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Abstract: Fractured reservoirs are distributed widely over the world, and describing fluid flow
in fractures is an important and challenging topic in research. Discrete fracture modeling (DFM)
and equivalent continuum modeling are two principal methods used to model fluid flow through
fractured rocks. In this paper, a novel method, embedded discrete fracture modeling (EDFM),
is developed to compute equivalent permeability in fractured reservoirs. This paper begins with
an introduction on EDFM. Then, the paper describes an upscaling procedure to calculate equivalent
permeability. Following this, the paper carries out a series of simulations to compare the computation
cost between DFM and EDFM. In addition, the method is verified by embedded discrete fracture
modeling and fine grid methods, and grid-block and multiphase flow are studied to prove the
feasibility of the method. Finally, the upscaling procedure is applied to a three-dimensional case
in order to study performance for a gas injection problem. This study is the first to use embedded
discrete fracture modeling to compute equivalent permeability for fractured reservoirs. This paper
also provides a detailed comparison and discussion on embedded discrete fracture modeling and
discrete fracture modeling in the context of equivalent permeability computation with a single-phase
model. Most importantly, this study addresses whether this novel method can be used in multiphase
flow in a reservoir with fractures.

Keywords: permeability upscaling; fractured reservoir; EDFM

1. Introduction

Fractures, whether naturally occurring or hydraulically created, occur at different length scales
with different densities in geological porous media. Fractures have a great impact on the quality of
a porous medium. Understanding fractures is important for describing the challenges inherent to
hydrocarbon flow in porous media. Two main methods are used to model fluid flow through fractured
rocks. One is discrete fracture modeling (DFM), and the other is equivalent continuum modeling.

DFM explicitly describes matrix and fracture systems [1], can be used for modeling fractured
reservoirs when the properties of the porous media are heterogeneous [2], and is considered one of
the most accurate methods to describe fluid flow through a fracture and matrix system. However,
a main drawback of this method is that meshing a complex three-dimensional (3D) fracture network is
very difficult. Another drawback is the high computational cost due to a large number of grids and
convergence problems. Given the improvement of computational efficiency, though, DFM is becoming
more and more attractive; however, its application at the field scale is not realistic at present [3,4].
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Accurately describing fluid flow in porous media with fractures can be achieved by DFM, but the
meshing of complex fracture networks and the increase in grid number limit the application of this
method for field-scale simulation.

Embedded discrete fracture modeling (EDFM), as a special form of DFM introduced by Li
and Lee [5], uses a structured grid to represent the matrix and introduces additional fracture
control volumes by computing the intersection of fractures with the matrix grid. Compared to
DFM, this method avoids the requirement for a conforming mesh and allows for conventional
corner-point grids. Recently, more attention has been paid to EDFM because of its flexibility
and accuracy. The iterative multiscale finite volume (i-MSFV) approach was introduced by Hadi
Hajibeygi [6] to improve efficiency and accuracy for fractured porous media, and the results are
very promising. Tene et al. [7,8] proposed projection-based EDFM to deal with cases where fracture
permeability lies below that of the matrix. Li et al. [9] introduced a technique integrating EDFM and
the dual-porosity-dual-permeability (DPDP) method to simulate fluid flow in fractured reservoirs.

The equivalent continuum model was proposed by Barrenblatt [10] and then was improved
by Warren and Root [11] and Pruess [12]. In equivalent continuum models, the hydraulic
properties (permeability and porosity) of fractures are combined to create matrix-grid blocks. Due to
computational efficiency, equivalent continuum models (single, dual, or multiple models), especially
the dual-porosity model, have been used widely in the oil and gas industry for modeling fluid flow in
fractured rocks. Accurate calculation of equivalent permeability (termed permeability upscaling) is the
key to applying this method.

Snow [13] studied the permeability of fractured porous rock, and Oda [14] proposed an analytical
method to compute equivalent permeability based on geometric characteristics of fractures.
Oda’s method is employed widely for reservoir simulation, even though it is less accurate for
calculating fracture connectivity, as pointed out by Elfeel and Geiger [15].

Flow-based upscaling is another approach for computing equivalent permeability based on
solving the flow problem with the DFM method. Based on the flow rate and pressure gradient
computation approach, Durlofsky [16,17] classified flow-based upscaling methods into two groups:
the boundary integration method and the volume averaging method. Long et al. [18] used the finite
element method to resolve the flow problem within fractures and to calculate equivalent permeability
with a linear boundary. Koudina et al. [19] introduced the finite volume method with unstructured
grids to study equivalent permeability. However, the method does not take fluid flow in the matrix into
consideration, which limits its application (Kaufmann et al. [20]). Recently, Lough et al. [21] used the
boundary element method, and Bogdanov et al. [22] extended Koudina et al.’s [19] method, to calculate
equivalent permeability. Both methods took into consideration matrix permeability. More recently,
a volume-averaging method based on the finite element method was proposed by Lang et al. [23] to
find equivalent permeability in fractured porous media. Fumagalli et al. [4,24] used EDFM to calculate
fracture–fracture and matrix–fracture transmissibilities, with a remarkable gain in speedup.

The aim of this research was to enable the modeling of flow in the upscaling grid by computing
equivalent permeability for matrix blocks with fractures. In this work, we have developed a new
flow-based upscaling approach to calculate equivalent permeability based on solving the flow problem
with the EDFM method for fractured rocks. We have validated this method on simple and complex
fracture networks. Our original contribution is the employment of EDFM to compute equivalent
permeability for a fractured reservoir. Another application of our approach is the possibility to deal
with all kinds of fractures, such as vertical and inclined complex cracks, which prove difficult for
permeability upscaling using the DFM method.

This paper begins with an introduction to the EDFM method in Section 2. A permeability
upscaling procedure based on EDFM for fractured reservoirs is described in Section 3. Section 4
presents several numerical examples to evaluate the performance and validity of the method.
In particular, we compare performance among the DFM method (fine grid model), the EDFM method,
and the proposed upscaling approach for a sample of fractures. Then, we validate the new method for
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single-phase and multiphase flow and study the performance for different grid-block numbers in the
upscaling process. We address comparisons between the proposed upscaling approach and the EDFM
method used in the oil industry for a realistic 3D case. Section 5 gathers conclusions and presents
an outlook on flow-based upscaling for fractured reservoirs.

2. Embedded Discrete Fracture Modeling

EDFM was introduced by Li and Lee [5] and was expanded on by Moinfar et al. [25] and
Tene et al. [26]. Unlike DFM, the EDFM method does not require generating complex meshing and can use
conventional corner-point grids, which alleviate the computational cost for complex fracture modeling.

In this method, we need to define the corner-point cell for the matrix and then embed fractures into
the matrix cells (Figure 1); after that, we define intersection faces between different media, for example,
matrix and fracture. Once we have defined all cells and have found the intersections between them,
we can proceed to compute transmissibility, which is a key aspect of EDFM. Figure 2 illustrates the
connection list of continua in the computational domain for a simple scenario. As mentioned by
Li et al. [9], there are four types of connection:

Type one: Conductivity between matrix grids
Type two: Conductivity between fracture segments inside an individual fracture
Type three: Conductivity between intersecting fracture segments
Type four: Conductivity between fracture and matrix

Figure 2a shows four matrix cells and two fractures, with fracture one divided into segments F1
and F2 by matrix cells and fracture two divided into segments F3 and F4 by matrix cells. Figure 2b
shows the connections among different media. Black lines indicate the connection between matrix cells;
green lines indicate the connection between matrix and fracture; red lines show the connection between
fracture segments in an individual fracture; and the blue line is the connection of intersecting fractures.
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Figure 1. A meshing example of embedded discrete fracture modeling (EDFM). (a) is the corner-point
grid (2 × 2 × 2). (b) shows the two input intersecting fractures. (c) is the EDFM model.
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2.1. Type One: Conductivity between Matrix Grids

The transmissibility factor between matrix cells (the black lines indicated in Figure 2b) in the
model depends on the matrix permeability and matrix geometry, which was given by Li et al. [9].
Equation (1) refers to the transmissibility factor between matrix cells:

Tmij =
kmij Amij

dmij
(1)

where
Amij is the contact area between matrix cells i and j.
kmij is the average permeability tensor for matrix cells i and j, which can be defined as follows:

kmij =
2 ∗ kmi kmj

kmi + kmj

(2)

where
kmi, kmj are the permeability tensors for matrix cells i and j, respectively.
dmij is the average normal distance between matrix cells i and j.

2.2. Type Two: Conductivity between Fracture Segments Inside an Individual Fracture

Karimi-Fard et al. [3] introduced a two-point flux approximation scheme to calculate the
transmissibility factor between fracture segments in an individual fracture (F1 and F2, F3 and F4
in Figure 2b). The transmissibility factor was defined as follows:

Tf i f j =
2 ∗ Tf iTf j

Tf i + Tf j
(3)

Tf i =
k f i Ac

dsegi
(4)

Tf j =
k f j Ac

dsegj
(5)

where
k f i , k f j are the permeability tensors for fracture segments i and j, respectively.
Ac is the contact area for two segments.
dsegi, dsegj are the distances from the centroids of fracture segments i and j to the contact

face, respectively.

2.3. Type Three: Conductivity between Intersecting Fracture Segments

The calculation method for transmissibility between intersecting fracture segments (the blue lines
indicated in Figure 2b) was given by Moinfar et al. [25] and is defined as follows:

Tint =
2 ∗ TiTj

Ti + Tj
(6)

Ti =
k f jw f jLint

d f i
(7)

Tj =
k f jw f jLint

d f j
(8)

where
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Lint is the length of the intersection line.
k f i , k f j are the permeabilities of fractures i and j, respectively.
w f i, w f j are the apertures of fractures i and j, respectively.
d f i, d f j are the distances from the centroids of the segments i and j to the intersection

line, respectively.

2.4. Type Four: Conductivity between Fracture and Matrix

The transmissibility factor between the matrix and fracture segment (the green lines indicated in
Figure 2b) depends on the matrix permeability and fracture geometry, which was given by Li et al. [9].
When a fracture segment fully penetrates a matrix cell, the matrix–fracture transmissibility factor is
as follows:

Tf−m =
km f Am f

d f−m
(9)

where
Am f is the area of the fracture segment on one side.
km f is the permeability tensor, which is calculated as follows:

km f =
2 ∗ k f km

k f + km
(10)

where
k f is the permeability tensor for the fracture.
km is the permeability tensor for the matrix.
d f−m is the average normal distance from the matrix to the fracture.

3. Upscaling Procedure

As pointed out by Fumagalli [4,24], along with the increase in the number of fractures, the degree
of difficulty in generating fracture grids using EDFM/DFM is rising, and the number of grids is
increasing, both leading to an increase in computation cost, which limits the application of EDFM/DFM
for complex fracture systems. Therefore, different strategies are required to solve this problem, such as
equivalent continuum modeling. In equivalent continuum modeling, an upscaling process is needed.
Durlofsky [16] gave a comprehensive review of upscaling techniques in porous media without fractures.
In this study, our main goal is to upscale grid properties (focusing on permeability) for fractured
reservoirs. This section shows the procedure for upscaling based on EDFM. The entire procedure
presented in this section is summarized as Figure 3.

During the upscaling process, we first receive the matrix grid-block and its properties from
commercial software, such as Petrel [27] or CMG [28]. The information usually includes eight-point
positions of each grid-block in a corner-point grid system, as well as its porosity, permeability,
and saturation. We also obtain fracture information, such as fracture distribution, permeability,
and porosity, from commercial software, such as Fracman [29] or the fracture module in Petrel.
Using the information gained from the above two steps, we can generate a matrix grid and fracture
distribution for a two-dimensional (2D) case (Figure 4).
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Next, for all cells, we apply the following process:
Choose a cell, keep the matrix and fracture geometry and property information, and divide the

cell into NX × NY × NZ, which may change for different cases and should be optimized sometimes
(as shown in Figure 4a,b).

Define the flow boundary for the new grid system. In this study, we use a constant pressure
boundary in the flow direction and a closed boundary for the other two sides, as shown in Figure 5.

Step 1: Initialize the new grid system. Assign properties values for the matrix and fractures, such
as porosity, permeability, and saturation, which are inherited from the original big model.
We also need to define the connection and calculate the transmissibility among different
media using Equations (1)–(10). Figure 6 shows an example of connection. We also define
the well and production in this step.

Step 2: We calculate the flow rate and apply the Darcy flow equation to calculate the whole grid
system’s permeability, which combines the matrix and fracture flow capacity.
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Figure 4. The matrix grid and fracture distribution for a two-dimensional (2D) case. (a) is a matrix
system of the corner-point grid (5 × 8), along with nine fractures. (b) shows an arbitrary grid from
the left figure. The bottom-right figure shows the grid system for both the matrix and fractures after
meshing the grid to 5 × 7.
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Figure 6. Connection information for the EDFM method for the cells shown in the red block of Figure 5.
(a) shows four matrix cells with two fractures, with fracture one divided into segments F1 and F4
by matrix cells and fracture two divided into segments F2, F3, and F5 by matrix cells. (b) shows the
connection among different media. Line colors represent the same elements as in Figure 2.

4. Numerical Examples

To evaluate and validate the performance of the new method introduced in Section 3, a series of
simulation cases are presented in this section. In Section 4.1, we validate the EDFM by comparison
with the DFM model. In Section 4.2, we compare the computation time and performance among the
DFN method, the EDFM method, and the proposed upscaling approach for a sample of fractures.
Then, in Section 4.3, we validate the new upscaling approach. A series of simulation cases is studied
for the grid block and multiphase in Section 4.4. In Section 4.5, we compare the proposed approach
and the EDFM method for a 3D case with complex fractures.

4.1. Validating the EDFM Method

As mentioned in the introduction section, DFM is the classic method used for upscaling fracture
permeability. In this section, computation time and gas rate for EDFM and DFM are compared by
testing a model with 251 fractures (Figure 7a). The matrix grid number is 5000 (50 × 50 × 2) in the
EDFM model (Figure 7b), while the DFM model includes 238,762 cells (Figure 7c). In the model, matrix
permeability is set to 1 mD, and fracture permeability is 5000 mD. A gas well in the center of the model
with a constant rate is assumed in the study. Figure 8 presents that the two methods obtain the same
gas rate. The computation time for the DFM is 287 seconds and for the EDFM is 73 seconds based on
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the same computation environment for single-phase flow. These results indicate that EDFM performs
better than the DFM method, as one of EDFM’s main advantages is that it avoids the need to generate
complex grids for fractures and the matrix.
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Figure 7. Fracture distribution for the EDFM and DFM model used in the study. (a) shows the fracture
distribution, including 250 fractures with 5000-mD permeability and 0.01-ft aperture. (b) is the EDFM
model, which presents fracture explicitly. (c) is the DFM model, which includes 238,762 cells.
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4.2. Validating the New Upscaling Approach by Comparison with the DFM Method

As shown in Figure 9, a cell model with two fractures is used to compare the EDFM and DFN
model for upscaling. The EDFM includes 400 cells for the matrix and six fractures, while the fine
grid model includes 862 cells. Fracture permeability is set to 5000 mD with an aperture of 0.001 ft,
and matrix permeability is 0.1 mD for both models. A constant pressure boundary is used in the
flow direction, and closed boundaries are set for the other two sides. The upscaling permeabilities
calculated from the EDFM and the fine grid model in the X direction are 0.1235 mD and 0.1227 mD,
respectively, and in the Y direction are 0.1236 mD and 0.1228 mD, respectively. The gap between the
two methods is less than 1%. The computation time for the EDFM and the fine grid model is 4.2 s mD
and 9.8 mD, respectively. The results indicate that using the EDFM method for upscaling can speed up
the upscaling process.
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Figure 9. A conceptual model of fracture distribution and the EDFM and DFN model for one cell. (a) is
the fracture distribution, including six fractures with 1000-mD permeability and 0.01-ft aperture. (b) is
the EDFM model, and (c) is the DFN model.

4.3. Comparison with Other Models for Flow Results

In this section, the simulation result of the new method is compared with results from other
methods, such as fine grid and EDFM. In the first case, only two cross-fractures are considered.
The fracture distribution, fine model, and EDFM model are shown in Figure 10. The permeability of
the matrix is 1 mD, while the fracture permeability is 5000 mD with an aperture of 0.001 ft. In the
upscaling, we divide each cell into 10 × 10 cells and use a constant pressure boundary. The permeability
distribution after upscaling is shown in Figure 11.Energies 2019, 12, x FOR PEER REVIEW 9 of 15 
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Figure 12. A comparison of oil rate (a) and cumulative oil (b) for the new upscaling method, 
fine grid model, and EDFM model in a single-phase flow case. 

Figure 10. A simple model with two cross-fractures used to validate the new approach. (a) shows the
fractures, (b) is the fine grid model, which is used to represent fractures, and (c) is the EDFM.
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Figure 11. The permeability upscaling result based on the new method. (a) shows the permeability
distribution in the X direction, Kx, and (b) shows the permeability distribution in the Y direction, Ky.

To validate the method, we compare the production performance among different approaches.
We define a well in the center of the model, and the well intersects with fractures. As shown in
Figure 12, although the middle part of the cumulative production curves has a slight difference,
the three methods obtain similar performance for rate and cumulative production. Figure 13 shows
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the pressure profile of the different methods. The results of EDFM and the new upscaling method are
highly consistent in these plots, and the fine grid model is slightly different among these methods.
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Figure 15. A comparison of oil rate (a) and cumulative oil (b) between the new upscaling model 
and EDFM. 

Figure 13. A comparison of the pressure profile at the same time level for the new upscaling method,
EDFM, and fine grid model in one-phase flow. The pressure figures for (a), (b), and (c) are the new
upscaling method, EDFM, and fine grid model, respectively.

For the second case, the fracture system in Figure 14a is used for investigation. In this model,
fracture permeability is 5000 mD, matrix permeability is 1 mD, and a well that is used to produce
liquid at a constant liquid rate is located in the center. Figure 14b,c show the upscaled permeability
for the X and Y directions. We find that the distribution of permeability is consistent with that of
the fracture. Figure 15 presents the simulation results of oil rate and cumulative oil at the field scale.
We observe that the results obtained by the proposed upscaling method and EDFM are close to each
other in this study. Figure 16 also indicates that the pressure distribution obtained by the two methods
is in good agreement.
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Figure 15. A comparison of oil rate (a) and cumulative oil (b) between the new upscaling model 
and EDFM. 

Figure 14. The fracture distribution and oil saturation profiles. (a) shows the fracture distribution
for the model used in the study. (b) and (c) present upscaled permeability for the X and Y directions,
respectively. The yellow lines in the figures represent fractures.
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fractures and an 11 × 11 grid-block. (b) represents a cell (5,3) with four fractures from the 
test domain, which would be subdivided into smaller cells. The bottom figures show four 
scenarios :(c) uses 5 × 5 grid-block to model one cell shown in figure (b), (d) 10 × 10 grid-
block to model one cell shown in figure (b), (e) 15 × 15 grid-block to model one cell shown 
in figure (b), (f) 20 × 20 grid-block to model one cell shown in figure (b). Note that serial 
small cells are added to define the boundary condition in the study for each scenario. 

Figure 16. Pressure profiles for different methods. (a) shows the pressure distribution for the new
upscaling method model, and (b) and (c) show the matrix and fracture pressure distribution for EDFM.
The pressure profile for the two methods is at the same time level. The blue line in the center of the
model represents the producer.

4.4. Sensitivity Study for the New Approach

Grid-block: As mentioned in Section 3, in the upscaling procedure, we need to divide each
objective cell into small cells and then use EDFM to model flow rate and calculate permeability.
The key point here is the number of cells required to obtain an accurate result. The test domain is
represented in Figure 17a, where the fractures and the 11 × 11 matrix grid-blocks are represented.
The permeability of the matrix is 1 mD, while the fracture permeability is 5000 mD with an aperture
of 0.001 ft. Each cell (for example, Figure 17b) would be divided into four scenarios (5 × 5, 10 × 10,
15 × 15, 20 × 20), which are shown in Figure 17c–f. Figure 18a shows the upscaling permeability in cell
(5,3) obtained by different scenarios. The result indicates that the computed permeability converges
toward a single value. Figure 18b shows upscaling permeability for each cell obtained by different
scenarios. The result represents that the slopes of curves (20 × 20 versus n × n) tend to be one as the
grid number (n) increases, which means that the calculated permeability tends to be uniform for each
cell with an increase in meshes in the upscaling process. The corresponding computation costs for the
four scenarios (5 × 5, 10 × 10, 15 × 15, 20 × 20) are 311 s, 320 s, 340 s, 360 s, respectively.
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Figure 17. The test domain with fractures and grid-blocks. (a) shows the domain with 14 fractures and
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Figure 18. A comparison of upscaling permeability with different grid-block numbers. (a) shows the
upscaling permeability with different grid-block numbers for cell (5,3). (b) represents the upscaling
permeability with different grid-block numbers for all cells.

Multiphase flow: We consider multiphase flow in the model based on the model shown in
Figure 13. Water is pumped at a constant rate into the injection well, whereas the production well
is operating at a constant pressure. After upscaling, fracture permeability is average to the matrix,
and equivalent permeability is less than 1/10 or even one percent of fracture permeability. For example,
fracture permeability is 5000 mD, matrix permeability is 0.01 mD, and equivalent permeability is
0.023 mD after upscaling. Injection fluid (water) flow through fractures is faster that through the
matrix with equivalent permeability. As shown in Figure 19a, the upscaled solution shows a delay of
water breakthrough (water cut) compared to the EDFM method. The water and recovery obtained
from the two methods are close to each other for multiphase flow over the long term in this study
(Figure 19b). The global difference for water cut and recovery between two methods is 1.87% and
0.86%, respectively.
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4.5. Comparison Using a Complex Fracture System

In this section, the objective is to test the robustness and the efficiency of the new approach in
a complex fracture model. A gas injection simulation is performed on a complex fracture reservoir,
and simulation results obtained from the new upscaling procedure and EDFM are compared.

The fracture system in Figure 20 is employed in the study. The model includes 41 × 41 × 7 matrix
cells, along with 309 fractures. The matrix porosity is 0.10, and the matrix and fracture permeabilities
are 0.1 mD and 5000 mD, respectively. Gas is pumped at a constant rate into the injection well, whereas
the nine production wells are operating at a constant pressure. Figure 21 presents the simulation
results of the gas–oil ratio and oil recovery for each producer. The gas–oil ratio curve shows a slight
difference at the end of injection, and the recovery curve shows good consistency between the two
methods. A slight difference gas–oil ratio is caused by the different relative permeability between
fracture and matrix. However, the computation time for the new approach and for EDFM are 175 s,
and 2560 s, respectively.
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5. Conclusions

In this work, we implement a novel upscaling simulation method that uses EDFM to calculate
equivalent permeability for a complex fracture network. The main objective of this work was to
introduce the procedure and study the feasibility of this novel method. The new upscaling approach
divides each cell into small cells and sets a constant pressure in flow directions and closed boundaries
for the other two sides. Then, it uses EDFM to compute flow rate and applies the Darcy flow equation
to calculate cell permeability. The proposed upscaling model was designed and compared with the
DFM and EDFM methods, and comprehensive modeling studies were conducted to understand
the key reservoir and fracture properties that affect upscaling performance. Both single-phase and
multiphase flow were applied to investigate the feasibility of the new approach. We obtained the
following conclusions from the simulation results:

(1) The computation time of EDFM is much less than that of DFM in the shown model, which
means that using EDFM to upscale permeability in a fractured reservoir would be more efficient
than DFM.

(2) For single-phase flow, the results obtained by the proposed upscaling approach, EDFM, and DFM
(fine grid model) are close to each other in this study, which validates the proposed approach.

(3) The recovery factor obtained by different methods has good consistency over the long term for
multiphase flow. However, slight differences were found (for example, water cut curve and gas
oil–ratio curve).

(4) Grid number is an important parameter during the upscaling process. The calculated permeability
tends to be uniform for each cell with an increase in meshes in the upscaling process.

In a forthcoming work, we will upscale relative permeability for fractured reservoirs with the
EDFM method to describe the effects of reservoir heterogeneity on multiphase flow in simulation
models, which could increase the efficiency and applicability of this method.
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