressure gradient produced by the shock. The swirl component, however, is orthogonal to the
shock surface and is not much affected. In other words, the attenuation of the streamwise component
is far greater than that of the swirl component [48]. When the shock is strong enough, the streamwise
velocity will decay to zero after the interaction. Under this circumstance, the breakdown phenomenon
of the TLV is likely to occur.

The small vortices produced by the TLV vortex breakdown are distributed in the tip region,
causing a large blockage effect in the rotor passage. The low energy fluid might subsequently result in
leading-edge spillage or induce a spike-type stall inception. Therefore, how to postpone or eliminate
the breakdown of TLV may become one of the important ways to enhance the stability at NS point and
enlarge the surge margin of transonic compressors.

5. Conclusions

In this paper, a numerical investigation of a transonic compressor rotor using DES method is
conducted at three working conditions, focused on the structure of tip leakage flow, the interaction
with shock wave and the unsteady characteristics.

Strong unsteadiness was found at NS point with the characteristic frequencies of 0.64 BPF and
1.80 BPF. The most unstable region for this transonic rotor is in the rotor passage near the pressure side
of the tip blade, which is the result of the interaction between the TLV and the shock. The affected area
is mainly located at the tip region, causing a considerable fluctuation in total pressure distribution and
flow angle distribution above 80% span. The unsteadiness at NC point and PE point is not obvious.

Detailed structures of the tip leakage flow were captured, closely related to the working condition.
At the NS point, a vortex breakdown can be observed downstream the bow shock. While, at NC
point or PE point, the TLV breakdown did not take place. The breakdown process at NS point was
confirmed in a spiral-type form. The vortex core changed its direction to a perpendicular path and
started to rotate around the original one when developing downstream. Whether before or after the
breakdown point, the vortices were temporally rotating in the same direction as the initial leakage
vortex. Whereas, the helices after breakdown were coiling in the opposite direction. The breakdown of
the TLV generated unstable small vortices and contributed greatly to the unsteadiness at NS point.
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Nomenclature

CDES the coefficient in DES97 model
Cp specific heat capacity at the constant pressure
Cs the coefficient in Smagorinsky-Lilly model
d̃ DES length scale
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e inner energy
E total energy, E = e + uiui/2
H total enthalpy, H = E + p/ρ

k turbulent kinetic energy
M molecular weight
Ma Mach number
p pressure
Rm gas constant, Rm = 8.314 J/(mol· K)

S deformation rate, S̄ =
√

2S̄ijS̄ij

Sij deformation rate tensor
T temperature
u velocity
x Cartesian coordinates
y+ nondimensional wall distance
∆ local grid scale
∆x+ nondimensional grid scale in x direction
∆y+ nondimensional grid scale in y direction
∆z+ nondimensional grid scale in z direction
λ thermal conductivity
λ′ turbulent thermal conductivity
µ dynamic viscosity
µt turbulent eddy viscosity
ν kinematic viscosity
ν̃ the working viscosity in S-A model
νSGS sub-grid-scale kinematic viscosity
νt turbulent kinematic viscosity
ξDES a criterion to distinguish LES region from RANS region
ρ density
τij viscous stress tensor
τ′ij Reynolds stress tensor or sub-grid-scale stress tensor

Abbreviations
BPF Blade passing frequency, 1 BPF = n · NB/60 (Hz), where n is the rotation speed of the axis with the unit rpm
DES Detached-eddy simulation
LES Large eddy simulation
NB Number of rotor blades
NC Near choke point
NS Near stall point
PE Peak efficiency point
PIV Particle image velocimetry
RANS Reynolds-averaged Navier–Stokes
SGS sub-grid-scale stress
TLV Tip leakage vortex
UDF User-defined function
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