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Abstract: Studies related to biomass production, with a focus on energy uses for short-rotation woody
crops (SRWCs), are limited in Latin America. The research that is available relates to a variety of
tested SRWC species (50 species), however, the most important species are Populus, Salix, Eucalyptus,
Acacia, and Gmelina arborea. In the existing studies, stocking densities varied from 1111 to 20,000
trees per hectare, with square or rectangular spacing. One important advantage of SRWC systems
in this region, compared to most regions worldwide, is the predictability of biomass yields due to
the tropical climate conditions of the majority of the Latin American countries. Rotations of three
and four years can be projected to produce total biomass yields of 30-50 tons/ha, with increments of
10-20 tons/ha/yr. Fertilization is performed in SRWC with the aim of preventing soil degradation
and maintaining further production. In regards to possible uses of biofuel generated from SRWC in
Latin America, an inconvenience is that there are neither well-established harvesting systems nor
conventional pre-treatments to process the biomass. Processes that are available in the region that use
biomass from SRWC for energy production are gasification and pellet production. Other potential
biofuel processes, such as torrefaction and biochemical conversion, are limited in this area.

Keywords: biomass feedstock; South America; Central America; short rotation crops; sustainability;
plantation; biomass

1. Introduction

Currently, energy demands worldwide are estimated at approximately 14,000 million tonnes of
Oil Equivalent (Mtoe) [1] and are expected to reach 18,000 Mtoe in the year 2050 [2]. In Latin America
(Argentina, Belize, Brazil, Bolivia, Chile, Costa Rica, Colombia, El Salvador, Ecuador, Guatemala,
Guayana, Honduras, Mexico, Nicaragua, Panama, Suriname, Uruguay, and Venezuela), the current
energy demand is estimated to be 4.7% of the total global energy demand, at around 658 million
Mtoe [1]. It is expected that this demand will increase to 1.0 billion Mtoe by the year 2050 [2]. In Mexico
and Central America, the energy demand is 200 million Mtoe [1].

A variety of different energy resources around the world are currently used to meet these
demands. The most important resources are fossil fuels, carbon, and natural gas. These resources are
utilized to meet 81.1% of the total world energy demand, or 31.3%, 28.6%, and 21.2%, respectively [1].
Nevertheless, although these types of energy resources are important, they are considered to be the
main cause of global warming [3]. Specifically, for Latin America, total emissions are 15.7% and fossil
fuels contribute 9.5%, carbon 1.3%, and natural gas 4.9% [1,4]. Renewable energy resources in Latin
America, such as hydroelectricity and bioenergy, represent 2.4% and 11.4% of the total global demand,

Energies 2019, 12, 705; doi:10.3390/en12040705 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-6201-8383
https://orcid.org/0000-0001-7115-1154
http://www.mdpi.com/1996-1073/12/4/705?type=check_update&version=1
http://dx.doi.org/10.3390/en12040705
http://www.mdpi.com/journal/energies

Energies 2019, 12, 705 2 of 20

respectively [1]. The production of solar energy has increased compared to other renewable sources in
this region [5,6].

Latin America is a leader in the production of renewable energy, with hydro energy being the
most important in all the countries across the region (Figure 1), followed by biofuels, agricultural
wastes and, to a lesser extent, solar energy, wind, and mini hydro-energy (Figure 1). The countries
of Central America, together with Mexico, Argentina and Chile, show the lowest levels of energy
production from renewable resources (Figure 1) [4,7].
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Figure 1. Energy generation by source type in Latin American countries [6].

Biomass is considered one of the key renewable energy resources of the future [8]. This is due
to its significant potential, economic viability, renewability, and various social and environmental
benefits, especially in the European Union [3,9]. According to Rodriguez et al. [3,10], energy obtained
from solid biomass is primary energy, meaning the energy came from plant species used specifically to
produce biomass for energy.

Woody species cultivated as short-rotation woody crops (SRWC) have been established in many
countries around the world, especially in the European Union (EU) and North America [11,12].
SRWC is a silvicultural system based on short clear-felling cycles, generally of 1 to 15 years. These cycles
utilize genetically superior planting material, and sometimes required intensive techniques such as
fertilization, irrigation, and weed control [13].

Although SRWCs are extensively implemented in many regions of the world [14], their use has
been expanded very little in Latin America [7,15-17]. However, Latin America has an extension from
Mexico to the southern part of Chile, where there are diverse habitats and climates, therefore different
SRWCs are going to vary in how well they perform in these environments. According to these factors,
there have been different outcomes achieved in the establishment of SWRCs, and nowadays it is
necessary to review the status of these types of plantations.

The present study summarizes the experiences gathered thus far in Latin American regarding
the establishment of SRWCs, with reference to species, spacing, stocking density, species rotation,
production levels, utilization, and potential further applications.

2. Renewable Energy and Biomass in Latin America

The development of renewable energy resources has increased in the last 30 years, as they
have been recognized as an alternative to fossil fuels [18]. Renewable energy is a potential solution
to increasing global energy demand, climatic change, and ecological challenges [19], but must be
environmentally, socially, and economically sustainable if its benefits are to be fully recognized [18].
However, despite the advantages of renewable energy, some Latin American countries are still highly
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dependent on fossil fuels (from 40%-80% of total energy demand) or other forms of energy production,
mainly hydroelectric power (11%) [6,7].

Renewable energy in Latin America has great potential because many of the countries in this
region have good weather conditions for energy crop development [18]. However, the main source
of this energy, so far, is sugar cane [20], with Brazil as the main biofuel producer in the region [21],
followed by Colombia [22]. Other renewable energy resources are also considered important, such as
palm oil [23] and biogas [24,25].

Biomass as a renewable energy resource is important, however, some authors have pointed out
that this energy must be used smartly [26,27]. Cooking and heating in developing countries, such as in
Central America [7], utilizes one-third of the biomass produced around the world [18]. Meanwhile,
developed countries utilize biomass in industrial applications, such as in the heating, power, and road
transportation sectors, and for heating purposes in the private sector [1].

Biomass has the potential to be considered the best option to sustainably satisfy global energy
demand and reduce the impact of polluting energy resources [20,28-31]. Conversion of biomass into
energy is possible through thermo-chemical and biochemical/biological processes [29,32-34], and all
of these processes can be implemented in Latin American.

Energy production from biomass in Latin America contributes between 10% and 14% of the
world’s primary sources [18,19]. As already mentioned, a high percentage (9.5%) comes from
agricultural crops used for the production of biofuels [27,35,36], mainly for heating and cooking,
and another significant proportion comes from hydroelectricity [31,37,38].

Biomass resources or feedstock can be: (I) agriculture, generally including agricultural residues
such as cane bagasse, oil palm and corn, among others [31]; (II) forest residues consisting of
non-usable products resulting from harvesting or sawing processes, products from agroforestry
systems, and short-rotation woody crops [18-39]. Sugar cane is the most important feedstock in
Brazil for transport, which continues to grow in production [22] but other important crops produced
in the Latin America region include soya, oil palm, castor oil, peanut and sunflower oil, parsed,
and jatropha [22,23].

Renewable resources represent 11.4% of all the forms of energy production in Latin America [37,40],
with an estimated 7.9% arising from wood sources for firewood, and 3.5% from sugar cane and
its by-products (Figure 2a). This data shows that the biomass from lignocellulose material is still
unimportant. However, some types of biomass are important in some areas. In various Latin American
countries, energy from biomass is produced in the form of 17.83 million tons of wood grown for
firewood [40], of which a high percentage is produced in Brazil, Chile, Peru, Guatemala, and Mexico
(Figure 2b).
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Figure 2. (a) Percentage of the energy production generated by the different energy sources used and
(b) percentage of energy production by firewood in Latin America [40].
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3. Short Rotation Woody Crops

SRW(Cs are of interest because they have a short return time compared to traditional wood
plantations, which require longer year intervals [41]. Additionally, SRWCs differ from forestry in that
the trees are intensively managed using agricultural techniques that include high-density plantings,
regular harvests, and rotations occurring every two to six years without replanting [42]. The choice
of species for SRWCs depends on the local climate and soil conditions and is generally confined to
fast-growing tree species, mainly from the genera Populus, Salix, Eucalyptus and Robinia [43—45].
SRWC plantations are characterized by fast-growing trees of uniform size, grown in a properly
designed planting scheme with regular spacing [10]. Planned spacing should facilitate mechanical
planting and harvesting of the crop [42].

Zamora et al. [39] present an interesting review of short rotation woody crops (SRWCs).
The authors defined SRWCs as “highly productive, purpose-grown plantations in which the bolewood
and much of the limbs and tops are used as feedstocks for energy”. Bolewood is the section of the
tree trunk, from the ground to the crown break, that is utilizable for commercial products and is cut
square at both ends to be made ready for delivery for processing. Moreover, Dikemann [43] and
Volk et al. [44] indicate that SRWC production is an ideal biomass management system, as it produces
renewable energy feedstock for biofuel production and can provide a plethora of ecological services,
including carbon sequestrations and wildlife habitat, when strategically planted [45]. An additional
advantage of the species used in SRWC systems is that genetic modifications are easy to propagate,
and have relatively short generation times of 3 to 10 years [46].

However, there are some disadvantages of SRWCs in relation to environmental sustainability [47]
and they must be considered in the politics of their establishment [48]:

1. Soil erosion. SRWCs represent possibly the greatest threat to long-term soil productivity, due to
loss of organic matter and nutrient-rich soil surfaces.

2. Soil compaction. Machinery used in SWRC harvesting produces soil compaction, which can
reduce water infiltration. However, there are many techniques for reducing the soil compaction,
and a good selection of species or good soil condition can reduce soil compaction [39].

3.  Herbicide application. Herbicide is used to control weeds, and if it enters ground water can affect
water quality.

4.  Fertilization. If the nutrients applied are not captured by the plant but instead leach into the
ground water or run off into surface waters, this can affect water quality.

5. Pest and diseases. The crops utilized in the SRWC systems present narrow genetic bases, making
them more susceptible to pest and diseases.

6. Biodiversity. Few species are used in SRWC systems, so the biodiversity decreases, or if one
species is non-native and/or invasive it can have negative impacts on biodiversity.

7. A SRWC prevents the establishment of a plantation that can be used for feedstock for human
crops on that piece of land.

8.  The degree of land conversion can be high and have impacts on both agricultural production and
native habitats.

9.  The harvesting step of SRWCs produces high costs for harvesting and transportation.

Although very well-known systems of SRWCs are used in the USA [11,39], Canada [49], and many
countries of the EU [3], SRWCs for biomass production have only recently been implemented in more
Latin American countries [50-56]. Brazil established short rotation plantations and SRWCs long
ago [56]. With the development of the iron industry in Brazil occurring since 1960, the demand for
calorific power increased, promoting the development of strong incentives to establish short rotation
plantations for firewood production [56]. Here, reforestation programs used eucalyptus species for
energy purposes [57], with 1.0 x 1.5 m spacing [58]. Nicaragua [55] has been using SRWCs for many
years and, most recently, the establishment of SRWCs has been reported in Chile [50], Costa Rica [51,52],
Mexico [53], and Uruguay [54].
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An important aspect to point out regarding timber or pulp plantations in Latin American is their
agroforestry contextualization [43], with the exception of Brazil, Argentina and Chile, which do have
large extensions of monocultures. SRWC plantations in Costa Rica [51,52], Nicaragua, and Mexico,
among other countries in the region, are established as part of multiple-purpose farms. This is why
some think that, despite the potential of the region with its tropical and subtropical climate [59],
the development of this type of biomass production system would be limited [43].

4. Species

SRWC systems can utilize various species [43]. For example, Populus, Salix, Robinia and Eucalyptus
species are used in the EU [45,60], while in North America Populus, Salix, Pinus, Eucalyptus,
and Liquidambar styraciflua are frequently planted [11,30,49,60,61].

Only 50% of the countries in Latin America have established biomass production systems based
on SRWCs. There are reports of SRWC plantations in Mexico, Honduras, Nicaragua, Costa Rica,
Colombia, Brazil, Uruguay, Chile and Argentina, but not in Guatemala, Belize, El Salvador, Venezuela,
French Guiana, Surinam, Ecuador, Peru, and Bolivia (Table 1).

Table 1. Short rotation woody crops in the different countries of Latin America.

Part of Latin

America Species Tested Reference
Mexico and Central America
Mexico Diphysa robinioides, Gliricidia sepium, L’eucaen.a le.ucqcephala, Caesalpinia cacalaco 53]
and Casuarina equisetifolia
Perymenium grande, P. strigillosum, Pinus oocarpa, C. equisetifolia, Acacia
Honduras mangium, G. sepium, L. salvadorensis, Eucalyptus citriodora, A. farneciana, A. [62-64]
pennatula and L. macrophilla
Nicaragua Eucalyptus camaldulensis and Moringa oleifera [64-68]
Costa Rica Gmelina arborea, E. saligna and E. camaldulensis [51,52,69,70]
South American
Colombia Moringa oleifera [54]
Several Eucalyptus (hibrid), E. grandis, Mimosa scabrella, Ateleia glazioviana, A.
Brazil mearnsii, E. benthamii, A. mangium, A. auriculiformis and Schizolobium [56,71-84]
amazonicum
Uruguay E. tereticornis, E. dunii, E. benthamii and E. grandis [54]
. E. globulus, E. camaldulensis, E. nitens, E. denticulata, Pinus radiata, Salix sp.,
S Populus sp., P. deltoides, A. melanoxylon and A. dealbata [50,85-93]
A . S. babylonica x S. alba, S. babyldnica var. sacramenta, P. x canadensis, P. x deltoides
rgentina [94]

and E. camaldulensis

A great diversity of species (50 species) for SRWCs are used in Latin America, possibly due to the
tropical climate conditions of many of the region’s countries (Table 1). From Mexico to the southern
part of Chile, there are a variety of diverse habitats and climates. Different SRWCs vary in how well
they perform in these environments, and each country has tested different species for each condition.
As in the European Union and North America, plantations of Populus, Salix, and Eucalyptus are planted,
especially in Brazil, Chile and Argentina, and other semitropical and temperate countries. As for
Eucalyptus, seven varieties were tested. Approximately 45 various species are present in countries with
tropical climates, including native and exotic species such as G. arborea or Acacia mangium (Table 1).

Stocking density and spacing in SRWCs in Latin America are similar to those used for timber
production. In the case of Schizolobium amazonicum in Brazil, the spacing is less than 1100 trees per
hectare. Schizolobium amazonicum was tested with densities of 1100, 833 and 625 n/ha (spacings of
3x3m,4x3mand 4 x4 m, respectively) [84]. Common stocking densities for pulp production are
between 1111 and 5000 trees per hectare, in order to obtain logs for chips (Table 2).
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Table 2. Summary of plantation density, spacing, production, height, and diameter of different species
of short rotation woody crops utilized in plantations in different countries of Latin America.

Plantation Rotation Evaluation
Species Tested Country Density Spacing Production (Ton/ha) Age Fertilization Period Reference
(trees/ha) (years) (years)
E. globulus Chile 5000 2x1 18.8 m3/ha/yr 4 + 12 [85]
Salix sp. Chile 16,000 0.75x 0.75 5 + 15 [86]
Populus sp. Chile 6666 3x05 8 + 16 [86]
Populus sp. Chile 9000 1x1 1.73-52.58 2 2 [92]
Populus sp. Chile ?((]J(,]OOO(&; f: } 1,2y3 [95,96]
Eucalyptus sp. Chile 2100 20x28 10 + 20 [86]
Pinus sp. Chile 2000 2.0x28 16 + 16 [86]
A. melanoxylum 2x1
E. camaldulensis . 5000; 7500
E. nitens Chile & 10,000 21" 0'17 5 4 4 (7]
E. globulus X
5000; 2x1
E. globulus Chile 10,000 & 1x1 2,3y4 [95,97]
15,000 1x0.8
P. deltoids Chile 10,000 2x1 9.2a11.5 Ton/ha/yr 2 + 8 [93]
E. globulus 5000; 2x1
E. denticulara Chile 10,000 & 1x1 [88]
A. dealbata 15,000 1x0.8
2‘ :ZSZZ;:KZZZ _ 5000; 141x141
. Chile 7500 & 1.15x1.15 + [89]
E. nitens 10,000 1x1
E. globulus !
E.tereticornis Uruguay 3300 3x1 8-13 [54]
E. duniii Uruguay 6666 3x0.5 20-29 [54]
E. benthamii Uruguay 4400 3x0.75 19-31 [54]
E. grandis Uruguay 2200 3x15 18-28 [54]
5000 2x1 4.2-14.4
G. arborea Costa Rica 10000 1x1 7.4-18.8 3 + 1 [51,52]
20,000 1x0.5 14.7-22.6
E. camaldulensis Nicaragua - - 10 6 [65]
E. camaldulensis Nicaragua 2000 2x28 2 [67]
6666 3x05 43
3333 3x1 36
Eucaliptus (hibrido) Brazil 2222 3x15 30 2 [71]
1666 3x2 27
1111 3x3 21
7100 28x0.5
3550 28x1.0
Eucaliptus (hibrido) Brazil 2380 2.8x15 17 a 50 tons/ha/yr + 2 [72,98]
2000 2.8x2.0
1430 28x25
. o . 7100 28x0.5 28.9 2309
Eucaliptus (hibrido) Brazil 2380 28x15 1442217 + 2 [73]
Eucaliptus (hibrido) Brazil 6667 3x0.5 243 1 [73]
A. mearnsii 5000 2x1
M";_”;;;ZZZE”" Brazil gggg zsxxlf 0.14-2.75 3 [79-81]
Ateleia glazioviana 2222 3x15
A. mearnsii 5000 2x1
M";f’;;z‘;zd la Brazil gggg 23"Xli5 411290.98 3 79,80,82]
Ateleia glazioviana 2222 3x15
A. mearnsii . 5000 2x1 45
Brazil 2022 3x15 7.29 [80]
. . 56 month
E. benthamii Brazil 2222 25x2 92 month [99]
Tectona grandis Brazil 1111 3x3 297 9 [99]
A. mangium . 334a 5
A. auricuﬁ’furmis Brazil 1666 3x2 18.1 Ton /ha/yr + 1831
4444 1.5x15 56.3
2500 2x2 46.8
1666 3x2 59.2
Schizolobium amazonicum Brazil 1111 3x3 63.1 16 month [84]
1250 4x2 714
833 4x3 499
625 4x4 74.8
G. sepium 9.32
L. salvadorensis 22.79
L. macrophila Honduras 10,000 1x1 ool + 2 [64]
A. farneciana 272
A. pennatula 14.29
D. robinioides
L g;;fj;:;’;;m Mexico 10,000 1x1 1531
C. equisetifolia
0.32 (10)
0.78 (20)
S. babylonica x S. Alba t%"‘:‘ntssjea(ii: 0.14 (10)
(131-27) orls 51 o 0.51 (20)
S. babylénica var.sacramenta Argentina 10,000 & p bllock 0.36 (10) . [94]
P. x canadensis conti-12 8 20000, O 60 0.22 (20)
Populus x deltoides (hard) 0%5 . t 0.28 (10)
E. camaldulensis -92 m separate 0.53 (20)
perl2m 0.13 (10)

0.13 (20)
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Spacing for these trees can be as square systems (1.41 x 1.41 m and 2.0 x 2.0 m) or rectangular
systems 2x1m,2x1.5m,2x28m,2x3m,2x4m,28x1m,28x1.5m,2.8x25m,3x0.75m,
3x1m, and 3 x 1.5 m) (Table 2). It is important to note that these spacings were not applied to the
various species tested in the countries of Latin America. Lastly, although SRWCs are associated with
high densities of over 5000 trees/hectare [41], few species and countries have used densities of 6666,
7100, 7500, 9000, 10,000, 15,000, 17,500 and 20,000 trees/hectare, with spacings of 3.0 x 0.5m, 1.0 x 1.0 m,
2.0x0.75m, 1.0 x 0.8 m and 2.8 x 0.5 m (Table 2).

The above spacings clearly show that square and rectangular systems are the most used in these
species (Table 2). However, furrow-type spacing has not yet been reported, due to the practicalities
of using harvester equipment. This type of planting usually employs systems of two or three plants
in rows and spacing of 1-2 meters between rows [95]. This is found only in plantations of Salix and
Populus in Argentina, where a cluster system of four plants may be used, separated by 1.5 and 1.2 m
from the other four plant clusters [94]. In general, the use of similar spacings for timber or logs for
pulp production clearly shows the lack of experience in the region in regards to the different spacing
and harvesting methods that can be used for SRWCs (Table 2).

Recommended high densities from 5000 to 20,000 trees ha™ and short rotations (1-5 years) are ideal
in order to produce raw material for bioenergy production. Still, these densities and spacings should be
associated with high nutrient absorption [96]. In addition, SRWCs generally involve several rotations,
which worsens the problems with nutrients. With this in mind, some researchers suggest the establishment
of SRWCs with width spacing (3 x 3 m and 2 x 2 m) and longer rotations (8-12 years) [43].

Experience in Latin America regarding the rotation of various species is scarce since plantations
emerged only a few years ago. For example, in Chile, where Pinus and Eucalyptus plantations are
common, there are reports of 10 and 16 year rotations for densities similar to those used for timber
production [86] (Table 2). Conversely, in high-density plantations, reports describe rotations of fewer
years. In Populus, for example, reports described an 8 year rotation for a 6666 density [86]. However,
these recommended rotations were put forward before 2010, when the concepts of high density and
short rotations in SRWCs were not developed [43]. With the new concepts in SRWCs for densities
above 5000 trees/ha, a rotation of less than 5 years is to be expected, as is the case of Populus [92,93],
E. globulus [85], A. melanoxylum [87], and Gmelina arborea [51] (Table 2).

Regarding the production of SRWCs, a large variety of biomass production rates have been
achieved. This variation can be observed in Table 2, from 1.00 to 50 Tn/ha. The reported ranges for
G. arborea were from 4 to 22 Tn/ha for the first year of growth in the tropical region of Costa Rica.
In two species of Salix, Populus x deltoides and Eucalyptus camaldulensis, the lowest production levels
were reported in the region of Argentina, from 0.13 to 0.78 Tn/ha for the first year. An important
aspect to highlight regarding biomass production in this region is the possibility of achieving values
between 30 to 50 Tn/ha within two to three years in the different species—values that are reached in
the USA or the EU at older ages [43].

Another important parameter related to production is the increase of the biomass, which for the
few species reported is moderately high. For example, an increment of 9.2 to 11.5 Tn/ha/yr was found
for Populus deltoides [93]; several species of Eucalyptus report a range from 17 to 50 Tn/ha/yr [87],
from 18.1 to 33.4 Tn/ha/yr has been observed in Acacia mangium and Acacia auriculiformis in Brazil [83],
and from 12 to 64 Tn/ha/yr was found for G. arborea in Costa Rica [52].

5. Potential Utilization of Biofuels Produced by SRWCs

Biomass utilization relates to its chemical composition [30]. Due to the high amount of carbon
present in the main carbohydrate chains of wood, one of the main uses of biomass is energy
production [28]. Two fundamental requirements related to biomass use for fuel are [30]: (1) to
extend and improve the basic knowledge on its composition and properties; and (2) to apply this
knowledge for the most advanced and environmentally safe utilization.
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The major structural chemical components (Figure 3), with high molar masses, are cellulose and
hemicellulose (65%—-75%) and lignin. Other low molar mass substances (extractives and inorganic
minerals) are present in wood (usually 4%-10%) [100], which varies in different biomass woody
species [30].

Plant biomass

[ 1

Low-molecular-
X Macromolecular
weight
subtances
substances
[T 1
I 1 I ]
Organic matter Inorganic matter Polysaccharides Lignin
L Extractives L Ash Cellulose
Polyoses

Figure 3. General components in biomass produced from short rotation woody crops [100].

Extracting the energy stored in chemical bonds and combining the subsequent energy product
with oxygen oxidizes the carbon to produce CO, and water for efficient processing of SRWCs, or other
sources of lignocellulosic biomass. This process occurs either chemically or biologically [29]. Biomass
produced in SRWCs focuses on four different plant parts: roots, foliage, stem, and branches [101].
When producing energy, all of the parts can be used (Figure 4); however, it is advised to extract only
the branches and the stem and allow the roots and leaves return to the soil [41]. The roots are the
growing basis of the plants for future harvests [102,103], however, in many European countries’ energy
extraction occurs through the roots [104]. As for the foliage, it is recommended to leave this at the
site to return to the soil because of the high nutrient content. Unfortunately, there are some logistical
challenges, such as the separation of the trunk from the foliage [105,106].

Llouschold
fuelwood

Biochemical
conversion

Branch
and stumps
SRWC Thermochemical

conversion

Combined
and power

Foliage and Second
roots growth Carbonization Charcoal

Figure 4. Route of conversion and possible final products of biomass generated in short-rotation woody
crops in Latin America [31,107-109].

The potential uses of the stem and branches are ample, including uses that require little biomass
transformation, like firewood, through to complex processes of extraction that demand more energy,
such as biochemical conversion processes (Figure 4).
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Combustion for heating and cooking in traditional fireplaces and stoves mainly utilizes biomass
in the form of firewood. It remains the most popular residential energy system for 40% of the world
population [110,111]. In Latin America, the possibilities of using biomass as firewood are abundant,
since a high percentage of the population in this region uses raw materials in houses or some kind of
industry (Figure 5a) [112]. In Central America, for example, an estimated 44% of the population utilize
firewood for stoves to cook and some for steam boilers [40]. However, a series of disadvantages are of
concern in the utilization of biomass for domestic stoves, such as low energy efficiency, high levels of
contamination, and health problems for the population [110,111].
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Figure 5. (a) Percentage of the population relying on traditional biomass in Latin America in 2014 [112],
and (b) electricity output from biomass and shared total electricity produced in different Latin American
countries in 2014 [112].

Direct combustion is another use of the potential of SRWC-produced biomass and is classified as
a process of thermochemical conversion (Figure 4). This process is the most used worldwide, mainly
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because of the following factors: (i) reasonable cost in comparison to other renewable energies and (2)
biomass fuels are considered environmentally friendly since there is no net increase in CO because of
burning it [29].

Biomass from SRWCs can be burned directly, without any chemical processing, to produce steam
for making electricity. Direct combustion for electricity production from biomass has been found to
be a promising method for the near future. In addition, biomass can be burned to provide heat for
industries and homes [108]. The potential for biomass utilization in Latin America is quite broad,
and it is estimated that the region contributes 18% of the total global demand [108], which is roughly
17.83 million tons [40]. Production of electricity is another important possibility from producing
biomass from SRWCs, with the advantage that in Latin America there is already infrastructure for
the generation of electric energy by means of biomass, with values below 10,000 GWh in the various
countries (Figure 5b), and particularly outstanding figures Brazil and Chile [112].

Some pre-treatments have been implemented to enhance biomass properties prior to biomass
conversion that can be applied to SRWC biomass [29,102]. Among these pre-treatments, chipping,
densification (e.g., pelletizing, briquetting), and torrefaction have been applied to woody biomass.
Chipping increases the bulk density and facilitates transportation [102,104,113-115]. For example,
Pecenka et al. [116] described the potential for deploying and adapting harvesting systems in Brazil for
SRWCs, where there is existing experience in the development of equipment [97] and different drying
methods in chip production [117].

Chip production from SRWCs in Latin America is possible using different techniques or processes,
as detailed in Figure 6. Despite the lack of technology developed for the soil, topography, and climate
conditions in Latin America, there are two possibilities for harvesters, or more specifically felling
and chipping operations. One possibility would be to adapt the various technologies developed in
European countries [116], such as harvest-and-chip systems (Figure 6a), harvest-and-storage systems
(Figure 6¢) [118,119], or other types of harvesters [120-122]. A second option, for countries like Brazil,
Argentina and Chile, in particular, would be to develop their own harvesters, since these countries are
highly developed in regards to the construction of harvesters for agricultural crops [119] that may be
adaptable for harvesting SRWC plantations.

Harvest ; Storage
(a) -
V. . : i Wet chips
Cut-and-chip H
(b)

_ a I\ i ' Chipping

Cut-and-store ' 2 e
) - i;;

E /A | Wet stems Dry Chips

A

T ==

" Cut-and-store
Figure 6. Schematic overview of the different harvesting methods for short-rotation woody crops. [97].

Guerra et al. [98] harvested Eucalyptus SRWC plantations in Brazil and achieved high biomass
production. Modified foragers represent an effective option in relation to cost for harvesting SRWCs.
However, new energy plantations grown in Brazil far exceed the stocking and stem size characterization
of plantations in the Northern hemisphere, which raises a question about the ability of modified
foragers to perform effectively. A study conducted on five Eucalyptus plantations occurred in different
Brazilian states, and spanned a wide range of work conditions in terms of cloning, age, planting
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density, and row system (e.g., single or twin rows). These researchers modified a New Holland 9060
forager, equipped with a 130 FB energy wood header. Field stocking varied between 90 and 157 Tn/ha,
and breast-height diameter varied between 5 and 8 cm. This machine was capable of negotiating all test
fields and reached a level of productivity on these sites between 39 and 65 Tn/ha. This productivity
was comparable to productivity values recorded in Europe and North America.

Manual harvesting of SRWCs (Figure 6b) has been analyzed for many years. An extensive study
by Vanbeveren et al. [119] indicates manual harvesting is very labor intensive and is only of interest
if a mechanical system is not available or possible, or when the plantation yields are less than 0.4 to
1.2 Tn/hour. Although some studies utilized a bow or brushsaw, chainsaws are most commonly used.
A team of two generally carries out the harvesting: one person cuts the trees while the other pushes
them into the desired direction or pre-piles the cut trees to facilitate the subsequent (mechanical)
forwarding process [123]. This type of harvesting could be possible in many countries in Latin America
since many agricultural crops are manually harvested [124,125].

If the production of pellets from SRWCs is to be considered, harvesting processes must
be incorporated. In general, wood pellets are an energy-dense fuel source derived from forest
biomass, including logging and sawmill residues, pulpwood, roundwood, and other lignocellulosic
sources [126]. Pellets from SRWCs are a viable option for Latin American countries. Importantly,
consumption of this kind of fuel is expected to increase from 25 to 70 million metric tons by 2020
in Europe [127]. This would mean an increased demand for biomass produced in SRWCs in Latin
America, thus promoting the economic viability of SRWCs, as acknowledged by by Jenkins et al. [128]
in Costa Rica, Mufioz et al. [129] in Chile, Hassig et al. [130] in Colombia, Moreno-Lopez et al. [131] in
Mexico, Felfli et al. [132], Garcia et al. [133] in Brazil, and Amaya et al. [134] in Uruguay.

Conversion of biomass to pellets significantly reduce storage and transportation costs [135].
Wood pellets undergo mechanical manufacturing, which requires applying pressure to crush the cell
structure and increase its density [136]. The normal process of producing wood pellets consists of
(Figure 7): (i) using grinders and mills (discs, rollers, balls, blades, or hammers) to reduce the size of
the material; (ii) drying the biomass with a rotary drum or pneumatic type to a 10% moisture content
and (iii) compressing the material using rotary rollers, which pushes the particles from the inside of a
ring or die (cylindrical or annular type or flat matrix)) outward through a series of holes [136].

(4) Milling

(3) Shredding

Figure 7. General wood pellet manufacturing process in Agrep Forestal S.A., established in Costa
Rica [136].

Current pellet production systems in Latin American have a production capacity of 114,536
Tn/yr [126], distributed in Brazil (54,013 Tn/yr), Chile (33,069 Tn/yr), Argentina (12,125 Tn/yr),
Meéxico (4409 ton/ yr), Honduras (4409 Tn/yr), Uruguay (4409 Tn/yr) and Costa Rica (1102 Tn/yr).
These production values show the potential for biomass produced from SRWCs to become part of the
feedstock of the pelletizing industry.
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The process of gasification consists of partial combustion of the biomass to produce synthesis
gas (syngas), carried out at temperatures in the range of 750-900 °C [137,138]. The dominant system
of the identified gasification plants is the downdraft gasifier, connected to a gas engine and with a
production of 15 to 280 kW. In the case of Latin America, although many species have been studied
in SWRC systems, the development of gasification, liquefaction and pyrolysis has been limited [139].
For example, for the gasification process, some countries currently have established gasification
equipment (Table 3), however, the biomass utilized comes from commercial plantations for pulp or
residues of sawlogs [140-145].

Table 3. Presence of gasifiers in some countries of Latin America.

Country Company Capacity Technology
Beneficio Rana Azul (Puriscal, Costa Rica) 20 Kw All Power Labs.
Costa Rica ICAFE (Heredia, Costa Rica) 20 Kw All Power Labs.
Instituto Tecnoldgico de Costa Rica (Cartago, Costa Rica) 20 Kw All Power Labs.
Chi Universidad Técnica Federico Santa Maria (Santiago, Chile) 10 Kw All Power Labs.
ile [146] Un-known
Universidad de Chile (Santiago, Chile) 10 Kw .
manufacturing
Argentina [146] Biomasa Chaco (Resistencia, Argentina) 380 KVA Gas Engines
Peru [146] Universidad de Piura (Piura, Peru) Not data report Not data report
Colombia [146] Universidad Nacional de Colombia (Medellin, Colombia) 10 kWe Prototype
Ecuador [147] Universidad de las Fuerzas Armadas (Quito, Ecuador) 10 Kw Prototype
Mexico [148] Universidad de Guanajuato (Guanajuato, Mexico) 5kw Prototype
Brazil [142,143] Several 10-110 MV Several technologies

In those countries where SRWC plantations are established, important installed gasification
capacity is observed, as is the case in Chile [146-149], Costa Rica, Mexico and Argentina, among
others. Utilization of biomass produced by SRWCs is possible in those countries since these plantations
show biomass production levels above 20 Tn/ha (Table 2), which would be enough to supply the
gasification plants [139,140]. However, in countries where SRWC development is limited, there are
fewer opportunities for implementing biomass gasification, as is the case of Uruguay [145] and
Colombia [150], where production of hydroelectricity or other clean energy sources is high. It is
important to acknowledge the production of biomass by SRWC systems via gasification requires
adequate preparation, and meeting specific conditions for the raw material for the proper performance
of the biomass in the gasification equipment [137].

6. SRWCs in Latin American, US and the European Union Countries

The estimated area of SRWC plantations in Latin American is a minimum of about 3000 hectares,
compared to the European Union (EU) countries, where there are between 7-21 million hectares
planted [3,11,151], and the US, where these plantations cover about 3 million hectares [152].

An important aspect to emphasize is the high number of different SRWC species that have been
tested in Latin America compared to the US and the EU. Between 45-50 species have been tested in
Latin America (Table 1), compared to a maximum of five species in the US and the EU [3,11,151,153].
Different species have been tested in Latin America, especially in tropical areas, because of the different
conditions in terms of climate, soils, altitude, and so forth [8], and possibly due to the tropical climate
conditions present in many of the region’s countries (Table 1). From Mexico to the southern part
of Chile, there is a range of diverse habitats and climates. Different SRWCs vary in how well they
perform in these environments, and each country has tested different species for each set of conditions.
The diversity of these species represents a challenge since it is not easy to establish standardized
processes for better exploitation of the biomass resources [152]. Another disadvantage of the Latin
American region compared to the EU and US is the rotation times of SWRCs (between 3—4 years),
which are highly nutrient demanding [105]. On the other hand, the rotation time can be a big advantage
and SWRCs in Latin America, compared to the EU and US, have short rotation times and higher yields
(5-30 ton/hectare/year).
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7. Production Costs of SRWCs for Use as Bioenergy

Data on the costs of SRWCs use in Latin America are limited to data available for Chile and
Brazil [154,155]. In the Chilean case, Acufa et al. [87,154] presented a detailed analysis of the
production costs for the first two years for different plantation densities of Eucalyptus globulus.
This analysis indicated that the main cost is incurred in the first year, during the SRWC establishment
(plantation, fertilization and irrigation system), and then due to fertilization and weed control.
For Brazil, Souza et al. [155] presented a final SRWC production value between US $19-22 Mg
of SRWC biomass. A “Mg” is a land measure and corresponds to 1000 g or 1 ton.

The SRWC market price reported by the Chilean and Brazilian reports is $26.5 Mg™!, and between
$25-30 Mg’l, respectively [154,155]. Using a reference heat value of 17.5 MJ/kg for biomass [49],
the final prices will be $1.51 GJ! and between $1.3-1.6 GJ!, for Chile and Brazil, respectively.
Considering that there is no available information regarding prices of biomass from other sources
in the Latin American region, the comparison may be performed using data available for biomass
feedstock in the US (Table 4) [154]. In this regard, the prices are similar to the reported prices for poplar
as woody biomass in 2011.

Table 4. Biomass feedstock characteristics and cost in the United States in 2011.

Biofuel Type Price (US$/G]J)

Forest residues Pine residues 1.2-1.5
Hardwood residues 0.9-1.4
Wood waste 1.1-3.2
Agricultural residues 1.4-3.5
Energy crops Poplar 1.5-34
Swithgrass and other 2.4-3.4
Miscanthis 2.8-8.2

Bagasse 22
Shorghum 2.3-29
Willow 3.1-3.4

SRWC in Latin America Eucalyptus in Chile 1.51

Eucalyptus in Brazil 1.30-1.60

Source: [154].

8. Conclusions

The Latin American region currently has a wide variety of SRWCs, of approximately 40 species.
The reported production levels vary from 5 to 30 tons/ha/yr, and the rotation period from 3 to 4 years.
These values demonstrate that, for several countries of the region, the establishment of this type of crop
to produce energy is economically feasible, and they have been in use for several years now. One factor
that was not included in the present study, and that determines the policies for establishing the SRWC
systems, is the economic aspect of producing biomass using SRWCs. Considering the high number
of species used in Latin America, it is not simple to present their economic evaluations individually.
The information may be available per country and for the most relevant SRWCs, as in the case of Chile
and Brazil. However, this information cannot be generalized to the rest of the Latin American region.
Finally, it is important to mention that gathering the material presented in this review was not an
easy task due to the lack of follow-up of several studies and, most importantly, because of the diverse
quantity of information published mostly internally for each country.
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