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Abstract: Energy storage technologies have been rapidly evolving in recent years. Energy storage
plays different roles in various scenarios. For electricity consumers, they are concerned with how to
use the energy storage system (ESS) to reduce their costs of electricity or increase their profits. In this
paper, a stochastic optimization method for energy storage sizing based on an expected value model
for consumers with Photovoltaic Generation (PV) is proposed. Firstly, the Gaussian mixture model
clustering method is used to cluster the historical load and PV data and calculate the probability of
each cluster. Secondly, the optimal model of total system profit is established. Finally, according to
the expected value model, the optimal ESS power and capacity are determined. Two case studies
are used to demonstrate the calculation of optimal ESS capacity. The results obtained by the method
proposed in this paper are compared with the results produced by the deterministic method. Through
the analysis and comparison, the validity and superiority of the method proposed in this paper are
verified. The profits obtained by the method proposed in this paper are 0.87% to 127.16% more than
the deterministic method.

Keywords: energy storage system; expected value model; stochastic optimization; consumer side

1. Introduction

An energy storage system (ESS) has the ability of flexible adjustment at different time scales
and can be regarded as a variable power source or a variable load [1,2]. Based on its response
time, power density, and other characteristics, ESS can play different roles to help improve various
aspects of power quality, increase dispatchable PV power generation, and bring economic benefits
to consumers [3–5]. However, the current price of ESS is relatively expensive, and we cannot install
ESS without a consideration of what profits it will accrue. Therefore, how to obtain the maximum
profits with a minimum investment cost is one of the major problems when applying energy storage in
practical applications.

The research focus of this paper is how to estimate the optimal sizing of ESS on the consumer side
where a PV plant is also installed, in order to maximize the consumer’s benefits. It is well-known that
the optimal sizing of the ESS is closely related to its operational flexibility. For electricity consumers
who are incentivized by electricity price signals, it is useful to investigate how we can use the energy
storage system to change demand behaviors in order to maximize economic benefits, as well as to
reduce the stress of a grid during the high peak demand period [6,7]. To achieve this, the optimal size
of energy storage, the optimal operation and co-ordination of energy storage, local demand, and PV
plants need to be fully investigated [8].
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Optimal allocation and sizing of energy storage systems has been investigated thoroughly in the
literature [9–12]. Reference [9] proposed a novel control scheme and found the boundary values of
compensator gains. This method has a good ability of tight dc-link voltage regulation, with effective
power management at the DC-link. Reference [11] proposed an ESS sizing method which leads to a
considerable reduction of the ESS. In [12], a distributed control strategy for state-of-charge balancing is
proposed. It provides advantages in terms of reduced communication requirements and increased
modularity. In [13], when consumers lose their power supply from a distribution network, an energy
storage system optimization configuration method is proposed to improve the reliability of consumer
electricity supply. The application scenario includes consumers, PV, and energy storage. It does
not take the uncertainty into consideration, which has an important effect on the optimal result.
Reference [14], based on the time-of-use (TOU) price of the consumer side, the optimal allocation of
energy storage considering the advanced multi-pass dynamic programming and expert knowledge
base rules has been proposed. The purpose is to provide consumers with the greatest economic
benefits. In [14], two instances are analyzed via simulation. The article [15] proposed a method of
optimal allocation of the energy storage system. The optimization problem was divided into two time
scales. For the long-term sizing of ESS, it does not include the elements of uncertainty and TOU, but
the optimal model is worth learning. In the above literature, the energy storage system is optimally
configured by a deterministic method. This method neglects the uncertainty of load and PV, which is
an important element in the stochastic optimization. Although they built some models, the results
obtained by deterministic methods may not be the most economical, due to the uncertainty of load
and PV.

In the literature [16], an optimization algorithm based on a self-adapted evolutionary strategy and
Fischer-Burmeister algorithm was proposed to reduce the one-time investment and annual running
costs. In different scenarios, the investment costs of the energy storage system ware calculated.
Reference [17] considers the uncertainty of wind power and proposes a linear optimization model of
energy storage to reduce the operating costs of the micro-grid and the investment costs of the energy
storage system. However, PV power has different characteristics than wind power. In the distribution
network, most of the distribution generations are PV, but not wind power. For the terminal electric
consumer, it is necessary to study the situation including PV, load, and TOU. In [18], a model predictive
control method is proposed to optimize the ESS. However, the wind power has uncertainties and its
prediction has some errors. Reference [18] takes these features into account and directly solves the
problem using stochastic optimization. Most studies of stochastic optimization for the sizing of ESS
are focused on wind generation uncertainty. With the increase of distributed PV and the development
of the electricity market, the stochastic optimization method considering the uncertainties of PV and
load will generate a more reasonable configuration result for the consumer.

The purpose of this paper is to propose a stochastic optimization method based on an expected
value model for electricity consumers with a PV plant. Here, we assume that the ESS is not allowed to
sell electricity to the grid. The ESS is used to provide consumers with some economic benefits. In this
paper, the following issues are the main contributions:

(1) A stochastic optimization method for ESS sizing based on the expected value model is
proposed, which takes into account the uncertainty of load and PV in a year, and makes the
optimization result more reasonable under different application scenarios;

(2) The Gaussian mixture model is used to cluster the historical data of load and PV, which lays
the foundation for establishing the expected value model;

(3) The profit model for load, PV, and energy storage is established. This model takes into
consideration the consumer’s electricity costs, the profits of PV, time-of-use price, energy storage
investment and maintenance costs, and so on;

(4) The expected value model taking power and capacity as variables of optimal sizing is
established on the basis of (1)-(3), and a more reasonable optimization result than that of the
deterministic method is obtained;
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(5) The profits of a sodium sulfur (NAS) battery, vanadium redox battery (VRB), polysulfide
bromine battery (PSB), value-regulated lead-acid (VRLA) battery, and lithium-ion (Li-ion) battery
are compared. The profits of the expected value model and deterministic scenario method are
also compared.

The other parts of this paper are organized as follows: Section 2 formulates the proposed optimal
model based on the expected value model; Section 3 presents the application of the proposed procedure
to two cases; and conclusions are presented in Section 4.

2. Problem Formulations

Under expected constraints, the mathematical programming that maximizes the expected value
of the objective function is called the expected value model. The expected value model is one of the
common forms in mathematical programming, such as minimizing the expected costs, maximizing the
expected value model, and so on [19]. The basic function expression for the expectation model is{

maxE( f (X, ξ))

E
(

gj(X, ξ)
)
= 0, j = 1, . . . , m.

(1)

X is an n-dimensional decision vector, ξ is a t-dimensional random vector, f is the objective
function, gi is a random constraint function, E(·) is the expected value, and m is the number of
constraint function.

In a system that contains both consumers and PV, the ESS is installed. In order to minimize the
consumer’s costs over the whole life of the ESS, we propose a method to size the energy storage system
using the expected value model. As shown in Figure 1, which is the overall architecture of the expected
value model, the basic steps are as follows:

(1) The clustering method of the Gaussian mixture model is used to divide the consumer load
curve and PV generation curve into different scenarios. Moreover, the probabilities of different
scenarios are calculated;

(2) The total profit model involving the consumer, the PV, and the energy storage system is
established to calculate the costs in the entire life cycle of energy storage in different scenarios of
step (1). The profit model includes the initial investment costs, operation and maintenance costs,
energy storage profits, PV, and load costs;

(3) For different storage system configuration values, the expected values of consumer total profits
are calculated. When the expected value is the maximum, the sizing of the energy storage system is
the optimal result.
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2.1. Clustering the Load Curve and the PV Curve

When using the expected value model to size the energy storage, different random variables and
their probabilities need to be determined. In this paper, different clusters can be obtained by analyzing
the daily historical data of a year of consumer load and PV.

The Gaussian mixture model (GMM) [20], sometimes called soft clustering, can obtain the
probability that each sample point belongs to each cluster, instead of judging that it belongs to exactly
one cluster. This method can be divided into different clusters of load and PV curve, and calculate
the probability of each cluster, which is the essential parameter of the expected value model. Firstly,
we assume that the data are generated by the GMM. Then, we just need to introduce the probability
distribution of GMM based on the data, and the K components of GMM actually correspond to
K clusters.

An important parameter for clustering using the Gaussian mixture model is the number of mixture
models; that is, the number of clusters. In this paper, we use the Calinski-Harabasz [21] index to
evaluate the number of clusters. The within-cluster variance is the square of the distance between
each point in the cluster and the center of the cluster. The between-cluster variance is the square of the
distance between the center points of each cluster and the center of the data set.

Ik =
SB
SW
× N − k

k− 1
(2)

SB is the overall between-cluster variance, SW is the overall within-cluster variance, k is the
number of clusters, and N is the number of observations.

SB =
k

∑
i=1

xi‖mi −m‖
2

(3)

SW =
k

∑
i=1

∑
x∈ci

‖x−mi‖
2

(4)

mi is the centroid of cluster i, m is the overall mean of the sample data, xi is the number of points
in cluster k, and x is a data point. Here, well-defined clusters have a large SB and a small SW . The
larger the Calinski-Harabasz index Ik, the better the data partition. To determine the optimal number
of clusters, we should maximize Ik with respect to k. The optimal number of clusters is the solution
with the highest Calinski-Harabasz index value.

According to the above index, the number of clusters of the daily load and PV curves in a year can
be determined. The load and PV are respectively divided into n and m clusters, and the corresponding
probabilities are pn and pm. In this paper, we assume that the load and PV are independent, so there
are n×m scenarios with the probabilities pn × pm.

2.2. The Optimization Model of Total Profits

In a system without energy storage, the consumer purchases electricity from the grid and uses
the PV power considering the price of the electricity. The energy storage system has the ability to
charge and discharge power. When the grid load is low, the electricity price is low, and the energy
storage system can be charged during this period; while during peak load, the energy storage system
can provide power to the load, thereby reducing the costs of the consumer. At present, the ESS of the
consumer side is not allowed to sell power to the grid in China. Therefore, we assumed that the energy
storage system considered in this paper is not allowed to sell power to the grid and the energy stored
in the ESS is only used by the consumer. However, the PV power can be sold to the grid.

An energy storage system requires an initial capital cost when installed, so calculating the
total profits for a consumer over the entire life of the energy storage is reasonable. Therefore,
the optimization model in this paper considers the investment of the energy storage system, the
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maintenance costs, the purchase costs of the consumer, and the costs saved by the energy storage. The
electric power has different kinds of time-of-use price in reality. In this paper, we use a kind of typical
price to explain the advantage of the stochastic optimization method. For the deterministic method
for sizing the EES, this total profit model is regarded as the optimal sizing model. In the proposed
method, we calculate the total profits in difference scenarios, which are the variable of the expected
value model.

f = f1 − ( f2 + f3 + f4) (5)

The total costs without the ESS are the costs of purchasing power from the grid minus the profits
of the PV power sold to the grid, that is

f1 =
T1

∑
t=1

(
1 + α

1 + β

)t
· 365 ·

24

∑
t=1

(
Ct

G
(

Pt
L − Pt

PV1
)
− Ct

PV Pt
PV2
)

(6)

When the ESS is installed, the initial investment costs of the energy storage system include power
costs and capacity costs [22].

f2 = CPPES + CEEES (7)

The maintenance costs of the energy storage system [22] are

f3 =
T1

∑
t=1

CMPES

(
1 + α

1 + β

)t

(8)

After installing the energy storage system, the positive power bought by the consumer from the
grid at time t is

Pt
G = Pt

L + Pt
E − Pt

PV1 (9)

The operating costs of a combined system of load, energy storage, and PV are the costs of
purchasing power from the grid minus the costs of PV power sold to the grid, that is

f4 =
T1

∑
t=1

(
1 + α

1 + β

)t
· 365 ·

24

∑
t=1

(
Ct

GPt
G − Ct

PV Pt
PV2
)

(10)

Pt
PV2 = Pt

PV − Pt
PV1 (11)

PES and EES represent the rate of power and energy of the ESS, respectively; CP, CE, and CM
represent the price of per unit of power, energy, and maintenance, respectively; Pt

PV1 represents the PV
power used by the consumer at time t; Pt

E represents the power of the energy storage system, which
is positive during charging and negative during discharging; Pt

L is the load power; α and β are the
inflation rate and discount rate, respectively; and T1 is the cycle life of ESS, and its unit is year.

The costs of energy storage and the costs of operation consider the full life cycle of the energy
storage system. During this cycle, the impact on the total costs of the factors, such as the inflation rate,
needs to be taken into account. Therefore, in Equations (6), (8), and (10), the costs are multiplied by the
coefficient (1 + α)/(1 + β). For Equation (5), it is the difference of cost without ESS and with ESS. If it
is positive, it means that ESS brings some profit for the consumer and the consumer should install the
ESS. If it is negative, it means that installing the ESS makes the consumer lose some money. Therefore,
we can determine whether the consumer should install the ESS.

In the progress of operation, there are several constrains. The PV power sold to the grid and used
by the consumer should follow the inequality Equation (12). As we mentioned above, the ESS is not
allowed sell power to the grid. Therefore, when the ESS discharges (Pt

E is negative), the inequality
Equation (13) should be followed. {

0 ≤ Pt
PV1 ≤ Pt

PV
0 ≤ Pt

PV2 ≤ Pt
PV

(12)
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Pt
L + Pt

E > 0 (13)

The charge and discharge model of ESS is{
St

ES = St−1
ES + ηchPt−1

ES ∆t/EES, Pt−1
ES > 0

St
ES = St−1

ES + ηdischPt−1
ES ∆t/EES, Pt−1

ES < 0
(14)

In the operation of the joint system, the energy storage system needs to meet the
following constraints: { ∣∣Pt

ES

∣∣ ≤ PES,max
SES,min ≤ St

ES ≤ SES,max
(15)

Pt
ES is the energy storage output power at time t; Pt

PV1 is the PV power sold to the grid; St
ES is the

state of charge of energy storage at t; ηch and ηdisch are the charge and discharge efficiency, respectively;
∆t is the time of charge or discharge; PES,max is the maximum power of the ESS; and SES,min and
SES,max are the minimum and maximum SoC, respectively.

Given the power and capacity of the energy storage system, the above optimization model can
be used to calculate the maximum profits caused by the ESS in every scenario over the cycle life of
the energy storage. It is necessary to mention that we use the Genetic Algorithm [23] to solve the
object function. Because it is not the keynote of this paper, we do not describe its detailed steps. In the
progress of solving, we set enough generations of GA to ensure that it has a good accuracy.

2.3. Expected Value Model

In the first step, we can get the clustering results and the probabilities of the load and PV curves
in a year. Therefore, the probabilities and clusters of load and PV curve are the known quantities.
Regarding the power and capacity of ESS as the variables, we can get the maximum total profits in all
scenarios that are clusters with different probabilities. The expected value is

E(PES, EES) =
N

∑
n=1

ξnFn (16)

ξn and Fn are the probability and the maximum total profits of the nth scenario, respectively.
The the maximum value of all the expected values can be found, where the result is the best energy
storage sizing value.

3. Case Studies

According to the optimal method of the expected value model mentioned in the second part,
the Li-ion battery is taken as an example to carry out the simulation analysis. The parameters of
batteries [22] are shown in Table 1. The SES,min is 10% and the SES,max is 90%. PES,max is the rated
power of ESS, w is the energy efficiency, and T is the battery life.

Table 1. The parameters of different batteries.

Parameter Li-ion NaS VRB PSB VRLA

CP(CNY/kW) 2780 1600 2800 1050 2000
CE(CNY/kWh) 1360 1250 650 450 950
CM(CNY/kWa) 65 60 60 60 70

w/% 90 80 70 60 85
T/year 15 15 15 15 10
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In the second part, the TOU price and the price of the PV power sold to the grid are considered
in the model. For some consumers, the TOU price of Jiangsu Province is as shown in Table 2. In this
paper, it is assumed that the daily TOU prices are fixed. The price of PV sold by the consumer is
1 CNY/ kWh. CNY is Chinese Yuan.

Table 2. The time-of-use electricity price.

Time/h 1-8 9-12 13-17 18-21 22-24

Price/CNY 0.3200 1.1002 0.6601 1.1002 0.6601

3.1. Case 1

As shown in Figure 2, the consumer daily load data is from the literature [24]. The data is divided
into four clusters corresponding to four seasons. It is assumed that the probability of each cluster is
25% and the maximum load is 1000 kW. The vertical axis is the load power. The horizontal axis is
the time.
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Figure 2. The typical daily load curves of four seasons.

PV data is the one-year PV power generation of a 300 kW PV power plant in a factory in Jiangsu
Province. According to the clustering method in the second section, the Calinski-Harabasz index of
the GMM and the k-means can be seen in Figure 3. The vertical axis is the index. The horizontal axis is
the number of clusters. The index of the red point reaches the maximum, and the clustering effect is
the best. Here, the highest index of the GMM is better than the k-means.Energies 2019, 12, x FOR PEER REVIEW 8 of 15 
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Figure 3. The comparison of PV Calinnski-Harabasz index of two different clustering methods.



Energies 2019, 12, 702 8 of 14

The three clusters of PV curves obtained by Gaussian mixture model clustering are shown in
Figure 4. Among them, the first, second, and third cluster have a probability of 27.93%, 45.25%,
and 26.82%, respectively, in one year. The results of the clustering will serve as the basis for the
optimization of the expected value model. Therefore, the results of the clustering, including the curves
and probabilities, will have an impact on the final calculation.
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Figure 4. The cluster center curves of three PV clusters obtained by the GMM method.

It is assumed that the PV and load curves are independent of each other in the following
scenarios. The power rating of the energy storage system considered is 400 kW. As shown in Table 3,
S1-S12 represent 12 scenarios. The first column is the capacity of the energy storage system in kW.
The last column is the expected value of profits. As shown in this table, the profits generated by ESS
during the whole life-cycle can be obtained under different capacity values. When the capacity is
3200 kWh, the expected value of profits is the largest. Therefore, the best Li-ion capacity is 3200 kWh
when the power rating of ESS is 400 kW.

Table 3. The total profits in different scenarios and capacity of energy storage.

Energy of
ESS (kWh)

The Total Profits in Twelve Different Scenarios (105 CNY) Expected Profits
(105 CNY)S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

E = 2700 8.45 8.18 8.46 8.46 8.46 8.45 8.46 8.46 8.46 8.46 8.45 8.18 8.43
E = 2800 9.26 8.91 9.28 9.28 9.28 9.22 9.28 9.28 9.28 9.28 9.26 8.91 9.24
E = 2900 10.08 9.60 10.09 10.09 10.09 10.00 10.09 10.09 10.09 10.09 10.08 9.60 10.03
E = 3000 10.89 10.29 10.90 10.90 10.90 10.74 10.90 10.90 10.90 10.90 10.89 10.29 10.82
E = 3100 11.71 10.99 11.72 11.67 11.72 11.48 11.72 11.72 11.72 11.72 11.71 10.99 11.61
E = 3200 12.52 11.64 12.53 12.45 12.53 12.21 12.53 12.53 12.53 12.53 12.52 11.64 12.38
E = 3300 11.16 10.28 11.17 11.09 11.17 10.85 11.17 11.17 11.17 11.17 11.16 10.28 11.02
E = 3400 9.80 8.92 9.81 9.73 9.81 9.49 9.81 9.81 9.81 9.81 9.80 8.92 9.66
E = 3500 8.44 7.56 8.45 8.37 8.45 8.13 8.45 8.45 8.45 8.45 8.44 7.56 8.30
E = 3600 7.08 6.20 7.09 7.01 7.09 6.77 7.09 7.09 7.09 7.09 7.08 6.20 6.94
E = 3700 5.72 4.84 5.73 5.65 5.73 5.41 5.73 5.73 5.73 5.73 5.72 4.84 5.58

However, the variables are the power and the capacity in Equation (16). Therefore, we need to
consider the impact of changes in the power, as well as the capacity variables. Figure 5 shows how
the choice of power rating impacts the profits as the capacity of ESS is changed. The profit curves are
illustrated at 200 kW intervals. The vertical axis is the profit accrued by the ESS and the horizontal
axis is the capacity of ESS installed. We can see that each curve will first increase as the capacity
increases and then decrease. Figure 5 shows that when the storage capacity exceeds an optimal size,
the consumer cannot use this capacity, and it is essentially wasted. Clearly, the highest point represents
the highest profits for systems of different power ratings. When the power is 400 kW, the highest point
is 3200 kWh, which corresponds the best expected value in Table 3.
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Figure 5. The profit curves of different rate powers of ESS.

In fact, we calculate more results at the 50 kW intervals, which show that the highest profits are
obtained when the power and the capacity are 550 kW and 4400 kWh, respectively. As shown in
Figure 6, it is the operated curves of load, PV, and ESS in scenario 1, where the load curve is cluster1
in Figure 2 and the PV curve is cluster1 in Figure 4. The Ppv1 curve is the PV power used by the
consumer. The Ppv2 curve is the PV power sold to the grid. For obtaining the maximum operated
profits, from 1 to 8 o’clock, the ESS is charged and all PV power should be sold to the grid. From 8 to
12 and from 18 to 21o’clock, the ESS is discharged, and at the same time, some proportion of the PV
power is used by the consumer and the rest of it is sold to the grid. The ESS changes the utilization of
the PV power and brings more profits to the consumer. It is worth noting that all the PV power should
be used by the consumer under the scenario when there is no energy stored in the ESS between 9 and
13 o’clock.
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Figure 6. The operated curves when the power and capacity are 550 kW and 4400 kWh, respectively.

The optimal results of different batteries are shown in Table 4. The unit of the data in the table
is 105 CNY. The results of the fourth column are calculated by the method presented in this paper.
The profits of PSB are the highest. This means that, in this case, PSB is the best choice for the consumer.
The results of the seventh column are calculated by a deterministic scenario, which does not consider
multiple scenarios and their probabilities, but is just based on the price signal. It considers the average
load and the average PV generation of one year. We can see that the profits are lower than the fourth
column. However, this single deterministic scenario considering only one type of load or PV curve
in one year may not be reliable. As shown in the last column of Table 4, when we use 12 scenarios
to test the power and the capacity obtained in the fifth and sixth column, the profits are lower than
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the fourth column. The profits in the fourth column are 12.71% to 68.58% more than the profits in the
seventh column. Therefore, the deterministic single scenario approach has its shortcomings, which
cannot guarantee more profits for consumers in real multiple scenarios.

Table 4. The comparison of different batteries’ results obtained by two optimization methods.

Battery

Expected Value Model Method Deterministic Method of Single Scenario

Power
Rating(kW)

Energy Rating
(kWh)

Expected Profits
(105 CNY)

Power
Rating (kW)

Energy Rating
(kWh)

Profits
(105 CNY)

Li-ion 550 4400 16.19 650 5200 11.2
NaS 550 4400 12.07 650 5200 7.16
VRB 550 4400 16.17 650 5200 12.85
PSB 600 4750 19.06 700 5600 16.91

VRLA 550 4400 11.8 650 5200 8.11

3.2. Case 2

Case 2 uses one-year historical data of a factory in Jiangsu Province. The different Calinski-Harabasz
index shows that the optimal number of clusters for this factory is 2, as shown in Figure 7. The GMM
method is better than the k-means method in this case. As proposed above, a larger index indicates
better clustering. The load curves of the two clusters obtained by the Gaussian mixture model clustering
are shown in Figure 8, where the probabilities of cluster 1 and 2 are 49.18% and 50.82%, respectively.
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Figure 7. The comparison of Calinnski-Harabasz index of two different clustering methods.
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Figure 8. The cluster center curves of two load clusters obtained by the GMM method.
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Assuming that the PV and load curves are independent of each other, in this case, there are six
scenarios in total, and the following simulation results are available for each scenario. When the power
of the energy storage system is 400 kW, the simulation results in Table 5 can be obtained. It shows the
consumer profits in different capacities and scenarios. The unit of the data in the table is 105 CNY.
The highest expected profits are achieved when the capacity is 3200 kWh.

Table 5. The total profits in different scenarios and capacity of energy storage.

Energy of ESS
(kWh)

The Total Profits in Six Different Scenarios Expected Profits
(105 CNY)S1 S2 S3 S4 S5 S6

E = 2700 7.11 8.45 7.47 8.46 8.38 8.46 8.04
E = 2800 7.84 9.26 8.20 9.28 9.15 9.28 8.82
E = 2900 8.57 10.08 8.93 10.09 9.92 10.09 9.60
E = 3000 9.30 10.89 9.67 10.90 10.70 10.90 10.38
E = 3100 10.02 11.71 10.40 11.72 11.46 11.72 11.16
E = 3200 10.43 12.52 10.85 12.53 11.91 12.53 11.79
E = 3300 9.07 11.16 9.49 11.17 10.55 11.17 10.43
E = 3400 7.71 9.80 8.13 9.81 9.19 9.81 9.07
E = 3500 6.35 8.44 6.77 8.45 7.83 8.45 7.71
E = 3600 4.99 7.08 5.41 7.09 6.47 7.09 6.35
E = 3700 3.63 5.72 4.05 5.73 5.11 5.73 4.99

As shown is Figure 9, we draw the profit curves at the 200kW intervals. We can see that each
curve initially increases to a maximum and then decreases. The trend of each curve is similar to
Figure 5. The highest point of the 400 kW system corresponds to the optimum expected value of
Table 4. It is observed that some power rating exhibits a sharper peak zenith in the Figure 5. This is due
to limitations in the discharge power. When the capacity of ESS increases, the profits do not increase in
the original trend.Energies 2019, 12, x FOR PEER REVIEW 12 of 15 

 

 
Figure 9. The profit curves of different rate powers of ESS. 

In this case, we also calculate the results of different batteries, as shown in the Table 6. The unit 
of the data in the table is 105 CNY. The PSB is again the best choice. The results of the seventh 
column are obtained from the scenario where the load and the PV curve are the average value of 
one year. As the last column of Table 6 shows, when we use six scenarios to test the power and the 
capacity, the profits are lower than the results of the expected value model. The profits in the fourth 
column are 0.87% to 127.16% more than the profits in the seventh column. 

Table 6. The comparison of different batteries’ results obtained by two optimization methods. 

Battery 

Expected Value Model Method Deterministic Method of a Single Scenario 

Power 
Rating (kW) 

Energy 
Rating 
(kWh) 

Expected 
Profits (105 

CNY) 

Power 
Rating (kW) 

Energy 
Rating 
(kWh) 

Profits (105 

CNY) 

Li-ion 450 3600 12.47 850 6800 8.52 
NaS 450 3600 9.2 850 6800 4.05 
VRB 600 4800 13.52 850 6800 12.29 
PSB 900 7200 18.57 900 7200 18.41 

VRLA 450 3600 9.09 850 6800 6.17 

Figure 10 shows the operational curves when the power and capacity of the Li-ion battery are 
450 kW and 3600 kWh, respectively. At 12 o’clock, the load power is too small to limit the discharge 
power of ESS, which accords with Equation (12). In each table of each case, the best choice of 
battery is revealed. Obviously, the results of the deterministic scenario of the average curve are 
better than the results of the expected value model. However, when we use different scenarios to 
test the optimal results of the deterministic scenario method, the profits are reduced. The method 
proposed in this paper takes more factors into account relative to the deterministic approach. These 
factors include the stochastic features of the consumer’s load power due to the consumer’s 
electricity consumption habit and PV power due to changes of the weather or season. Therefore, the 
results are more credible. 

2000 4000 6000 8000 10000
-4

-3

-2

-1

0

1

2

x 10
6

The capacity of the ESS (kWh)

Th
e 

pr
of

its
 o

bt
ai

ne
d 

by
 E

SS
 (C

N
Y

)

 

 
P=200kW
P=400kW
P=600kW
P=800kW
P=1000kW

Figure 9. The profit curves of different rate powers of ESS.

In this case, we also calculate the results of different batteries, as shown in the Table 6. The unit of
the data in the table is 105 CNY. The PSB is again the best choice. The results of the seventh column are
obtained from the scenario where the load and the PV curve are the average value of one year. As the
last column of Table 6 shows, when we use six scenarios to test the power and the capacity, the profits
are lower than the results of the expected value model. The profits in the fourth column are 0.87% to
127.16% more than the profits in the seventh column.
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Table 6. The comparison of different batteries’ results obtained by two optimization methods.

Battery

Expected Value Model Method Deterministic Method of a Single Scenario

Power
Rating (kW)

Energy Rating
(kWh)

Expected Profits
(105 CNY)

Power Rating
(kW)

Energy Rating
(kWh)

Profits
(105 CNY)

Li-ion 450 3600 12.47 850 6800 8.52
NaS 450 3600 9.2 850 6800 4.05
VRB 600 4800 13.52 850 6800 12.29
PSB 900 7200 18.57 900 7200 18.41

VRLA 450 3600 9.09 850 6800 6.17

Figure 10 shows the operational curves when the power and capacity of the Li-ion battery are
450 kW and 3600 kWh, respectively. At 12 o’clock, the load power is too small to limit the discharge
power of ESS, which accords with Equation (12). In each table of each case, the best choice of battery is
revealed. Obviously, the results of the deterministic scenario of the average curve are better than the
results of the expected value model. However, when we use different scenarios to test the optimal
results of the deterministic scenario method, the profits are reduced. The method proposed in this
paper takes more factors into account relative to the deterministic approach. These factors include the
stochastic features of the consumer’s load power due to the consumer’s electricity consumption habit
and PV power due to changes of the weather or season. Therefore, the results are more credible.Energies 2019, 12, x FOR PEER REVIEW 13 of 15 
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kWh, respectively.

4. Conclusions

In this paper, an energy storage sizing method based on the expected value model is proposed,
which is applied to the consumer side with the PV system. Through the analysis and simulation in
two cases, the following conclusions are drawn:

(1) The best cluster number and subsequent clusters of load and PV historical data of a factory in
Jiangsu Province are achieved by GMM. The clustering results are obtained as the basis of the expected
value model. Different clustering results will have an impact on the final result;

(2) The profit model of the consumer during the entire storage life-cycle is established. The profit
model considers the load, PV, storage, and TOU. In different scenarios, the results of the model are
obviously different;

(3) The profits of different batteries are obtained from our method. The best batteries in two cases
are both PSB. The efficiency of PSB is lower than other batteries, but its price is advantageous;

(4) The result of the expected value model combines the results of multiple scenarios. Compared
with the deterministic method, it more fully summarizes the load and PV conditions and produces
more reliable results.
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Future research will be devoted to the research on the PV and load data cluster. There are many
clustering methods and evaluated indexes, which can produce different clustering results when the
data needed to be clustered is different. Obviously, different scenarios will produce different profits.
In two cases, we use history data of the load and PV to calculate the operated profits. To improve this,
the ESS can be operated according to the forecast data of the load and PV.
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