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Abstract: With the increasing demand of transmitting bulk-power over long-distance, the ultra
high-voltage direct-current (UHVDC) transmission systems become an attractive option. Nowadays,
not only the line commutated converter (LCC) based systems, but also the modular multilevel
converter (MMC) based systems have reached UHVDC levels. The converter stations of UHVDC
systems normally utilize two series-connected valve-groups to reduce the difficulties of device
manufacturing and transportation. This high-voltage and low-voltage valve-group configuration
allows the UHVDC systems to achieve a full-voltage to half-voltage operation which increases
the flexibility of the systems. However, the existing research only focuses on the full-voltage to
half-voltage control of LCC-UHVDC systems. The control strategies for hybrid LCC/MMC UHVDC
systems are underresearched. Moreover, the approaches to reduce the load-shedding caused by the
full-voltage to half-voltage control for both LCC and hybrid LCC/MMC based UHVDC systems have
not been investigated. In this paper, full-voltage to half-voltage control strategies for both LCC and
hybrid LCC/MMC based UHVDC systems have been proposed. Moreover, to avoid load-shedding
caused by the half-voltage operation, a power rescheduling method that re-sets the power references
of the half-voltage operating and full-voltage operating poles has been proposed. The proposed
full-voltage to half-voltage control strategies and power rescheduling method can achieve a stable
and fast control process with a minimum power loss. The proposed methods have been verified
through the time-domain simulations conducted in PSCAD/EMTDC.

Keywords: UHVDC; line commutated converter; modular multilevel converter; hybrid LCC/VSC;
power rescheduling; half-voltage operation; valve bypassing

1. Introduction

To achieve the targets of sustainable development and copying with climate change, developing
renewable energy has been widely recognized as a key solution. However, large-scale renewable
power resources are usually remotely located from load centers [1–3]. This increases the utilization of
high-voltage direct-current (HVDC) technology which is a feasible and efficient option to transmit
large-scale renewable power over long distances [4–6].
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HVDC transmission systems can be implemented using the line commutated converter (LCC)
or the voltage source converter (VSC). The LCC-HVDC technology has developed to a high degree
of maturity in the past decades. For instance, the China State Grid’s Changji-Guquan ultra HVDC
(UHVDC) link has reached to ± 1100 kV with a capacity of 12 GW [7]. However, the LCC-based
technology still exhibits some limitations such as commutation failure, no active and reactive
independent control, the need of large ac filters, and the requirement of connecting to stiff ac grids [4,6].

The modular multilevel converter (MMC), a type of VSC, is becoming a preferred topology for
HVDC transmission due to its significant features, such as compact and scalable system design, no
commutation failure, and operation with weak ac grids [8–10]. Moreover, with the fast development
in the past two decades, the converter capacity and voltage level of MMC-HVDC technology have also
been achieved in UHVDC levels [11,12]. This makes the hybrid DC transmission systems which utilize
both LCCs and MMCs in UHVDC applications become possible.

The hybrid LCC/MMC HVDC systems provide an effective option to complement the advantages
of the two technologies. It can not only improve power supply security by eliminating commutation
failure, but also reduce the overall system power losses and capital cost [13–16]. The first hybrid
LCC/MMC UHVDC project in the world is the ± 800 kV Kun-Liu-Long three-terminal network [17,18].
It consists of one LCC as the rectifier and two full-bridge (FB) MMCs as the inverters.

Considering the equipment design and transportation limitations, the design of both LCC and
LCC/MMC UHVDC systems adopt the scheme of using two series connected valve-groups in each
pole [19,20]. High speed bypass switches are equipped on the DC terminal of each valve-group to
bypass the valve-groups that need to be maintained or the valve-groups suffering component failure
or faults [21–23]. The bipolar configurations of UHVDC links enable them to achieve some flexible
operation modes. For instance, the mode in which one pole is in half-voltage operation and the other
pole is in full-voltage operation. This mode can be achieved by bypassing one valve-group in one pole.
The half-voltage pole can keep transmitting power without affecting the full-voltage operating pole.
This will reduce the power loss caused by converter maintenance or component failure and, therefore,
mitigate the negative impact of load-shedding on the AC grid’s operation. However, control strategies
of full-voltage to half-voltage operation should be properly designed to make sure the process is
smooth and will not cause transient overvoltage and overcurrent.

Reference [22] investigates fault protection methods in LCC HVDC systems using bypass valves.
However, it does not consider the full-voltage to half-voltage operation and control. In [24,25],
valve-group bypassing strategies of LCC-UHVDC systems have proposed. However, they have not
provided methods to minimize the load-shedding when one pole gets into the half-voltage operating
mode. In addition, they have not considered the control strategies for hybrid LCC/MMC UHVDC
systems. The capability of the reduced-DC-voltage operation in a hybrid LCC/MMC UHVDC system
is presented in [18]. However, a detailed control strategy has not been provided. Moreover, the studies
in [18] only consider the full-bridge MMC (FB-MMC) based systems while the half-bridge MMC
(HB-MMC) based systems have not been investigated. As the converter configurations of HB-MMCs
and FB-MMCs are different, the control strategies of their full-voltage to half-voltage operation are
different as well. Therefore, different control strategies are needed for the two types of MMCs.

In this paper, the capability and flexibility of full-voltage to half-voltage operation in LCC and
hybrid LCC/MMC UHVDC systems are discussed and summarized. According to the characteristics
of LCCs and MMCs, different control strategies for full-voltage to half-voltage operation for LCC and
hybrid LCC/MMC UHVDC have been proposed. In additional, in order to reduce the power loss
during the half-voltage operation, a power reschedule strategy is proposed by re-setting the power
references of the half-voltage operating and full-voltage operating poles based on their pre-change
power references. The proposed full-voltage to half-voltage control strategies and the power reschedule
strategy have been verified in LCC and hybrid LCC/MMC UHVDC systems built in PSCAD/EMTDC.
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2. Converter Station Configurations of UHVDC Systems

In this section, the converter station configurations and possible operation modes of the LCC and
hybrid LCC/MMC UHVDC systems are discussed. In LCC-UHVDC systems, the converters in each
pole are typically built with two series-connected valve-groups, as shown in Figure 1. For the positive
pole, the low-voltage (LV) valve-group is the one connecting to the ground and the high-voltage (HV)
valve-group is the one connecting to the DC line. Each of the HV and LV valve-groups is a 12-pulse
LCC [21], as shown in the figure. Therefore, the whole converter in each pole is a 24-pulse LCC.
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Figure 2. A hybrid LCC/modular multilevel converter (MMC) UHVDC system. 

There will be circumstances that partial valve-groups have to be bypassed when there are 
failures of components or a scheduled maintenance. Each valve-group in the above systems can 
operate independently. The system can achieve different operating modes with the help of the DC 
side bypass switch (BPS) and the isolators equipped with each valve-group, as shown in Figure 3. 

Figure 1. A typical line commuted converter (LCC) ultra high-voltage direct-current (UHVDC) system.

Figure 2 shows a hybrid LCC/MMC UHVDC system. In this system, the LCC operates as the
rectifier and the MMC operates as the inverter. This topology will not have the problem of commutation
failure. The MMC station also consists of HV and LV MMC bridges, as shown in Figure 2.
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Figure 2. A hybrid LCC/modular multilevel converter (MMC) UHVDC system.

There will be circumstances that partial valve-groups have to be bypassed when there are failures
of components or a scheduled maintenance. Each valve-group in the above systems can operate
independently. The system can achieve different operating modes with the help of the DC side bypass
switch (BPS) and the isolators equipped with each valve-group, as shown in Figure 3.
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Figure 3. The bypass switches and isolators equipped with the valve-groups.

The high-speed BPS is to bypass the valve-group and provide current paths during the bypassing
process. The valve-group isolators 1© and 2© are to isolate the valve-group from the DC line when
the bypass process is completed. Then the current will flow through the bypass isolator 3©. With this
configuration, a bipolar UHVDC transmission system has the following operating modes [21,24]:

(1) Normal operation: both poles are in full-voltage operation; the whole system power capacity
is 100%;

(2) Partial monopole off: one-pole is in full-voltage operation while the other is partially off (25% of
the rated capacity); the whole system power capacity is 75%;

(3) Monopole off: one-pole is in full-voltage operation while the other is off; the whole system
power capacity is 50%;

(4) Partial bipole off:

a. Both poles are in (half-voltage operation) partial monopole off (each pole has 25% of the
rated capacity); the whole system power capacity is 50%;

b. One-pole is off while the other is (half-voltage operation) partial monopole off (25% of the
rated capacity); the whole system power capacity is 25%;

(5) Bipole off: the whole system is shut down; the system power capacity of the whole system is 0.

Figure 4 shows several possible operating modes of the positive pole of an LCC-UHVDC system.
Mode (a) is in normal (full-voltage) operation. Modes (b)–(d) are in partial monopole operation: (b) the
LV valve-group is bypassed, (c) the HV valve-group is bypassed, (d) mixed HV and LV valve-groups
operation. The voltage in the modes (b)–(d) is half of the rated DC voltage. The process of changing
the operating mode from mode (a) to modes (b)–(d) is called full-voltage to half-voltage operation in
this paper.

In order to achieve a fast and stable full-voltage to half-voltage process, control strategies
should be designed properly with the consideration of the different characteristics of LCCs and
MMCs. The control strategies need to avoid generating large transient overvoltage and overcurrent
during the full-voltage to half-voltage process and to reduce the power loss after completing the
half-voltage operation.
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3. Valve-Group Bypassing Strategy for LCC-UHVDC

In this section, the full-voltage to half-voltage control strategy for LCC-UHVDC systems is
proposed. The full-voltage to half-voltage operation can be achieved by controlling the firing angle α

or extinction angle γ of the valve-groups which need to be bypassed to a large degree (e.g., 90◦). Then,
the BPS and isolators will operate accordingly to achieve a smooth transition.

Figure 5 illustrates the sequence of bypassing the HV valve-group in the positive pole. In normal
operating conditions, the current flows through the both HV and LV valve-groups, as shown in
Figure 5a. The DC voltage of the HV valve-groups will start to decrease once the valve-groups receive
the order to increase the α (or γ). The DC voltage of the LV LCC valve-group remain constant. The BPS
will be closed once the DC voltage decreases to a minimum value (e.g., 0.1 p.u.) that the BPS can be
closed, as shown in Figure 5b. Then, the HV valve-group will be blocked. At the same time, the bypass
isolator 3© will be closed. During this process, the current will be fully transferred to the BPS and the
bypass isolator 3©, as shown in Figure 5c. The BPS will be opened once the isolator is fully closed.
Then, the current will only flow through the isolator, as shown in Figure 5d. At last, the isolators 1©
and 2© will be opened and the valve-group is fully isolated.

Figure 6 shows the proposed control block for the valve-groups to be bypassed. The function of
the “in/out hold” is: the input is passed to the output when the hold (bypassing order) is 0; when a
hold signal transition from 0 to 1 is detected, the output is held at that input sampled value. It means,
in normal operation, the firing angle α or extinction angle γ is directly sent to the valves. The α or γ

will be ramped up from the pre-change value with a specific ramping rate to 90◦ once the bypassing
order is received from the system upper level control.
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Figure 6. The valve-group bypassing control logic.

Take the system shown in Figure 1 as an example. The detailed sequences of bypassing the HV
valve-groups are summarized below:

(1) The extinction angle γ of the HV valve-group in the inverter will be ramped up to 90◦ once a
bypassing order is received from the system upper level control. At the same time, the bypassing
order will be transmitted to the rectifier;

(2) The firing angle α of the HV valve-group in the rectifier will be ramped up to 90◦ once the
bypassing order is received;

(3) When the voltage of the HV valve-groups decrease to 0.1 p.u., the BPS is closed. Then, the valve-groups
are blocked. At the same time, the bypass isolator will be closed;

(4) The BPS is opened once the bypass isolator is fully closed;
(5) The valve-group isolators are opened once the BPS is fully opened;
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(6) The full-voltage to half-voltage process completes after the above process.

It should be mentioned the above control sequences can also be applied to the LV valve-group in
the positive pole and the HV or LV valve-groups in the negative pole.

4. Valve-Group Bypassing Strategy for Hybrid LCC/VSC UHVDC

The full-voltage to half-voltage control strategies of hybrid LCC/MMC UHVDC systems will
be different from the LCC-UHVDC systems due to the inherent characteristics of LCCs and MMCs.
In addition, as the converter configurations of HB-MMCs and FB-MMCs are different, different control
strategies should be considered for LCC/HB-MMC and LCC/FB-MMC UHVDC systems.

4.1. The VSC in the Hybrid System is Half-Bridge Modular Multilevel Converter (HB-MMC)

Figure 7 shows the positive pole of an LCC/HB-MMC HVDC system. The DC voltage controllability
of the HB-MMC is limited within Vac to Vdc, where Vac is the converter valve-side line voltage and
Vdc is the DC side pole-to-ground voltage. Therefore, it cannot adjust the DC voltage from Vdc to 0
through its DC voltage controller. In order to bypass the valve-groups, the DC current needs to be
firstly reduced to a minimum value (0.1 p.u.). Then, both the HV and LV LCCs and the HV MMC need
to be blocked. The LV MMC can keep operating as a static synchronous compensator (STATCOM)
during the process.
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Although the current in the DC line becomes zero after blocking the valve-groups, the energy
stored in the DC line will make its voltage remain at a high value. The DC voltage of the DC line may
take a long time to naturally decay to zero. Therefore, BPS1 and BPS2 cannot be closed directly after
blocking the converters because the LV valve-groups may be damaged by the DC line residual voltage.
In order to speed up the voltage decaying process, a discharging resistor is employed to achieve a fast
de-energization. Before inserting the discharging resistor R, the DC side switches S1 and S2 are opened
to isolate the converters from the DC line. Then, the DC line will discharge through the resistor quickly.
After opening the switches S1 and S2, the BPS1 and BPS2 and isolators can operate to bypass the HV
valve-groups of the LCC and MMC.

The system can restore soon after bypassing the valve-groups. The discharging resistor R will
be firstly removed. Then, the DC switch S1 will be closed. The LV LCC will be deblocked to charge
the DC line. The DC switch S2 will be closed when the DC line voltage reaches to the DC voltage of
the LV MMC. The power transmission will be interrupted for a short time during this full-voltage to
half-voltage process.

The detailed sequences of bypassing the HV valve-groups are summarized below:

(1) Reduce the DC current to a minimum value (0.1 p.u.) once a bypassing order is received from the
system upper level control;
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(2) Block the HV and LV LCCs and the HV MMC valve-groups once the DC current is reduced to
the target value;

(3) The DC terminal switches are tripped to isolate the converters from the DC line; Then, the
discharging resistor is inserted; The HV valve-groups are bypassed during this process;

(4) The discharging resistor is removed once the DC line is fully de-energized;
(5) The LV LCC is deblocked to charge the DC line once its DC side switch is re-closed;
(6) The LV MMC’s DC side switch is closed once the DC line voltage reaches to its DC terminal

voltage;
(7) The full-voltage to half-voltage process completes after the above process.

4.2. The VSC in the Hybrid System is Full-Bridge Modular Multilevel Converter (FB-MMC)

Differing from HB-MMC, FB-MMC has the capability to control the DC voltage from Vdc to
−Vdc [26]. Based on the modulation and control principle of MMC, the DC voltage of a FB-MMC can
be given as

Vdc =
N

∑
i=1

(
SpiVcap

)
+

N

∑
i=1

(
SniVcap

)
(1)

where Vcap is the capacitor voltage of a sub-module (SM), Spi and Sni are the switching function of
the SMs in the upper arms and lower arms. The switching function has three states. For instance,
the output voltage of the SM will be Vcap when Si = 1; the output voltage is 0 when Si = 0 and the
output voltage is −Vcap when Si = −1. In order to achieve a stable online valve-group bypassing,
the following modulation strategy is employed. The number of inserted SMs in the upper and lower
arms is shown below:  Nup =

0.5Vdcre f −Vacre f
Vcrated

Ndown =
0.5Vdcre f +Vacre f

Vcrated

(2)

where Nup and Ndown are the inserted SM number for the upper and lower arms, Vdcref is the DC voltage
reference which will be decreased during the full-voltage to half-voltage operation with a ramp-down
rate, Vacref is the MMC output ac voltage reference calculated from the control system, Vcrated is the
rated SM capacitor voltage. Then the DC voltage of the MMC is

Vdc =
(

Nup + Ndown
)
Vcap =

(0.5Vdcre f − Vacre f

Vcrated
+

0.5Vdcre f + Vacre f

Vcrated

)
Vcap =

( Vdcre f

Vcrated

)
Vcap (3)

From (3), the DC voltage can be controlled by regulating the DC reference, the whole SM capacitor
voltage Vcap remains stable. The DC voltage outer loop controller is shown in Figure 8. To achieve
an online valve-group bypass, the target valve-group of the FB-MMC will start to decrease the DC
voltage. At the same time, the target valve-group of the LCC will be controlled to follow the voltage
drop. The power transmission will not be interrupted during this full-voltage to half-voltage process.
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From (3), the DC voltage can be controlled by regulating the DC reference, the whole SM capacitor 
voltage Vcap remains stable. The DC voltage outer loop controller is shown in Figure 8. To achieve an online 
valve-group bypass, the target valve-group of the FB-MMC will start to decrease the DC voltage. At the 
same time, the target valve-group of the LCC will be controlled to follow the voltage drop. The power 
transmission will not be interrupted during this full-voltage to half-voltage process. 
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Figure 8. DC voltage outer loop controller of the full-bridge (FB)-MMC. Figure 8. DC voltage outer loop controller of the full-bridge (FB)-MMC.

The detailed sequences of bypassing the HV valve-groups are summarized below:
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(1) The DC voltage of the HV valve-group of the FB-MMC will be controlled to ramp down to a
minimum value (0.1 p.u.) once a bypassing order is received from the system upper level control.
At the same time, the bypassing order will be transmitted to the rectifier;

(2) The firing angle α of the HV valve-group in the rectifier will be ramped up to follow the voltage
decrease controlled by the FB-MMC;

(3) When the voltage of the HV valve-groups decrease to 0.1 p.u., the BPS is closed. Then,
the valve-groups are blocked. At the same time, the bypass isolator will be closed;

(4) The BPS is opened once the bypass isolator is fully closed;
(5) The valve-group isolators are opened once the BPS is fully opened;
(6) The full-voltage to half-voltage process completes after the above process.

5. Power Rescheduling Strategy for Full-Voltage to Half-Voltage Operation

After completing the process of full-voltage to half-voltage operation, the system may lose some
power transmission capability. In order to minimize the load-shedding caused by the half-voltage
operation, a power rescheduling strategy has to be designed.

Assuming the power transmitted in each valve-group is equal and the value is P0 before the
full-voltage to half-voltage process, therefore, the power transmitted in each pole is 2P0 and the total
power of the system is 4P0. The rated power of each valve-group is Prated. Therefore, P0 ≤ Prated.
The detailed sequences of the power rescheduling are summarized below:

(1) If P0 ≤ 1
2 Prated, the new power reference for the half-voltage operating valve-group will be set as

2P0. The power reference for the full-voltage operating pole is not changed. In this case, there is
no power loss.

(2) If 1
2 Prated < P0 ≤ 3

4 Prated, the new power reference for the half-voltage operating valve-group will
be set as Prated. In this case, the increased power of the half-voltage valve-group is (Prated − P0),
the lost power is P0 − (Prated − P0) = (2P0 − Prated) which can be undertaken by the full-voltage
operating pole. It is known the original power in the full-voltage operating pole is 2P0. As
P0 ≤ 3

4 Prated, therefore (2P0 − Prated) + 2P0 = (4P0 − Prated) ≤ 2Prated. Therefore, the new power
reference for the full-voltage operating pole is set to (4P0 − Prated). In this case, power loss of the
system is 0.

(3) If 3
4 Prated < P0 ≤ Prated, the new power reference for the half-voltage operating valve-group will

be set as Prated. The power reference for the full-voltage operating valve-group will be set as
2Prated. In this case, the power loss in the system is (4P0 − 3Prated).

The power rescheduling strategy is summarized in Table 1.

Table 1. Power rescheduling strategy.

Initial Power of Each
Valve-Group

Power Reference for
Half-Voltage Pole

Power Reference for
Full-Voltage Pole

System
Power Loss

P0 ≤ 1
2 Prated 2P0 2P0 0

1
2 Prated < P0 ≤ 3

4 Prated Prated 4P0 − Prated 0
3
4 Prated < P0 ≤ Prated Prated 2Prated 4P0 − 3Prated

6. Case Studies

The above analysis and proposed control strategies are verified in the LCC and hybrid LCC/MMC
UHVDC systems built in PSCAD/EMTDC. It should be mentioned that a simulation time step of 10 µs
is used to ensure the accuracy of the simulation.
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6.1. LCC-UHVDC Point-to-Point Link

A ±800 kV, 5GW LCC-UHVDC system has been built in PSCAD/EMTDC. The system configuration
is shown in Figure 1. The parameters are modified based on the Xiangjiaba–Shanghai LCC-UHVDC
project. The parameters of the converters, transformers, ac and DC side filters are given in Table 2 and
shown in Figures A1 and A2 in the Appendix A. The Frequency Dependent DC overhead line model
(dimensions and parameters) in PSCAD is illustrated in Figure A3 in the Appendix A as well. The DC
link distance is set as 1450 km. The HV valve-groups in the positive pole are bypassed as an example
to achieve the full-voltage to half-voltage operation.

Table 2. System parameters.

Parameters Real Value

Capacity (MVA) 5000
Rated DC voltage (kV) ±800
AC grid frequency (Hz) 50

Rated AC voltages (kV) 525 (Rec)
500 (Inv)

Transformer ratios (kV/kV)
525/185 (Rec)
500/175 (Inv)

Transformer capacity per valve (MVA) 703.125 (Rec)
625 (Inv)

Transformer leakage inductance (p.u.) 0.14

Figure 9 illustrates the system dynamics during the full-voltage to half-voltage operation.
The initial DC current (power) was set as 0.8 p.u. The inverter received bypassing signal at t = 1 s.
A 10 ms delay is set for the rectifier to receive the bypassing signal to represent the communication
delay. VdcRec is the DC terminal voltage of the rectifier. As shown in Figure 9a, VdcRec started to drop
once the firing angle is controlled to increase to 90◦. The VdcRecMid is the voltage between the HV and
LV valve-groups of the rectifier. It can be seen that the VdcRecMid and the DC current Idc were almost
not affected during the full-voltage to half-voltage control process. It is because the voltage reduction
of the HV valve-group does not affect the voltage of the LV valve-group which can keep controlling
the DC current constantly. According to the proposed power reschedule strategy, the current (power)
was then set to 1 p.u. when the BPS and isolators successfully operated to isolate HV valve-groups.
The power transmission is not interrupted during the full-bridge to half-bridge process. Figure 9b,c
show the firing angles and extinction angles of the rectifier and inverter, respectively. The firing angles
and extinction angles of the HV valve-groups were controlled to ramp up once the bypassing signals
were received. It should be mentioned that the HV valve-groups may have been blocked before their
firing or extinction angle reaches to 90◦.

Figure 10a shows the voltage and current of the negative pole. The firing angle of the rectifier
of the negative pole is shown in Figure 10b. According to the proposed power reschedule strategy,
the current (power) was increased to 1 p.u. at t = 1.6 s to compensate the power loss caused by
the half-voltage operation of the positive pole. The power loss of the whole system is 6.25% of its
initial power.
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Figure 9. System dynamics during the full-voltage to half-voltage operation of the LCC-UHVDC link.
(a) DC terminal voltage and current of the sending end; (b) Firing angles of the LV and HV valve-groups
of the sending end; (c) Extinction angles of the LV and HV valve-groups of the receiving end.
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Figure 10. System dynamics of the negative pole. (a) DC terminal voltage and current of the sending
end; (b) Firing angle of the sending end.
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6.2. Hybrid LCC/HB-MMC UHVDC Point-to-Point Link

A ±800 kV, 5GW LCC/HB-MMC UHVDC system has been built in PSCAD. The inverter in the
previous case is replaced by a HB-MMC with HV and LV valves. The LCC parameters and DC line are
the same with the previous case. The parameters of the MMC are shown in Table 3.

Table 3. Parameters of the HB-MMC.

Parameters Real Value

Capacity (MVA) 5000
Rated DC voltage (kV) ±800
AC grid frequency (Hz) 50
Rated AC voltages (kV) 500

Transformer ratios (kV/kV) 500/260
Transformer capacity per valve (MVA) 1250
Transformer leakage inductance (p.u.) 0.14

Number of SM 167
SM capacitor (mF) 18

Figure 11 illustrates the dynamic performance of the system. The initial DC current (power) was
set as 0.8 p.u.. The DC current started to reduce to 0.1 p.u. at t = 1 s. Then, the HV and LV LCCs and the
HV MMC were blocked at t = 1.2 s. The DC switches at the two terminals of the DC line were tripped
after blocking the converters. Then, the discharging resistor was inserted until the DC circuit voltage
decayed to zero. During this period, the HV valve-groups of the LCC and MMC were isolated by their
bypass switches and isolators. The LV LCC’s DC side switch was re-closed at t = 1.4 s. The controller
of LV LCC was reset (the initial firing angle was 90◦) and deblocked at t = 1.41 s. The LV MMC’s DC
side switch was closed at t = 1.45 s. Then, the current was controlled to increase to 1 p.u.
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Figure 11. System dynamics during the full-voltage to half-voltage operation of the Hybrid
LCC/HB-MMC UHVDC link. (a) DC terminal voltage and current of the sending end; (b) Firing
angles of the LV and HV valve-groups of the sending end.

6.3. Hybrid LCC/FB-MMC UHVDC Point-to-Point Link

A ±800 kV, 5GW LCC/FB-MMC UHVDC system has been built in PSCAD. The inverter in the
previous case is replaced by an FB-MMC with HV and LV valves. The parameters of the FB-MMC is
the same with the HB-MMC in the previous case.
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Figure 12 illustrates the dynamic performance of the system. The initial DC current (power)
was set as 0.8 p.u.. The DC voltage controller of the HV FB-MMC started to reduce the DC voltage
at t = 1 s. At the same time, the firing angle (αHV in the figure) of the HV LCC started to increase.
During this period, the controller of the LV LCC was operating to control the DC current to be constant.
The HV LCC and MMCs were blocked when the DC output voltage of the HV LCC reduced to 0.1 p.u.
(0.6 p.u. of the DC line voltage). Then the bypass switches and isolators operated to isolate the HV
LCC valve-groups. Then, the current was controlled to increase to 1 p.u. The power transmission is
not interrupted during the full-bridge to half-bridge process.
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5. Conclusions 

This paper investigated the control strategies of full-voltage to half-voltage operation for LCC 
and hybrid LCC/MMC UHVDC systems. The full-voltage to half-voltage process can be achieved 
within several hundred milliseconds by the proposed strategies without inducing large transient 
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transmission. Moreover, a power reschedule strategy has been proposed to achieve a minimum 
power loss caused by the half-voltage operation. The proposed strategies have been verified through 
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Figure 12. System dynamics during the full-voltage to half-voltage operation of the Hybrid
LCC/FB-MMC UHVDC link. (a) DC terminal voltage and current of the sending end; (b) Firing
angles of the LV and HV valve-groups of the sending end.

7. Conclusions

This paper investigated the control strategies of full-voltage to half-voltage operation for LCC and
hybrid LCC/MMC UHVDC systems. The full-voltage to half-voltage process can be achieved within
several hundred milliseconds by the proposed strategies without inducing large transient overvoltage
and overcurrent. A fast full-voltage to half-voltage operation for a hybrid LCC/HB-MMC UHVDC
system needs the help of a DC side discharging resistor. Therefore, it will experience a short time power
outage during the full-voltage to half-voltage process. While the LCC and LCC/FB-MMC UHVDC
systems can be achieved online valve-group bypassing without interrupting the power transmission.
Moreover, a power reschedule strategy has been proposed to achieve a minimum power loss caused
by the half-voltage operation. The proposed strategies have been verified through time-domain
simulations conducted in PSCAD/EMTDC. The studies can be a useful guidance for the operation
and control for future UHVDC systems
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