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Abstract: Currently, there is growing interest in the modeling of high concentrator photovoltaic
modules, due to the importance of achieving an accurate model, to improve the knowledge and
understanding of this technology and to promote its expansion. In recent years, some techniques
of artificial intelligence, such as the Artificial Neural Network, have been used with the goal of
obtaining an electrical model of these modules. However, little attention has been paid to applying
Fuzzy Rule-Based Systems for this purpose. This work presents two new models of high concentrator
photovoltaics that use two types of Fuzzy Systems: the Takagi-Sugeno-Kang, characterized by the
achievement of high accuracy in the model, and the Mamdani, characterized by high accuracy and
the ease of interpreting the linguistic rules that control the behavior of the fuzzy system. To obtain
a good knowledge base, two learning methods have been proposed: the “Adaptive neuro-fuzzy
inference system” and the “Ad Hoc data-driven generation”. These combinations of fuzzy systems
and learning methods have allowed us to obtain two models of high concentrator photovoltaic
modules, which include two improvements over previous models: an increase in the model accuracy
and the possibility of deducing the relationship between the main meteorological parameters and the
maximum power output of a module.

Keywords: artificial neural network; fuzzy rule-based systems; adaptive neuro-fuzzy inference
system; ad hoc data-driven generation; high concentrator photovoltaic modules; maximum
power prediction

1. Introduction

Over the past few years, high concentrator photovoltaics (HCPV) have attracted the attention
of multiple researchers. HCPV technology is based on the use of an inexpensive optical device to
concentrate light in a little solar cell, typically a III-V multi-junction solar cell [1] with the aim of
reducing the amount of expensive semiconductor material.

An HCPV module is the smallest unit able to transform non-concentrated solar radiation into
electricity. It comprises solar cells, optical devices and peripheral components necessary to generate
electricity. In addition, the HPCV module uses passive cooling to dissipate the great amount of heat
that is generated when the solar cells are working at high concentration levels, and it also incorporates
other components such as bypass diodes to prevent the overheating of cells.

As with any type of energy system, estimating the electrical characteristics of an HCPV module
is going to be essential for designing, monitoring, life-cycle assessment and therefore promoting the
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market expansion of this emerging technology. Moreover, as with the conventional PV technology,
the main parameters that influence the output of the HCPV module are solar spectrum, solar irradiance
and temperature [1–7]. However, the modeling of an HCPV device, due to its special features, is more
complex than the modeling of PV technology [8,9]. This is mainly due to the following factors:

(a) The use of high-efficiency multi-junction (MJ) solar cells, made of several p-n junctions of
semiconductor material with different band gap energies, that are more influenced by changes in
the solar spectrum than single-junction solar cells [10].

(b) The use of optical elements modifies the impact of the incident irradiance on the solar cells and
introduces a strong angular dependence to the system [11,12].

(c) The difficulty of measuring the temperature at which the solar cells are working in an HCPV
module; since they are mounted on a substrate surrounded by other peripheral elements,
the direct measurement of this temperature is not possible without deleterious the module
or the components of the assembly that surround the cells [13–15].

(d) The HCPV modules only react to the direct component of the solar radiation (DNI) due to the
use of point-focus optical elements. This component of the solar radiation is more variable and
difficult to predict than the global irradiance since it is more affected by the existence of clouds
and aerosols in the atmosphere [10,16].

Consequently, the modeling of HCPV systems is complex and still challenging from a
fundamental point of view in many cases. As of today, several models of HCPV modules have
been developed [9,17–30]. Most of these models try to determine the relations that exist among the
electrical parameters of an HCPV module (i.e., open-circuit voltage, short-circuit current and maximum
power) and the main atmospheric parameters that have influence on them. One of the researched
approaches to address this issue is based on the use of artificial intelligence techniques, mainly artificial
neural networks (ANN) [31]. This is due to the advantages offered by the ANNs to solve non-linear
and complex problems and the great level of complexity of electrical modeling of HCPV devices,
as discussed above. The use of ANNs has the benefit of offering alternative solutions to complex
problems that are still challenging from a fundamental physical approach due to the complexity of the
different physical event involved in the performance of these systems.

Taking into account that, in recent years, the Fuzzy Rule-Based Systems (FRBS) [32] have been
successfully used to model a large number of systems [33–35], in this paper we propose the use of FRBS
with the goal of modeling HCPV systems. For that purpose, two types of FRBS have been proposed:
a) the Takagi-Sugeno-Kang (TSK) systems [36], which are characterized by the achievement of high
accuracy in the model, and b) the Mamdani systems [37,38], which is characterized by high accuracy
and the ease of interpreting the linguistic rules that control the behavior of the fuzzy system.

To generate a good model based on an FRBS, it is necessary to have a good knowledge base.
To obtain such a model, in this paper we propose two methods: a) “Adaptive neuro-fuzzy inference
system” (ANFIS) [39] and b) “Ad Hoc data-driven generation method” [40–42]. These methods have
been used in the process of linguistic rule learning, in TSK and Mamdani FRBS, respectively. Finally,
the experimental results show that the new HCPV models proposed in this paper improve the accuracy
of the best published model [8].

The remainder of the article is organized as follows: In Section 2, we introduce the related work,
and in Section 2.1, a review of the models for the electrical characterization of HCPV is presented.
In Section 2.2, a short description of the architecture and reasoning method of the ANN is given.
In Section 2.3, a summary of the applications of ANNs in the field of HPCV is presented. Section 2.4
describes an HCPV model based on ANN. Section 3 demonstrates the utility of the FRBS for modeling
an HCPV module. In Section 3.1, we give a description of the FRBS concept, the main types and
their characteristics with respect to the structure of the fuzzy rules, as well as an introduction to the
design process. Sections 3.1.1 and 3.1.2 describe the types of fuzzy systems proposed in this paper
to model the HCPV modules: Mamdani FRBS and TSK FRBS. In Section 3.2, the learning methods
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used to define the fuzzy rules that control the behavior of the FRBS are introduced. Section 3.2.1
presents the ANFIS method. Section 3.2.2 shows the Ad Hoc data-driven generation method. Section 4
describes the new methods proposed in this paper to improve the model of the HCPV module, and in
Section 4.1, we discuss the particularization of the methodology presented in Section 3.2.1 to obtain a
good HCPV model based on a TSK FRBS, and in Section 4.2, we discuss the particularization of the
methodology proposed in Section 3.2.2 to obtain a good HCPV model based on a Mamdani FRBS.
In Section 5, we show the results obtained by applying the methodologies presented in Sections 4.1
and 4.2. In Section 6, we extend the results of Section 5.

2. Related Work

2.1. Models for the Electrical Characterization of HCPV

In [43] a critical review of the models for the electrical characterization of HCPV has been made.
In this paper, it shows that the model accuracy it is related with the number of “physical sensor”, thus
the ATSM [18] and the King [20] models, that only take in count three atmospheric parameters, presents
a medium accuracy level. On the other hand there are others models as Chan [28] and Steiner [30]
characterized by an advanced level of accuracy but which use a complex physical model and whose
parametrization require advanced module information and indoor measurements as well as require
specific software.

In [19] Peharz et al. proposed a model that provides better accuracy than the previous ones but
it requires a more expensive experimental set-up. In [9] Fernandez et al. proposed a simple model,
with an optimum balance between simplicity and accuracy, based on simple mathematical relationships
between atmospheric parameters, but this model is focused for sites with climates characterized by
high-medium turbidity levels.

In [29] Almonacid et al. proposed a model that use of the ability of artificial neural networks in
order to obtain the complex relations between the electrical behavior of HCPV module and their inputs
variables, with a high level of accuracy. However, its difficulty to be applied is that a deep knowledge
on ANN architectures and its training algorithms is necessary to determine the parameters of this
model, and this is not always available to be applied.

Energy prediction is a key factor in the market integration and growth of any type of energy
production system. However, due to their special features, the modeling of HCPV devices is quite
complex and still challenging. As commented, one of the more important lines of research to try
to address some of the issues related to this technology is based on the use of artificial intelligence
techniques, mainly ANNs. Therefore the next subsections present a brief summary of ANN and its
application in the field of HCPV.

2.2. Artificial Neural Networks

Artificial neural networks (ANN) are a widely used tool for approximating nonlinear functions
that have multiple entries [44]. An artificial neural network simulates the behavior of the dendrites
and axons of nerve cells. In particular, the system inputs are related to the outputs through different
neurons grouped in layers that are joined together by arcs. These arcs are denoted mathematically
by a number or weight. The type of neural network that is often used in the literature is called the
multilayer perceptron. Neurons are grouped into three types of layers: input, output and intermediate
layers (called hidden layers). The number of neurons in each layer and the number of hidden layers
determine the complexity of the artificial neural network.

2.3. HCPV and ANNs

ANNs have been used for modeling some issues related to MJ solar cells; for instance in [45–47]
several ANN-based models have been proposed for estimating the tunneling effects, the the
I-V characteristic and External Quantum Efficiency (EQE), both under one sun and in darkness,
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for dual-junction (DJ) GaInP/GaAs solar cells. In [48] the authors used an ANN-based model to
estimate the performance of triple-junction (TJ) InGaP/GaAs/Ge solar cells and the EQE under the
influence of an ample range of charged particles. Finally, in [49] Fernández et al. presented three
ANN-based models of the main electrical parameters of a TJ solar cell: open-circuit voltage (Voc),
short-circuit current (Isc) and maximum power (Pmax).

Regarding HCPV modules and systems, several ANN-based models have been developed to try to
solve some problems related to these devices. In [50] Fernandez et al. presented an ANN-based model
for spectrally corrected direct-normal irradiance. This parameter is defined as the part of the incident
spectrum that an HCPV module is capable to convert into electricity, so it can be used to quantify
the spectral effects on an HCPV device. In [13] and [51] two ANN-based models to estimate the cell
temperature of an HCPV module were developed. The direct measurement of this temperature is quite
complex since it is not possible to access the inside of the module without damaging it. ANN-based
models were developed to try to solve this problem by attempting to characterize the relationship
between the main meteorological parameters and the cell temperature that affect the temperature.
In [29] and [52] two ANN-based models were developed to estimate the maximum power of an HCPV
module: a feed-forward artificial neural network and a cooperative-competitive hybrid algorithm for
radial basis-function networks. Finally, in [53,54] two ANNs were used to model the complete I-V
characteristic of an HCPV module.

2.4. Application of ANNs to Obtain an HCPV Model

The solar research group of Jaén University has ample experience in the application of ANN in
the photovoltaic field [55–59]. Taking into account this knowledge, Almonacid et al. [29] developed
an ANN-based model to find the relation between the main parameters that affect its performance:
spectrum (S), irradiance (B), wind speed (Ws) and temperature (T) and the output of an HCPV.

The architecture of the proposed ANN was based on a three-layer feed-forward neural network
trained with the Levenberg-Marquardt back-propagation algorithm. The input layer had five nodes:
the direct-normal irradiance (DNI), the air mass (AM), the precipitable water (PW), the wind speed
(Ws) and the air temperature (Tair). The ANN-based model used the precipitable water and air mass to
evaluate the spectrum, the direct-normal irradiance to evaluate the irradiance and the wind speed and
the air temperature to evaluate the cell temperature. The hidden layer had seven nodes, and there was
one node in the output layer (Pmax). Coefficients of the neural network were obtained from outdoor
monitoring. The results show that the ANN-based model could be used to calculate successfully the
output of an HCPV module with an RMSE of 2.91%, an MBE of 0.07% and an R2 of 0.99.

By virtue of this results it may be stated that this model provides one of the best level of accuracy
between the models mentioned in Section 2.1. However, as commented, the difficulty in applying
this model is focused in the determination of the parameters, which requires a deep knowledge of
complex artificial neural networks architectures and their training algorithms. On other hand, once the
parameters have been determined, the knowledge remains implicit and the model becomes easy to use,
however the complex relations that link the HCPV module behavior and the atmospheric variables
have a short degree of interpretability. In order to improve the knowledge over these relations without
decrease the level of accuracy in this paper we propose the use of FRBS.

3. Utility of the FRBS for Modeling an HCPV Module

To obtain the maximum annual electric power for an HCPV system, it is advisable to use highly
accurate and stable solar trackers. High-accuracy dual-axis solar trackers, which track the Sun’s motion
across the sky, must be used in HCPV systems because these systems only accept direct solar light
with a very small deviation in the acceptance angle [60].

In the literature, we can observe the use of FRBS to implement solar tracker using fuzzy
control [61–64]. In [65], the authors explain that fuzzy control could be a good option when an
accurate model of the tracking system is absent. Therefore, if we use this type of control for a solar



Energies 2019, 12, 567 5 of 22

tracker, it is necessary to learn a good knowledge base (KB) for this control system, and to achieve this
task it is necessary to have a good model of the HCPV module.

Because of the large quantity of relevant variables, the problem of modeling a HCPV becomes
very complex, thus it is advisable to solve it by means of modeling techniques able of obtaining a
model representing the non-linear relationships existing in it. Furthermore, the problem-solving goal
must be to obtain a user-interpretable model, as well as obtain an accurate model, able of putting
some light on the relations that exist among the electrical parameters of an HCPV module and the
main atmospheric parameters that have influence on them. Due to all these reasons, in this paper we
introduce the use of FRBSs in order to model the HCPV module.

A Fuzzy Rule-Based System is any system, where Fuzzy Logic may be used either to model the
relationships and interactions among the system variables, or as the basis for the representation of
different forms of knowledge. Fuzzy Systems have proven to be a significant tool for modeling
complex systems in which, due to the imprecision or the complexity, conventional tools are
unsuccessful [33,34,66,67]. For that reason, they have been successfully used to a wide range of
problems from different areas presenting vagueness and uncertainty in different ways [68].

With the general purpose of optimizing the HCPV fuzzy control system, in this paper we introduce
two new HCPV module models. Each is a variation of a Fuzzy Rule-Based System and is characterized
by their properties. For this reason, the sections below detail the study of Fuzzy Rule-Based Systems,
their types and properties.

3.1. Fuzzy Rule-Based System

In 1965, Zadeh [69] suggested a modified set theory, called fuzzy set theory, in which an element
could have a degree of membership that takes continuous values, rather than being 0 or 1. One of
the most important areas of application of his theory is the FRBSs. An FRBS is a rule-based system in
which fuzzy logic (FL) is used as a tool for managing different forms of knowledge about the problem
at hand [32]. These systems are a development of the classical rule-based system because they address
“IF-THEN” rules whose consequents and antecedents are composed of fuzzy statements (fuzzy rules),
instead of classical logical statements. FRBSs incorporate the human knowledge of the expert using
the FL. One of the main characteristics of these systems is the ability to incorporate human knowledge
by means of uncertainty or imprecision and lack of accuracy.

FRBSs have some advantages over traditional rule-based systems, such as (a) inference methods
become more robust with the approximate reasoning methods employed within FL and (b) the key
features of knowledge captured by fuzzy sets involve the handling of uncertainty.

In an FRBS, the knowledge is stored in a knowledge base that consists of three elements:
membership functions, a set of “IF-THEN” rules, and linguistic variables. These rules are defined by
their consequents and antecedents. Antecedents and, frequently, consequents, are associated with
fuzzy concepts.

Because of these properties, FRBSs have been successfully applied to modeling the interactions
and relationships that exist between their input and output variables. In this way, one of the most
common application of FRBSs is fuzzy modeling [34]. There are two types of FRBSs for engineering
problems:

(a) Mamdani FRBSs [37]. In this type of FRBSs, antecedents and consequents are composed of
linguistic variables. The rules possess the following form.

IF X1 is A1 and . . . and Xn is An THEN Y is B,
where Xi are input variables, Ai are fuzzy sets associated to input variables, Y is the output

variable and B is a fuzzy set associated to the output variable.

(b) Takagi-Sugeno-Kang FRBSs [36]. This model of FRBSs is based on rules in which the antecedent
is composed of linguistic variables and the consequent is an analytical function of the input
variables. In this case, the rules are as follows:
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IF X1 is A1 and . . . and Xn is An THEN Y = f (X1, . . . , Xn).
In most cases, the function is a linear function:
IF X1 is A1 and . . . and Xn is An THEN Y = p0 + p1* X1 + . . . + pn* Xn, with Xi as the input

variables, Y as the output variable, Ai as the fuzzy sets related to the input variables, and p = (p0,

p1, . . . , pn) as a vector of real parameters. These types of rules are usually called TSK fuzzy rules.
The accuracy of an FRBS directly depends on two aspects: the composition of the fuzzy rule set

and the way in which it implements the fuzzy inference process. Therefore, the FRBS design process
includes two main tasks [32]:

(a) The choice of the type of FRBS (Mamdani or Takagi-Sugeno-Kant), and the different fuzzy
operators that are employed by the inference process.

(b) The generation of the fuzzy rule set. That requires some design tasks, such as

1. Selection of the relevant input and output variables.
2. Definition of the scale factor, the number of term sets and the membership function for each

linguistic variable.
3. Derivation of the linguistic rules that will form part of the rule set.

With the intention of use the best properties and facilities provided by the FRBSs, in this paper we
propose the generation of two HCPV models based on a Mamdani FRBS and a Takagi-Sugeno-Kant
(TSK) FRBS. This systems are explained in more detail below, as well as the adaptations made in
our proposal.

3.1.1. Mamdani Fuzzy Rule-Based Systems

In 1974, Mamdani [37] proposed an FRBS that addresses real inputs and outputs. He augmented
Zadeh´s formulation to apply an FS to a control problem. Later, in 1975, he proposed the Fuzzy Logic
Controllers (FLCs) [38] as a type of FS, which are referred to as FRBSs with fuzzifier and defuzzifier.
Hence, FLCs may be considered knowledge-based systems, that incorporate human knowledge into
their Knowledge Base through fuzzy membership functions and fuzzy rules. As can be observed (see
Figure 1), a Mamdani FRBS consists of the following components [32]:

(a) A Knowledge Base (KB), which stores the knowledge about the problem. The KB comprises a
Database (DB) and a fuzzy Rule Base (RB). The DB contains the definitions of the fuzzy rules
and linguistic labels, and the RB comprises the collection of linguistic rules representing the
expert knowledge.

(b) A fuzzy inference engine, that presents the following structure:

1. A fuzzification interface, which converts the values of input variables into fuzzy information,
for this it assigns grades of membership to each fuzzy set defined for that variable.

2. An inference system, which infers fuzzy outputs by employing fuzzy implications and the
rules of inference of FL.

3. A defuzzification interface, which produces a non-fuzzy output from an inferred fuzzy
output. This interface has to aggregate the information provided by the output fuzzy sets
and to obtain an output value from them. There are two basic techniques for doing this:
Mode B-FITA (first infer, then aggregate) and Mode A-FATI (first aggregate, then infer).
The FRBS proposed in this paper uses mode B-FITA because it reduces the computational
burden compared to mode A-FATI.
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Figure 1. Structure of a HCPV model based on a Mamdani FRBS.

In the same way as the ANN-based model, the input variables of the proposed HCPV models
based on a FRBS are: the direct-normal irradiance (DNI), the air mass (AM), the precipitable water
(PW), the air temperature (Tair) and the wind speed (Ws), as well as the output variable is the
maximum power.

In this model based of a Mamdani FRBS we have chosen a uniform partition of the membership
functions into the fuzzy sets of output and input variables. Figure 1 shows the structure of a HCPV
model based on a Mamdani FRBS.

3.1.2. Takagi-Sugeno-Kang Fuzzy Rule-Based Systems

The output of a TSK FRBS is the sum of the individual outputs provided by each rule, Yi (i = 1,
. . . ., m, where m is the number of rules of the TSK KB), weighted by the values of the parameters hi,
where hi = T(Ai1(x1), . . . ,(Ain(xn)) is the matching degree between the current inputs to the system,
x0 = (x1, . . . xn) and the antecedent part of the i-th rule. T stands for a conjunctive operator modeled by
a t-norm. To design the inference engine of a TSK FRBS, the designer only must select this connective
operator T. The most common choices are the algebraic product and the minimum [36] (In this paper
the algebraic product have been used as an operator T). Figure 2 shows the structure of a HCPV model
based on a TSK FRBS.
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Figure 2. Structure of a HCPV model based on a TSK FRBS.

To help achieve the goals of both Mamdani FRBSs and TSK FRBSs they must have a complete and
consistent knowledge base, therefore it is necessary to use learning methods to define the fuzzy rules.

These models are capable of estimate the HCPV maximum power from outdoor measurements
over atmospheric variables, but they are not suitable to model the I-V curve and no to evaluate
algorithms to obtain maximum power point tracking (MPPT), because they are complex processes,
that require modelling the HCPV module with a number of curves sufficiently representative, in which
each one of their parameters will be influenced by each one of the atmospheric parameters.

3.2. Learning Methods to Define the Fuzzy Rule Set

To define the fuzzy rule set in modeling applications of FRBSs, two types of information are
available to the designer: linguistic and numerical. Related to this information, there are two main
ways of deriving the fuzzy sets:

Derivation from the experts. In this case, the human expert specifies the linguistic labels,
the structure of the rules and the meaning of each label. This method is useful only if the expert is
capable to express his knowledge in the form of linguistic rules.

Derivation from automated learning methods based on the existing numerical information.
To overcome the difficulties related with the derivation of the knowledge from the expert, in recent
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years, numerous inductive methods have been developed. Such methods include ad hoc data-driven
generation methods [40–42], neural networks [44], clustering techniques [70,71], and evolutionary
algorithms [72,73].

For modeling a system with very high complexity (such as HCPV), it is very difficult to obtain the
linguistic rules that define the behavior, and therefore in this paper we propose the use of two learning
methods to define the fuzzy rule set: (a) ANFIS and (b) the Ad Hoc data-driven method.

3.2.1. ANFIS

ANFIS is capable of providing in a single tool the advantages of systems based on neural networks
and fuzzy systems. Thus, the expert knowledge provided by the fuzzy rules is complemented by the
training and validation of neural networks. Researchers have frequently used ANFIS since it was first
presented by Jang et al. in [39] for different problems such as pattern classification or adjustment of
non-linear functions. This method has been used for discriminating voice/music [74], for modeling
solar radiation [75], to predict air pollution [76], in solar PV [77], and in treating water qlity [78], to cite
just a few current examples.

ANFIS uses a set of data (input/output) to build a TSK fuzzy system [39] in which the parameters
of member functions and the relations with the output are adjusted using neural networks. For this
purpose, a fuzzy system is identified with a neural network, as shown in Figures 3 and 4.
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Figure 4. Detail of ANN used in the ANFIS method.

In Figure 3, at the top, the inputs are fuzzified into the system by means of membership functions.
Then, the output from the combination of the IF-THEN rules is obtained. A five-layer neural network,
as illustrated in Figure 4, can model this process. Each layer of the ANFIS model handles a task:

(a) Layer 1: Responsible for determining the degree of membership of each input to each of the fuzzy
sets (fuzzification of inputs).

(b) Layer 2: The output of this layer is the products obtained by the rules that are activated. Each
node symbolizes the firing strength of the rule (wi).

(c) Layer 3: Outputs of this layer are denominated normalized firing strengths (wi). The ith node
obtains the ratio of the ith rule´s firing strength to the addition of all rule´s firing strengths.

(d) Layer 4: Outputs are obtained from the consequent parameters of the rules (fi).
(e) Layer 5: Calculates the overall output as the sum of all incoming data.

Through a process of training, you can obtain all the values of the different layers and then create
the fuzzy knowledge base.

3.2.2. Ad Hoc Data-Driven Generation Method

A family of simple and efficient methods, called ad hoc data-driven methods, which generate
new rules from the training database, guided by the covering criteria of the data in the example set,
have been proposed in the literature [40–42]. The ad hoc data-driven linguistic rule-learning methods
are identified by four main features:

(a) They are based on working with an input-output data set.
(b) They consider a previous definition of the database, composed of the output and input primary

fuzzy partitions.
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(c) The generation of the linguistic rules is guided by the covering criteria of the data in the
example set.

(d) The learning mechanism is not based on search techniques or any well-known optimization; it is
specifically developed for this purpose.

In this paper, we propose the use of the simpler type, the “ad hoc data-driven linguistic
rule-learning methods guided by examples”, to obtain the linguistic rules in the Mamdani FRBS.
This method obtains each rule from a specific example in the data set. These rules belong to a candidate
rule set because after this generation stage, a selection process is performed to derive the final RB.

One of the most widely used and well-known example-based methods is Wang and Mendel’s
method [41]. This method implements the RB generation by means of the following steps (see Figure 5):

(a) Consider a fuzzy partition of the variable space.
(b) Generate a candidate linguistic rule set. This set will be composed by the rules best covering each

example included in the input-output data set.
(c) Assign an importance degree to each rule. This will be obtained by computing the covering value

of the rule.
(d) Obtain a final RB from the candidate linguistic rule set, by selecting the rule with the highest

importance degree in each group.
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4. Proposed Methods to Obtain an HCPV Model

4.1. Application of ANFIS to Train a TSK FRBS to Obtain an HCPV Model

The proposed ANFIS model has the following characteristics:

(a) The five variables mentioned above as inputs: direct-normal irradiance (DNI), wind speed (Ws),
air temperature (Tair), precipitable water (PW), and air mass (AM), each with two Gaussian
fuzzy sets.

(b) The output variables as linear functions: maximum power.
(c) A training algorithm based on back-propagation.

4.2. Application of Ad Hoc Data-Driven Methodology to Obtain an HCPV Model

In this case, we use a Mamdani FRBS to provide a highly flexible method to formulate knowledge,
while at the same time remaining interpretable. In these systems, each rule is a description of a relation
between one condition and one action, which allows for easy interpretation by a human. This property
makes these systems useful for application in problems that require high model interpretability, such as
fuzzy control [79], and linguistic modeling [34,35].

To obtain a model of the HCPV module behavior, we select the following input variables: DNI,
AM, PW, Tair, and Ws. These variables have been normalized using a linear transformation that was
applied between their minimum and maximum values. The output will be the estimated maximum
power delivered by the HCPV module. Taking into account the steps described in Section 3.2.2,
we implement the following steps:
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(a) A fuzzy partition of the input and output variable space is created. Over all of the five input
variables, we have applied a uniform partition composed of 19 fuzzy sets, and over the output
variable we have applied a uniform partition with 495 fuzzy sets. Based on these values, we have
generated a partition of the five-dimensional space that is composed of 195 subspaces or regions.

(b) Candidate rules are generated in each fuzzy input subspace. For each example of the training
set (which is composed of 8926 examples) contained in each subspace, a fuzzy rule is proposed.
All of these rules have the same antecedent and differ in their consequents.

(c) Each rule is assigned an importance degree, which is obtained by computing the covering value
of the rule in its subspace [42].

(d) Select the rule with the highest importance degree in each group or subspace. The algorithm
generated a KB with 6216 different rules.

In this learning algorithm, the accuracy of the modeled output variable is related to the number of
subspaces into which the original five-dimensional space was divided. In the same way, the complexity
of the model increases with the number of subspaces and their dimension. On the other hand, the
number of rules, which is related to the number of subspaces, determines the accuracy of this model.

5. Experimental Results

As commented, the ANN model provides one of the best level of accuracy between the models
mentioned in the related work. For that reason, in this paper, the developed models are evaluated and
compared to the ANN model.

As a result of executing these proposed modeling methods (see Sections 4.1 and 4.2), we have
obtained two models of an HCPV:

(a) TSK FRBS training with ANFIS.
(b) Mamdani FRBS obtained with the Ad Hoc data-driven method.

To conduct this study, the electrical performance of a HCPV module mounted on a two-axis solar
tracker (Figure 6 left) together with the main atmospheric parameters that have influence in its output,
have been measured at the Centro de Estudios Avanzados en Energía y Medio Ambiente (CEAEMA)
of the University of Jaén.
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Energía y Medio Ambiente at the University of Jaén. (left) HCPV module; (right) atmospheric station.

The module is made up of 20 triple-junctions lattice-matched GaInP/GaInAs/Ge solar cells
interconnected in series. The module uses silicon-on-glass (SOG) Fresnel lenses as primary optical
element. The secondary optical element consists of reflexive truncated pyramids made up of an
aluminium film layer to enhance the reflectivity. The module has an optical efficiency of 80%,
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a geometric concentration of 700 and uses passive cooling to ensure that MJ solar cells operate
on their optimal operation range [49]. Table 1 shows the main electrical characteristics of the HCPV
module under Concentrator Standard Operating Conditions, CSOC, (i.e., AM1.5D, DNI = 900 W/m2,
ambient temperature, T = 20 ◦C and wind speed, WS = 2 m/s).

Table 1. Electrical characteristics of the HCPV module under Concentrator Standard Operating
Conditions, CSOC, (i.e., AM1.5D, DNI = 900 W/m2, ambient temperature, T = 20 ◦C and wind speed,
WS = 2 m/s).

Electrical Characteristics Value

Short-circuit Current (Isc) 5.30 A
Open-circuit Voltage (Voc) 57.28 V
Maximum Current (Ippm) 4.85 A
Maximum Voltage (Vppm) 47.62 V
Maximum Power (Pmax) 230.85 W

In order to measure the electrical parameters of the HCPV module a four-wire electronic load
located was used. In addition, the centre is equipped with an atmospheric station MTD 3000 from
Geonica S.A. (Figure 6 right) to record the main atmospheric parameters such as direct normal
irradiance, air temperature, wind speed or humidity. The values of aerosol optical depth not provided
by the atmospheric station were obtained from MODIS Daily Level-3 data source [80].

To obtain the knowledge base that characterizes each model, in this paper, we have considered a
set of input and output variable values, recorded by the experimental setup, that it is composed of
11155 examples that were recorded every 5 minutes from January 2011 to December 2012.

In the case of ANFIS, to prevent the learning method from memorizing the training examples,
the available data are separated into three subsets:

(a) A training set: the learning method is trained with this set in the classical way. It includes 33% of
the examples.

(b) A validation set: each time you complete a training iteration, this set is used to determine whether
you can stop training. The goal is to avoid overtraining. This set contains 33% of the examples.

(c) A test set to discern the goodness of the process. This set contains 33% of the examples.

After this, the following procedure was used. The system trains on the first set for 10 iterations.
Then the validation set is used, and if a result with low enough error is obtained, the process is finished;
otherwise another 10 iterations are performed. Finally, the third set is used to check the degree of
fitness of the system. The three sets each contain 33% of the samples.

In the case of the Ad Hoc data-driven method, to prevent biasing the learning process, the available
data are divided into two subsets:

(a) A training set, which includes 80% of the examples.
(b) A test set, which contains 20% of the examples.

This training set has been used to generate the linguistic rules that constitute the KB. Then the
test set was employed to evaluate the performance of this learning method.

All the earlier sets have been obtained based on all data sets and were formed by carrying out a
random and uniform selection of the subspaces, and then a random selection of an example contained
in each subspace.

As a result of executing the proposed modeling methods, the characteristics of the obtained
knowledge bases are as follows:

(a) For TSK, FRBS training with ANFIS:

1. Number of rules: 32.
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2. Number of fuzzy sets for each input variable: 2.
3. The partition of the membership functions into the fuzzy sets of input variables is shown in

Figure 7. From the observation of the captured data and the membership functions of the
two fuzzy sets, for each of the atmospheric variables represented in Figure 7, the conclusion
can be drawn that the crossing point of the two fuzzy sets has been chosen so that the number
of samples is approximately equal to right and left of said point. Therefore, the high and low
fuzzy sets will cover approximately the same number of samples, half of the total number
of samples captured. This distribution of the membership functions, which responds to
the density of the samples captured, as well as the choice of the initial and final values of
the height of the fuzzy sets and the slope of the curve that defines them, allows to have a
number of very reduced rules, without a decrease in model accuracy.

(b) For Mamdani, FRBS obtained with the Ad Hoc data-driven method:

1. Number of rules: 6216.
2. Number of fuzzy sets for each input variable: 19.
3. Number of fuzzy sets for each output variable: 495.
4. Uniform partition of the membership functions into the fuzzy sets of output and

input variables.
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After the KBs have been obtained, in order to evaluate the level of accuracy of these models,
for each element of the test set (five values of atmospheric variables) it is made the simulation of
each model to obtain the predicted maximum output power. To study the behavior of these models,
we have to calculate the normalized root mean square error (NRMSE) between the measured (Pm) and
the predicted (Pp) maximum output power. The equations of the RMSE (in watts) and NRMSE (in
%) are:

RMSE =

√
∑n

i=1
(

Pp − Pm
)2

n
NRMSE =

RMSE
Pm

(1)

The values of NRMSE (in %), obtained with the three models of HCPV (including the ANN model
introduced in [29]) are shown in Table 2. A comparison of the values of the NRMSE gain for the models
of HCPV presented in this paper versus the ANN model, is shown in Table 3. The equations of the
gain in NRMSE are:

GainNRMSE TSK FRBS vs ANN =
|NRMSETSK FRBS − NRMSEANN |

NRMSEANN
(2)

GainNRMSE Mamdani FRBS vs ANN =
|NRMSEMamdani FRBS − NRMSEANN |

NRMSEANN
(3)

Table 2. NRMSE for the three models: ANN, TSK FRBS training with ANFIS and Mamdani FRBS
obtained with Ad Hoc data-driven method.

NRMSE (%) Train Validation Test Overall

ANN 2.11 2.1 2.45 2.16
TSK FRBS training with ANFIS 1.85 1.99 2.21 1.93

Mamdani FRBS training with Ad
Hoc data-driven 2.04 2.25 2.07

Table 3. Comparison of the gain in NRMSE, for the model TSK FRBS training with ANFIS versus ANN
and for Mamdani FRBS obtained with the Ad Hoc data-driven method versus ANN.

Gain in NRMSE Train Validation Test Overall

ANN 0 0 0 0
TSK FRBS training with ANFIS 12.32 5.24 9.80 10.65

Mamdani FRBS training with Ad
Hoc data-driven 3.32 8.16 4.17

In addition to the NRMSE analysis between the measured and predicted output maximum power,
the linear regression analysis have also been calculated to study the results of the compared methods
(ANN, Mamdani, TSK) in more detail, as shown in Figures 8–10.



Energies 2019, 12, 567 15 of 22

Energies 2018, 11, x FOR PEER REVIEW  14 of 21 

 

Gain in NRMSE Train Validation Test Overall 
ANN 0 0 0 0 

TSK FRBS training with ANFIS 12.32 5.24 9.80 10.65 
Mamdani FRBS training with Ad Hoc data-driven 3.32   8.16 4.17 

In addition to the NRMSE analysis between the measured and predicted output maximum 
power, the linear regression analysis have also been calculated to study the results of the compared 
methods (ANN, Mamdani, TSK) in more detail, as shown in Figures 8‒10. 

 
Figure 8. A regression analysis between the predicted output maximum power in the ANN model 
and the measured output maximum power for the total set of data.  

 

Figure 9. A regression analysis between the predicted output maximum power in the Mamdani FRBS 
model and the measured output maximum power for the total set of data.  

Figure 8. A regression analysis between the predicted output maximum power in the ANN model and
the measured output maximum power for the total set of data.

Energies 2018, 11, x FOR PEER REVIEW  14 of 21 

 

Gain in NRMSE Train Validation Test Overall 
ANN 0 0 0 0 

TSK FRBS training with ANFIS 12.32 5.24 9.80 10.65 
Mamdani FRBS training with Ad Hoc data-driven 3.32   8.16 4.17 

In addition to the NRMSE analysis between the measured and predicted output maximum 
power, the linear regression analysis have also been calculated to study the results of the compared 
methods (ANN, Mamdani, TSK) in more detail, as shown in Figures 8‒10. 

 
Figure 8. A regression analysis between the predicted output maximum power in the ANN model 
and the measured output maximum power for the total set of data.  

 

Figure 9. A regression analysis between the predicted output maximum power in the Mamdani FRBS 
model and the measured output maximum power for the total set of data.  

Figure 9. A regression analysis between the predicted output maximum power in the Mamdani FRBS
model and the measured output maximum power for the total set of data.

Energies 2018, 11, x FOR PEER REVIEW  15 of 21 

 

 

Figure 10. A regression analysis between the predicted output maximum power in the TSK FRBS 
model and the measured output maximum power for the total set of data.  

From the analysis of the experimental results, we note the following observations: 
a) An improvement in the RMSE and R2 of results obtained with TSK FRBS training with ANFIS 

and with Mamdani FRBS using the Ad Hoc data-driven method compared with the results 
obtained using ANN. 

b) An improvement in the RMSE and R2 of the results obtained with TSK FRBS training with 
ANFIS compared with the results obtained using Mamdani FRBS with the Ad Hoc data-driven 
method. 

c) A strong decrease in the number of rules in the knowledge base obtained for TSK FRBS 
compared with that obtained for Mamdani FRBS. This simplicity results in an increase in the 
speed of the inference process. 
Nevertheless, the use of a Mamdani FRBS has several advantages, among which we can 

highlight the fact that each rule is a description of a condition-action statement that has a clear 
interpretation to a human. In this section, we emphasize the meanings of several rules. 

The rule that infers the scene in which the HCPV module generates the least amount of power 
is: 

If DIN is A1, Tair is A17, Ws is A6, PW is A12 and AM is A9, then Power is B1. 
By analyzing this linguistic rule, and taking into account the proposed uniform partition of the 

membership functions, composed by 19 fuzzy sets for each meteorological variables and 495 fuzzy 
sets in the maximum output power variable, we can say that: 

The fuzzy set A1 covers values of the variable DNI very close to its minimum measured value 
(between 0 and 5% of its range of values). The fuzzy set A17 covers values of the variable Tair close 
to its maximum measured value (between 87 and 92 % of its range of values). The fuzzy set A6 cover 
values of the variable Ws around 1/3 of its range of measured values (between 29 and 34%). The fuzzy 
set A12 cover values of the variable PW between 60 and 66% of the range of its measured values. The 
fuzzy set A9 cover values of the variable AM close to the medium value of its range of measured 
values (between 45 and 50%). The fuzzy set B1 covers values of the variable Power very close to its 
minimum value measured (between 0 and 0,2 % of its range of values). Therefore we can interpret 
this rule as follows: 

If the value taken by the variable DNI is within the set A1 and if the value taken by the variable 
Tair is within the set A17 and if the value taken by the variable Ws is within the set A6 and if the 
value taken by the variable PW is within the set A9 and if the value taken by the variable AM is 
within the set A9 then the value taken by the variable Power will be within the set B1. 

In a simplified way, the conditions that generate the least amount of maximum power are: 
A very low DNI, very high Tair, medium-low Ws, medium-high PW and medium AM. 
The rule that infers the scene in which the HCPV module generates the largest amount of 

maximum power is: 
If DIN is A16 and Tair is A11 and Ws is A8 and PW is A9 and AM is 1, then Power is B495. 

Figure 10. A regression analysis between the predicted output maximum power in the TSK FRBS
model and the measured output maximum power for the total set of data.

From the analysis of the experimental results, we note the following observations:

(a) An improvement in the RMSE and R2 of results obtained with TSK FRBS training with ANFIS and
with Mamdani FRBS using the Ad Hoc data-driven method compared with the results obtained
using ANN.
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(b) An improvement in the RMSE and R2 of the results obtained with TSK FRBS training with ANFIS
compared with the results obtained using Mamdani FRBS with the Ad Hoc data-driven method.

(c) A strong decrease in the number of rules in the knowledge base obtained for TSK FRBS compared
with that obtained for Mamdani FRBS. This simplicity results in an increase in the speed of the
inference process.

Nevertheless, the use of a Mamdani FRBS has several advantages, among which we can highlight
the fact that each rule is a description of a condition-action statement that has a clear interpretation to
a human. In this section, we emphasize the meanings of several rules.

The rule that infers the scene in which the HCPV module generates the least amount of power is:
If DIN is A1, Tair is A17, Ws is A6, PW is A12 and AM is A9, then Power is B1.
By analyzing this linguistic rule, and taking into account the proposed uniform partition of the

membership functions, composed by 19 fuzzy sets for each meteorological variables and 495 fuzzy
sets in the maximum output power variable, we can say that:

The fuzzy set A1 covers values of the variable DNI very close to its minimum measured value
(between 0 and 5% of its range of values). The fuzzy set A17 covers values of the variable Tair close to
its maximum measured value (between 87 and 92% of its range of values). The fuzzy set A6 cover
values of the variable Ws around 1/3 of its range of measured values (between 29 and 34%). The fuzzy
set A12 cover values of the variable PW between 60 and 66% of the range of its measured values.
The fuzzy set A9 cover values of the variable AM close to the medium value of its range of measured
values (between 45 and 50%). The fuzzy set B1 covers values of the variable Power very close to its
minimum value measured (between 0 and 0.2% of its range of values). Therefore we can interpret this
rule as follows:

If the value taken by the variable DNI is within the set A1 and if the value taken by the variable
Tair is within the set A17 and if the value taken by the variable Ws is within the set A6 and if the value
taken by the variable PW is within the set A9 and if the value taken by the variable AM is within the
set A9 then the value taken by the variable Power will be within the set B1.

In a simplified way, the conditions that generate the least amount of maximum power are:
A very low DNI, very high Tair, medium-low Ws, medium-high PW and medium AM.
The rule that infers the scene in which the HCPV module generates the largest amount of

maximum power is:
If DIN is A16 and Tair is A11 and Ws is A8 and PW is A9 and AM is 1, then Power is B495.
As can see by observing this rule, the maximum amount of maximum power will be supplied

under the following conditions:
A very high DNI, medium-high Tair, medium Ws, medium PW, and very low AM.
One of the advantages of Mamdani FRBS is that we can deduce the relationships between the

input and output variables. If we consider these rules, we realize that there is a clear connection
between the DNI input variable and the amount of electric power supplied by the HCPV module.

The relationships between other variables can be deduced by analyzing other rules in the
knowledge base. For example:

If DIN is CB17 and Tair is CB17 and Ws is CB3 and PW is CB8 and AM is CB1, then Power
is CB441.

If DIN is CB17 and Tair is CB15 and Ws is CB3 and PW is CB8 and AM is CB1, then Power
is CB443.

If DIN is CB17 and Tair is CB14 and Ws is CB3 and PW is CB8 and AM is CB1, then Power
is CB454.

If DIN is CB17 and Tair is CB13 and Ws is CB3 and PW is CB8 and AM is CB1, then Power
is CB457.

Analyzing these linguistic rules, we realize that under these conditions of the DNI, Ws, PW and
AM variables (which are the same in the five rules), the maximum power supplied by this HPCV
model will increase if the value of the Tair variable decreases.
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Throughout the knowledge base, we can find several sets of rules with the same values for four
of the five conditions in their antecedents. Then the values taken by the fuzzy sets for the condition
that differs and for the consequent allow for the determination of the relationship between the output
maximum power and this input variable.

Although the knowledge base obtained for the HCPV model based on TSK FRBS has only 32
linguistics rules, the analysis of these rules does not allow for the interpretation of the relationships
between the input and output variables; thus we cannot deduce human knowledge from the
examination of the knowledge base.

In the HCPV modules, the input variables are mutually dependent, for this reason it is difficult to
find a proper fuzzy partition of the input variables. To increase the precision of the HCPV model based
on Mamdani FRBS, we have been proposed a uniform partition of the space of the input variables
and their division into a large number of fuzzy sets. This results in a great increase in the number of
linguistic rules.

To decrease the number of rules in the knowledge base without decreasing the accuracy of the
model, in the future we can propose a non-uniform partition of the space of input variables, which
will decrease the complexity of the input-output mapping and therefore allow for increasing the speed
of the inference process and the human interpretability of the linguistic rules in the knowledge bases.
This new partition must take into account the density of the examples contained in the input-output
data set. This solution must increase the granularity of the fuzzy partition in the areas in which there
is a higher density of examples for each one of the input variables.

Another aspect to take in account is the execution time in the process of obtaining the model (the
KB). As can see by observing the Table 4, the process of training for Mamdani FRBS model is more
expensive in terms of CPU time, than the TSK FRBS and the ANN. However this process is off-line
and it is done once.

Table 4. Comparison of the execution time (training, validation and test) for the model TSK FRBS
training with ANFIS versus Mamdani FRBS obtained with the Ad Hoc data-driven.

Execution Time (units) Training (h) Validation (s) Test (s)

ANN 1/60 2 2
TSK FRBS training with ANFIS 4 2 2

Mamdani FRBS training with Ad Hoc data-driven 216 2

6. Conclusions

In this paper we have proposed the use of two types of FRBS (Mamdani and Takagi-Sugeno-Kant),
with the goal of modelling HCPV systems. With the intention of obtaining the best performances
of each fuzzy systems we have proposed a learning method: the ANFIS one, for training a TSK
FRBS, in order to obtain its KB, and the Ad Hoc data-driven methodology to obtain the KB of the
Mamdani FRBS.

From the analysis of the experimental setup and the description of these methods, it is noticed
that the proposed modelling method:

(a) They only need simple outdoor measurements.
(b) They do not need an expensive experimental system.
(c) They are valid for any climatic conditions.
(d) They do not need any specific simulation software.
(e) They can be applied to the modelling of any model of HCPV module.

These characteristics, which they share with the ANN-based method, allow the building of HCPV
models without complex requirements. In addition they allow to obtain the complex relationships that
link the electrical behaviour of an HCPV module and its inputs variables, with a high level of accuracy.

On the other hand, from the analysis of the experimental results, it is noticed that:
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(a) The use of an HCPV model obtained using TSK FRBS trained with ANFIS produced an
improvement in the model accuracy compared to the use of the model obtained using ANN.

(b) The use of an HCPV model obtained using Mamdani FRBS with an Ad Hoc data-driven method
produced an improvement in the model accuracy compared to the use of the model obtained
using ANN.

(c) The use of an HCPV model obtained using TSK FRBS trained with ANFIS produced an
improvement in the model accuracy compared to the use of the model obtained using Mamdani
FRBS with an Ad Hoc data-driven method.

(d) The use of an HCPV model obtained using Mamdani FRBS with an Ad Hoc data-driven method
allowed for the deduction of the relationship between the input and output variables. However,
the other HCPV models did not provide information on the modeled system that was interpretable
by a human.

For the future work we propose the following lines:

(a) In Mamdani FRBS modelling:

1. To build a non-uniform partition of the membership functions in the input variables,
in order to minimize the number of linguistics rules in the KB obtained by applying Ad Hoc
data-driven method.

2. To use other learning methods, as genetic algorithms, in order to obtain good KB.

(b) In TSK FRBS trained with ANFIS modelling: to increase the number of fuzzy sets in the partition
of the membership functions of the input variables, in order to increase its accuracy.

(c) In FRBS (Mamdani and TSK) modelling: to increase the number of input variables, with new
atmospheric variables, in order to obtain HCPV models with higher accuracy.
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