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Abstract: As an important infrastructure project, the concrete gravity dam plays an extremely
important role in hydropower generation, irrigation, flood control, and other aspects. Seepage is
an important factor affecting the stability of concrete gravity dams. Seepage safety assessment is of
great significance to the safe operation of the dams. However, the existing seepage safety assessment
models are not dynamic, and the correlation among indicators is often neglected and the overall
seepage safety of the concrete gravity dams has not been considered. To solve these problems, this
research proposes a dynamic matter-element extension (D-MEE) model. First, the D-MEE model is
established through adroit integration of the matter-element extension (MEE) model and functional
data analysis (FDA). Second, a dynamic criteria importance through the intercriteria correlation
(D-CRITIC) method that can effectively consider the correlation among indicators is proposed to
determine the weights. Third, the influence of different dam blocks on the overall seepage safety
status is considered by constructing a spatial weight matrix. Finally, the proposed method is applied
to the concrete gravity dam X in southwest China. The results show that the proposed method is
effective and superior to the existing evaluation methods of seepage safety.

Keywords: seepage safety assessment; concrete gravity dam; matter-element extension model; FDA;
D-CRITIC method; spatial weight matrix

1. Introduction

The problems of environmental pollution brought by conventional energy sources have posed
great threats to the sustainable development of human beings [1]. Therefore, all countries are shifting
to replace conventional energy sources with renewable energy. There are many kinds of renewable
energy, such as hydropower, wind power, and solar power [2]. In addition to the advantages of low
cost, continuous regeneration, and no pollution, hydropower development plays an active role in
the comprehensive management and utilization of rivers. The Energy Development Strategic Action
Plan (2014–2020) clearly states that by 2020, the total installed capacity of hydropower will reach
350,000 MW [3]. Therefore, hydropower is considered a promising renewable energy source [4].

Concrete gravity dams are made of concrete, which can resist various external forces by their own
weight. They are an integral component of a society’s infrastructure system and play an extremely
important role in electricity generation, water supply, flood control, irrigation, and other purposes [5].
However, the safe operation of concrete gravity dams is affected by various factors such as deformation,
seepage, strength, stability, and aging [6,7]. The adverse effect of seepage on the safe operation of
gravity dam is mainly from the uplift pressure on the dam foundation surface, which is easily produced
because of dam foundation seepage. The uplift pressure can decrease the anti-sliding force of the
dam and threaten dam stability [8]. For example, the historical accident of Bouzey dam in 1895 was
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directly related to this phenomenon [9]. In addition, some roller-compacted concrete (RCC) gravity
dams have also shown serious seepage problems, such as the Willow Creek RCC gravity dam in the
USA and the Xibing RCC gravity dam in China [10]. Considering the adverse effects of seepage on
the stability of concrete gravity dams, relevant codes and standards have been formulated from the
aspects of dam design [11], monitoring [12], and evaluation [13]. In addition, relevant scholars have
also conducted many researches on the seepage problems of concrete gravity dams. For example,
Cheng [8] simulated the complex seepage field of a concrete gravity dam foundation based on the
computational fluid dynamics (CFD) method, Zhu [14] proposed a fluid structure interaction (FSI)
stochastic finite element approach to consider the influence of seepage on the reliability analysis of
concrete gravity dam, and Jiang [15] employed a comprehensive investigation method to analyze the
leakage problem of a concrete gravity dam with penetrating cracks. A new statistical model optimized
with quantum genetic algorithm was utilized in Zhu’s paper [16] to predict the concrete gravity dam’s
foundation uplift pressure under the function of highly influential typhoon.

In recent years, with the development of dam safety monitoring technology, the comprehensive
evaluation models based on monitoring data have been established in many researches to evaluate
the seepage safety status of the dam. The comprehensive evaluation methods of dam seepage safety
mainly include the fuzzy comprehensive evaluation method [17], set pair analysis method [18],
and matter-element extension model [19]. The fuzzy comprehensive evaluation method is a method
based on the theory of fuzzy sets that was introduced in the 1960s [20]. It uses the membership
degree to construct a fuzzy judgment matrix, and then classifies the grade according to the principle
of maximum membership degree. It can solve the imprecision and fuzziness in classification criteria.
However, the membership function is affected by subjective factors, and the accuracy of the result
will be affected. Set Pair Analysis (SPA) is a method proposed by Zhao in 1989 to deal with the
uncertainty problem [21]. The main principle of SPA is to analyze identity degree, discrepancy degree,
and contrary degree by constructing the connection number [22]. Its calculation process is relatively
simple, but the calculation of the connection number is rough, and it may lose a lot of useful information
when determining the grades. The matter-element extension (MEE) model, proposed by Cai [23],
does not need to determine the membership function, nor does it cause a lot of information loss in
grade determination. The MEE model provides a qualitative and quantitative method to address
contradictions and incompatibility problems through the transformation of the matter-element [24].
At present, in addition to the dam seepage, the MEE model has also been widely used in soil [25,26],
rock [27,28], concrete materials [29–31], regional water usage [32], power networking projects [33],
and other fields. Although these methods play an important role in seepage safety assessment, there
are still several problems that need to be solved:

(1) Dam seepage status is dynamically and continuously varied with time in nature, but most existing
evaluation methods can only represent seepage safety status at finite discrete time points.

(2) Dam seepage is affected by various interrelated factors. However, the existing evaluation methods
often ignore the correlation among indicators in the process of determining weights and the
accuracy of the evaluation results needs improvement.

(3) A concrete gravity dam is composed of several dam blocks, which act against forces both
independently and dependently of adjacent blocks. However, the existing evaluation methods
often take a single dam block as the research object; the evaluation results cannot easily to reflect
the overall seepage safety of the dam.

For the first problem, although the matter-element extension method is very popular and has been
used in many fields, it is still a static assessment method that cannot easily characterize the dynamic
variability of the evaluation objects. The current research on dynamic comprehensive assessment has
achieved numerous results, such as the subjective and objective weighting method [34], dynamic fuzzy
grey relational analysis method [35], variable fuzzy pattern recognition model [36], value function
model [37], system dynamics method [38], and Bayesian method [39]. However, most of the assessment



Energies 2019, 12, 502 3 of 21

methods mentioned above can only assess the seepage safety status at discrete time points, and they
find it difficult to represent the continuous variation process of the seepage safety status. In addition,
they are not feasible if there are missing values or irregular sampling times. Functional data analysis
(FDA) [40] has emerged as an effective approach to solve this problem. The main idea of FDA is to
represent discrete monitoring data from a time series as a continuous function. In recent years, there
are increasing research interests in employing and developing FDA [41–44]. Therefore, a dynamic
matter-element extension (D-MEE) model was established by introducing the FDA method into the
MEE model in this study.

For the second problem, the correlation among the indicators will make the indicator information
overlap to some extent and will affect the accuracy of the evaluation results. There are two main
methods to address the correlation among the indicators; one is principal component analysis
(PCA) [45], and the other is criteria importance through intercriteria correlation (CRITIC) method [46].
PCA is a dimension reduction method in multivariate statistics [47,48]. The CRITIC method is often
used to determine the objective weights of the indicators [49–53]. It assigns weights according to the
contrast intensity of indicators and the conflicts among them. Compared to PCA, CRITIC is considered
to be less computationally challenging [46]. However, CRITIC is a static method that cannot reflect the
dynamic change of the importance of indicators. Therefore, a dynamic CRITIC (D-CRITIC) method
based on FDA is proposed in the process of determining the weights of the indicators.

For the third problem, the spatial weight matrix provides a good tool for considering the impact
of different dam blocks on overall seepage safety. The spatial weight matrix [54–56] reflects the
magnitude of the influence between adjacent regions. Adjacency-based spatial weight is one of the
most common forms of constructing the spatial weight matrix [57–60]. In adjacency-based spatial
weight, the closer the two regions are, the stronger the correlation and vice versa. Figure 1 can briefly
illustrate adjacency-based spatial weight. It can be seen from Figure 1 that the corresponding element
in the spatial weight matrix is set to 1 when two regions are adjacent (having common boundaries or
vertices); otherwise, it is set to 0. The resulting adjacency-based spatial weight matrix is symmetric,
which indicates that the interaction between the two regions is consistent. However, the interaction
among different evaluation regions is often asymmetric. To overcome this deficiency and improve
the robustness of the evaluation results, some studies have introduced internal factors including
migration flows, wage, and price to the construction of spatial weight matrix [61–63]. These studies
have achieved good performance in practical applications. Thus, the evaluation eigenvalue of each
dam block is proposed as an internal factor and is integrated into the adjacency-based spatial weight
matrix to obtain the comprehensive score and safety level for the overall seepage safety of the dam.
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The purpose of this study is to dynamically and comprehensively assess the overall seepage
safety of a concrete gravity dam. Therefore, the work of this study mainly focuses on the following
three goals.

(1) Establish the D-MEE model based on the MEE model and FDA.
(2) Propose the D-CRITIC method to determine the weights of the indicators.
(3) Construct the spatial weight matrix and assess the overall seepage safety.

The remainder of this paper is organized as follows. Section 2 is devoted to provide the methodology
of this study, the indicator system is established based on the PSR framework, the D-MEE model is
proposed based on the MEE model and FDA, in which the D-CRITIC method considers the correlation
among indicators, and the spatial weight matrix is constructed to assess the overall seepage safety.
Furthermore, the application of the proposed method to a concrete gravity dam X in China is presented
in Section 3. Finally, the discussion and conclusion are given in Sections 4 and 5, respectively.

2. Methodology

2.1. Research Procedure

The process of developing the proposed methodology (Figure 2) begins by establishing an
indicator system based on the pressure–state–response (PSR) framework. Then, in order to avoid the
inconvenience caused by the difference in the value range and units of the indicators, the monitoring
values of each indicator are normalized. In subsequent steps, the smoothing technique of the FDA
method is used to convert the discrete values of each indicator into a continuous function curve.
A dynamic matter-element extension (D-MEE) model is established by replacing the discrete values in
the traditional matter-element extension model with the generated continuous function curve. In this
evaluation model, in order to consider the correlation among the indicators, the indicator weights are
determined by the D-CRITIC method, which is established by combining the FDA method and CRITIC
method. Furthermore, in order to consider the influence of the seepage safety status of different dam
blocks on the overall seepage safety of the dam, the evaluation eigenvalues of each dam block are
introduced into the construction of the spatial weight matrix, and the comprehensive score of the
dam’s overall seepage safety assessment is calculated. Eventually, the overall seepage safety level of
the dam can be judged based on the comprehensive score and related grading standards.

2.2. Indicator System Based on the PSR Framework

To combine multiple sources of impacts and make the indicator system more comprehensive,
the indicator system is established based on the pressure–state–response (PSR) framework [64].
Pressure indicators represent external environmental factors that may affect the seepage safety state.
From the perspective of the formation mechanism of dam seepage, temperature, and water level
difference (the difference between the upstream water level and the downstream water level) there are
two environmental factors that mainly affect the change of seepage behavior. Therefore, temperature
(C1) and water level difference (C2) are selected as pressure indicators. State indicators characterize
the situation of the seepage safety at a specific time and are the main criteria for the safety assessment.
In researches on the seepage problems of concrete gravity dams [8–16], the seepage behavior is usually
reflected by seepage flow and dam foundation uplift pressure. Therefore, seepage flow (C3) and uplift
pressure (C4) are regarded as state indicators. Response indicators inform on the response to the
seepage safety state and can provide decision information on whether the monitoring data of state
indicators are in the safe range. In the monitoring and assessment of dam seepage safety, judging
the seepage safety level only according to the magnitude of seepage flow or uplift pressure is not
reasonable, it is also necessary to analyze whether their trends are in the normal range. Therefore,
response indicators in this paper include the rate of change in seepage flow (C5) and the rate of change
in uplift pressure (C6).
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In a word, the indicator system based on the PSR framework can deal with the complex
relationship among multisource indicators and objectively reflect the seepage safety state of concrete
gravity dam.
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2.3. D-MEE Model for Seepage Safety Assessment

2.3.1. Functional Data Analysis (FDA)

The main idea of FDA is to represent the discrete monitoring data from a time series as a
continuous curve. The first step in FDA is to convert discrete monitoring values into continuous
curves using interpolation or smoothing techniques [65]. If the sampling is well controlled and the
monitoring error is considered negligible, interpolation is a good choice to generate the continuous
curves, which pass through each observation data [41]. However, in most cases, monitoring errors
are considered inevitable. Therefore, smoothing is the most common method to convert discrete
monitoring values into continuous curves. The continuous curve generated by the smoothing method
does not pass through each observation data; moreover, it is regarded as a curve with good smoothness
that minimizes the squared distance to the observation data [42]. The main idea of smoothing
techniques is to represent the function curve with a linear combination of basis functions [65,66]:

vi(t) =
M

∑
m=1

εimφm(t) i = 1, 2, · · · , n; t ∈ T (1)

where M and n are the numbers of basis functions and indicators, respectively; T is the research time
domain; φm(t) are the basis functions; and εim are the coefficients.

There are various basis functions, such as the B-spline basis function, Fourier basis function,
and wavelet basis function. Fourier basis is optimal for periodic data, wavelet basis is more suitable
for the data with frequent and severe fluctuations, and B-spline basis is the best choice for smoothing
nonperiodic data [65]. The coefficients εim are determined by minimizing the squared distance method:

min{
K

∑
k=1

(
M

∑
m=1

εimφm(t)− vi(tik))

2

} (2)

where K is the observation number of the i-th indicator and vi(tik) is the normalized value of the i-th
indicator at monitoring time point tik.

To eliminate the influence of different dimensions and units, the monitoring values of each
indicator need to be normalized. According to the contribution of indicator change to seepage safety,
all evaluation indicators are divided into two kinds, namely positive and reverse indicators [67].
The positive indicator indicates that the increase in indicator value is beneficial to seepage safety, that
is, a larger indicator value is safer. The reverse indicator indicates that the increase in indicator value is
harmful to seepage safety, that is, a smaller indicator value is safer. The following two equations [32]
are adopted to normalize the positive indicator and the reverse indicator, respectively.

For the positive indicator,

vi(tik) =
xmax

i − xi(tik)

xmax
i − xmin

i
(3)

For the reverse indicator,

vi(tik) =
xi(tik)− xmin

i
xmax

i − xmin
i

(4)

where xi(tik) is the monitoring value of the i-th indicator at monitoring time point tik and xi
max and

xi
min are the maximum and minimum values of the monitoring value of the i-th indicator, respectively.

2.3.2. D-MEE Model

The matter-element extension (MEE) model was firstly proposed by Cai [23]. It can solve
the contradictory and incompatibility problem from both qualitative and quantitative aspects [33].
A matter-element is the basic unit of the MEE model [24], the matter-element R is an ordered triplet
R = [N, C, V], which contains three fundamental elements: matter-element name (N), matter-element
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characteristics (C), and values of matter-element characteristics (V). For example, in this paper,
the seepage safety assessment is the matter-element name (N), the evaluation indicators are regarded
as the matter-element characteristics (C), and the values of matter-element characteristics (V) are
represented by the values corresponding to the indicators. The matter-element analysis first needs
to determine the classical matter-element, the joint matter-element, and evaluated matter-element
according to the evaluation indicators and the classification standard of safety level. Then, the safety
level to which the evaluation object belongs can be judged by calculating the single indicator correlation
function, the multi-indicators comprehensive correlation function, and the evaluation eigenvalue.
The detailed steps can be found in the researches of Ma and Li [24,33].

The D-MEE model is similar to the MEE model. However, in contrast to the MEE model,
the discrete data of the indicators are replaced by a smooth function fitted by the FDA in the
D-MEE model and the evaluation result is a continuous function curve rather than a discrete value.
The establishment process of the D-MEE model is described as follows.

Step 1: Determine the classic matter-element, the joint matter-element, and the
evaluated-matter element.

The classic matter-element R0j = [N0j, Ci, V0ij] is defined as follows.

R0j =


N0j C1 V01j

C2 V02j
...

...
Cn V0nj

 =


N0j C1

〈
a01j, b01j

〉
C2

〈
a02j, b02j

〉
...

...
Cn

〈
a0nj, b0nj

〉

 (5)

where N0j is the j-th safety level, j = 1, 2, . . . , m; Ci is the i-th indicator, i = 1, 2, . . . , n; V0ij is the value
range of the i-th indicator under the j-th safety level—that is, the classical domain; and a0ij and b0ij are
the lower and upper limits of the classical domain, respectively. The calculation process of the classical
matter-element can be referred to the researches of Mei, Ma and Li [19,24,33].

Similarly, the joint matter-element Rp = [Np, Ci, Vpi] can be expressed as

Rp =


Np C1 Vp1

C2 Vp2
...

...
Cn Vpn

 =


Np C1

〈
ap1, bp1

〉
C2

〈
ap2, bp2

〉
...

...
Cn

〈
apn, bpn

〉

 (6)

where Np represents the whole body of the safety levels; Vpi represents the value range of the indicator
Ci—that is, the joint domain; and api and bpi are the upper and lower limits of the joint domain,
respectively.

Then, evaluated matter-element Rt is described as

Rt =


Nt C1 v1(t)

C2 v2(t)
...

...
Cn vn(t)

 (7)

where Nt is the object to be evaluated, here is the dam seepage safety; vi(t) represents the function
value of the indicator Ci.

Step 2: Calculate the single indicator correlation function.
To determine the degree of association of the i-th indicator with the j-th safety level, the correlation

function is defined as follows.

Kj(vi(t)) =
ρ(vi(t), V0ij)

D(vi(t), V0ij, Vpi)
(8)
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where,

D
(
vi
(
t),V0ij, Vpi

)
=

{
ρ
(
vi
(
t),Vpi

)
− ρ
(
vi
(
t),V0ij),vi(t) /∈ V0ij

−
∣∣a0ij − b0ij|, vi(t) ∈ V0ij

(9)

ρ(vi(t),V0ij) =

∣∣∣∣vi(t)−
a0ij + b0ij

2

∣∣∣∣− b0ij − a0ij

2
(10)

ρ(vi(t),Vpi) =

∣∣∣∣vi(t)−
api + bpi

2

∣∣∣∣− bpi − api

2
(11)

Equation (10) represents the distance between vi(t) and its classical domain V0ij, while
Equation (11) represents the distance between vi(t) and its joint domain Vpi [32].

Step 3: Calculate the multi-indicator comprehensive correlation function.

Kj(t) =
n

∑
i=1

αi(t)Kj(vi(t)) (12)

where αi(t) is the weight of the i-th evaluation indicator, and it is determined by the D-CRITIC method
in Section 2.4.

Step 4: Calculate the evaluation eigenvalue.

E(t) =

m
∑

j=1
jKj(t)

m
∑

j=1
Kj(t)

(13)

According to the E(t) value, it is possible to determine the level to which the evaluation object
belongs. A low value for E(t) indicates a safer level and vice versa.

2.4. D-CRITIC Method for Determining the Indicator Weights

CRITIC is a method for determining the objective weights of the indicators [46]. The weights
derived by the CRITIC method incorporate the contrast intensity of each indicator and the conflict
among the indicators [53]. The contrast intensity can be measured by the standard deviation or
coefficient of variation. The larger the standard deviation or coefficient of variation, the more
information reflected by the data sample of the indicator. The conflict is considered by the correlation
coefficient between the indicators. If the positive correlation between the two indicators is strong,
the conflict between the two is low, indicating that the information reflected by the two indicators is
similar [53]. The standard deviation can only reflect the absolute change in the indicator, while the
coefficient of variation can reflect the relative change. Therefore, the coefficient of variation is selected
to calculate the contrast intensity, and the Pearson correlation coefficient is used to calculate the conflict
in this study. The following steps can implement the D-CRITIC method.

Step 1: Calculate the coefficient of variation fi(tik) of each indicator vector as follows

fi(tik) =
σi(tik)

vi
(14)

where σi(tik) is the standard deviation of the i-th indicator at monitoring time point tik, vi represents
the average of the normalized value of the i-th indicator, and they can be calculated as follows

vi =
1
K

K

∑
k=1

vi(tik) (15)

σi(tik) =

√
1
K
[vi(tik)− vi]

2 (16)
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where K is the observation number of the i-th indicator.
Step 2: Construct the symmetric matrix, with dimensions n × n. The generic element rii′ of the

matrix is the Pearson correlation coefficient between the indicator vectors vi and vi′ .
Step 3: Generate the curve of the information measure Ii(t) as follows

Ii(tik) = fi(tik)
n

∑
i=1

(1−|rii′ |) (17)

where Ii(tik) is the information measure of the i-th indicator at monitoring time point tik, i = 1, 2, . . . , n.
In the D-CRITIC method, in order to dynamically assign weights to the indicators, it is necessary

to convert the discrete values of the information measure into continuous function curve. The curve of
the information measure Ii(t) can be generated based on the smoothing techniques of FDA:

Ii(t) =
M∗

∑
m=1

ε∗im ϕm(t) i= 1, 2, · · · , n; t ∈ T (18)

where M* and n are the numbers of basis function and indicators, respectively; T is the research time
domain; ϕm(t) are the basis functions; and εim

* are the coefficients determined by minimizing the
squared distance method.

min{
K

∑
k=1

(
M∗

∑
m=1

ε∗im ϕm(t)− Ii(tik))

2

} (19)

where K is the observation number of the i-th indicator.
Step 4: Determine the dynamic weight of each indicator as follows

αi(t) =
Ii(t)

n
∑

i=1
Ii(t)

i = 1, 2, · · · , n (20)

2.5. Calculation of the Comprehensive Score by Constructing the Spatial Weight Matrix

The concrete gravity dam is composed of multiple dam blocks. In order to consider the influence
of the seepage safety state of different dam blocks on the overall seepage safety of the dam, this paper
introduces the evaluation eigenvalue of each dam block into the construction of the spatial weight
matrix to calculate the comprehensive score of seepage safety assessment.

Suppose L is the number of dam blocks. The comprehensive score can be calculated as follows.
Step 1: Establish the asymmetric spatial weight matrix W, with dimensions L × L. The diagonal

elements are set to zero, and the off diagonal element Wll’(t) is specified as follows

Wll′(t) =
El(t)
El′(t)

dll′ (21)

where El(t) and El’(t) are the evaluation eigenvalues of the l-th and the l’-th dam block, respectively.
dll ′ is the corresponding element in the adjacency-based spatial weight matrix, which is defined as
follows

dll′ =

{
1 (dam block l and dam block l′ are adjacent)

0 (dam block l and dam block l′ are not adjacent or l = l′)
(22)

Step 2: Calculate the sum W̃(t) of the elements of each row in the matrix W.
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Step 3: Calculate the spatial weight wl(t) as follows:

wl(t) =
W̃l(t)

L
∑

l=1
W̃l(t)

(23)

Finally, the comprehensive score for seepage safety of the dam can be calculated as follows

E′(t) =
L

∑
l=1

wl(t)El(t) (24)

The seepage safety level can be determined according to the comprehensive score E
′
(t). A low

value for E
′
(t) indicates a safer level and vice versa.

3. Case Study

3.1. Project Overview

The dynamic comprehensive assessment method was applied to a case study to assess the seepage
safety for concrete gravity dam X located on the lower reaches of the Jinsha River in southwest China.
The project started in 2006 and was completed in 2015. On 10 October 2012 the concrete gravity dam X
officially lowered its sluice to store water, which marked that the first unit of hydropower station was
about to go into operation and generate electricity. Concrete gravity dam X is mainly composed of
nonspillway dam blockson both sides of the river, plants behind the left bank dam, a ship lift on the
left bank, a spillway dam blockin the river, and an underground plant on the right bank. The dam
crest elevation is 384 m and the total dam crest length is 909.26 m. The normal water level is 380 m and
the dead water level is 370 m. Concrete gravity dam X is mainly based on power generation, and has
comprehensive benefits such as improved navigation conditions, flood control, irrigation, and sand
interception. More information about the concrete gravity dam X can be obtained from the research of
Zhong [68].

In this paper, the seepage monitoring data of October 2012 were selected to conduct the seepage
safety assessment. The uplift pressure was measured by the pore pressure meters distributed on the
dam foundation. The pore pressure meters were arranged on the transverse drainage gallery, and there
were generally no less than three pore pressure meters on each monitoring section. The seepage
flow was measured by the triangular weirs, which were arranged in the drainage gallery and at the
outlet of the drainage hole. The upstream water level and the downstream water level were observed
synchronously by the water level gauges, which were arranged at the dam block with a stable water
level in the upstream and the dam toe in the downstream, respectively. The temperature monitoring
data were obtained from the meteorological monitoring stations in the dam area. As the dam was in
the first impoundment period in October 2012, the upstream water level and the downstream water
level were measured four times a day (the mean value of daily temperature measurements are used in
this study), while the uplift pressure, seepage flow, and temperature data were read only once a day.

In order to consider the influence of the different dam blocks on the overall seepage safety status,
the concrete gravity dam X is roughly divided into four parts according to the blocks’ different roles
played in the dam operation: the left nonspillway (LN) dam block for retaining water on the left bank,
the right nonspillway (RN) dam block for retaining water on the right bank, the powerhouse (PH) dam
block for power generation, and the spillway (SW) dam block for flood discharge in the middle of the
riverbed. The regional map of concrete gravity dam X and the 3D dam model are shown in Figure 3.
According to the geological exploration data, the left bank foundation of concrete gravity dam X is
squeezed with compressive zone [8], the low strength and high permeability of rock mass poses a
threat to seepage safety. In addition, the rock mass in the compressional zone has a small inclination,
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which is easy to form a slip control surface and is very unfavorable to the anti-sliding stability of the
dam. Therefore, the LN dam block was chosen for implementing the method in detail.
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3.2. Determining the Evaluation Indicators and Criteria

As mentioned earlier, temperature (C1) and water level difference (C2) are proposed as pressure
indicators, seepage flow (C3) and uplift pressure (C4) are proposed as state indicators, and the
rate of change in seepage flow (C5) and the rate of change in uplift pressure (C6) are proposed as
response indicators.

According to related research [19,69], the seepage safety level can be divided into five
classifications (I, II, III, IV, and V), which corresponds to the criterion set (Normal, Normal Basically,
Little Abnormal, Abnormal, Dangerous). The classification standard for seepage safety level is shown
in Table 1.

Table 1. Classification standard for seepage safety level.

Classification Comprehensive
Score C1 C2 C3 C4 C5 C6

I
(Normal) 1–1.5 0–0.2 0–0.2 0–0.2 0–0.2 0–0.2 0–0.2

II
(Normal Basically) 1.5–2.5 0.2–0.4 0.2–0.4 0.2–0.4 0.2–0.4 0.2–0.4 0.2–0.4

III
(Little Abnormal) 2.5–3.5 0.4–0.6 0.4–0.6 0.4–0.6 0.4–0.6 0.4–0.6 0.4–0.6

IV
(Abnormal) 3.5–4.5 0.6–0.8 0.6–0.8 0.6–0.8 0.6–0.8 0.6–0.8 0.6–0.8

V
(Dangerous) 4.5–5 0.8–1 0.8–1 0.8–1 0.8–1 0.8–1 0.8–1

As the value domains and units of the measured values of evaluation indicators are different,
it is necessary to normalize the measuring values of each indicator. The measuring values should
be normalized according to Formula (4), because larger measuring values are worse for the status of
seepage safety. Then, the grade boundary value of each indicator can be obtained [19].

Because a low value for E
′
(t) (comprehensive score) indicates safer state of the dam seepage and

vice versa. Here, in reference to similar studies that used the MEE model [44], this study defines the
seepage safety level as I when 1 < E

′
(t) < 1.5 and as V when 4.5 < E

′
(t) < 5. The seepage safety levels

are II, III, and IV when i−0.5 < E
′
(t) < i + 0.5, i = 2, 3, 4, respectively.
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3.3. Generate the Function Curve for Each Indicator Using FDA

The monitoring values of the indicators in October 2012 are provided by the automated seepage
safety monitoring system, the seepage flow data on 3 and 9 October of the LN dam block are missing.
Because the evaluation indicators proposed in this study are the reverse indicators, the smaller the
indicator value, the safer the evaluation result. Therefore, Formula (4) was used to normalize the
monitoring data of the indicators. Then, the fourth order B-spline basis function is used to smooth the
data of each indicator because the monitoring data selected in this paper is nonperiodic and inevitably
have monitoring errors. At last, the discrete data are converted into a continuous function curve
over the same time domain according to the Equations (1) and (2), although the monitoring values of
seepage flow on the 3 and 9 October are missing, as shown in Figure 4. The rate of change in seepage
flow and the rate of change in uplift pressure are obtained by the derivative analysis of the FDA
method, as shown in Figure 4e,f.
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pressure C6.
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3.4. Determine the Classic Matter-Element, the Joint Matter-Element, and Evaluated Matter-Element

The classic matter-element R0j = [N0j, Ci, V0j] is set as follows

R0j =



N01 N02 N03 N04 N05

C1 (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1)
C2 (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1)
C3 (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1)
C4 (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1)
C5 (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1)
C6 (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1)


(25)

The joint matter-element Rp = [Np, Ci, Vp] is

Rp =



Np C1 (0, 1)
C2 (0, 1)
C3 (0, 1)
C4 (0, 1)
C5 (0, 1)
C6 (0, 1)


(26)

Evaluated matter-element Rt is described as

Rt =



Nt C1 v1(t)
C2 v2(t)
C3 v3(t)
C4 v4(t)
C5 v5(t)
C6 v6(t)


(27)

where Nt represents the dam seepage safety and vi(t) represents the function curve of the indicator Ci,
which is generated by FDA.

The single indicator correlation function Kj(vi(t)) can then be calculated according to
Equations (8)–(11).

3.5. Determine the Weights of the Indicators Based on the D-CRITIC Method

The correlation among indicators is shown in Figure 5. The radius and color of the circle in the
figure represent the magnitude of the Pearson correlation R between the parameters. The numbers on
the circle represent the Pearson correlation coefficients. Generally speaking, |R| = 0 is an uncorrelated
relationship, 0 < |R| < 0.4 is a weak correlation, 0.4 < |R| < 0.75 is a correlation, 0.75 < |R| < 1 is
a strong correlation, and |R| = 1 is a complete correlation. Obviously, there is a strong correlation
among C2, C3, and C4. To consider the impact of the correlation among indicators, this study proposes
the D-CRITIC method to determine the weights of the indicators. The detailed calculation process of
the D-CRITIC method is described in Section 2.4. The dynamic weight curves of the indicators are
shown in Figure 6.
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As shown in Figure 6a, the dynamic weight curves of pressure indicators and state indicators
show a sharp decline and then rise sharply during the period from 9 to 17 October. Compared with
Figure 6a, the dynamic weight curves of response indicators in Figure 6b show an opposite trend
during the same period.

After obtaining the weights of the indicators αi(t), the multi-indicator comprehensive correlation
function Kj(t) can be obtained from Equation (12).

3.6. Calculate the Comprehensive Score

According to Equation (12), the evaluation eigenvalue of LN dam block E(t) can then be calculated.
The remaining three dam blocks are evaluated in the same way, and the evaluation eigenvalue curves
of the different dam blocks are shown in Figure 7.
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It can be seen that all evaluation eigenvalue curves dynamically change between level II (Normal
Basically) and level III (Little Abnormal). However, the change trend of the eigenvalue curve for each
dam block is different. Obviously, it is not appropriate to judge the overall seepage safety level by
only one dam block. In addition, the evaluation eigenvalue curves of LN dam block and SW dam
block fluctuate greatly. While the evaluation eigenvalue curve of RN dam block and PH dam block has
little fluctuation, which may be related to their respective structural characteristics and foundation
conditions. To consider the impact of different dam blocks on the overall seepage safety of the dam and
calculate the comprehensive score, this study has established the spatial weight matrix. The calculation
process is described in Section 2.5. The comprehensive score curve of the seepage safety is shown in
Figure 8. The evaluation results also dynamically change between level II (Normal Basically) and level
III (Little Abnormal). In addition, it can be clearly seen that the trend of the comprehensive score curve
is similar to the evaluation eigenvalue curve of the PH dam block. This indicates that the PH dam
block has the most important influence on the overall seepage safety of the dam. In fact, the seepage
safety of the PH dam block is also of great concern because of its complex internal features and its
important role in power generation.Energies 2019, 12, x FOR PEER REVIEW 16 of 22 
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4. Discussion

First, to illustrate the effectiveness and superiority of the D-MEE method, it is compared with
the set pair analysis method, fuzzy comprehensive evaluation method, and matter-element extension
method. The data come from the monitoring data from 5 to 15 October. The comparison of results is
shown in Table 2.

Table 2. Comparison results of the seepage safety level using various methods.

Data Set Pair Analysis
Method

Fuzzy Comprehensive
Evaluation Method

Matter-Element
Extension Method D-MEE Method

5 II II III II
6 II II II II
7 II II II II
8 II II II II
9 — — — II
10 II II III III
11 III II II II
12 III III III III
13 III II III III
14 IV III III III
15 III IV III III

The results of the D-MEE method are highly consistent with the results of the other methods.
As seen in the results, the evaluation results on 6, 7, 8, and 12 October are identical. In addition,
the results of the D-MEE method are close to those of other methods. That is, 90% of results are the
same as those from the matter-element extension method, and 70% of the results are the same as those
of the fuzzy comprehensive evaluation method and the set pair analysis method.

The D-MEE method is most representative amongst all methods. According to the evaluation
results of several methods, on 5, 6, 7, 8, and 11 October, most of the levels are II and on 10, 12,
13, 14, 15 October, most of the levels are III. The same conclusion can be drawn by the D-MEE
method individually.

The D-MEE method has the advantage of solving the problem of missing data. Because the
seepage flow data of the LN dam block were missing on 9 October, the safety level on 9 October could
not be obtained by other methods. However, the D-MEE method can effectively solve this problem by
the continuous function curve generated by the smoothing technique.

Second, to illustrate the necessity of considering the correlation among indicators when
determining the weights, the method proposed in this paper is compared with the case that ignores
the correlation among indicators and determines the weights using the entropy method.

As shown in Figure 9, in the case of ignoring the correlation among indicators, the comprehensive
score will be greater than that when considering the correlation among indicators. Because the indicator
weight has a crucial impact on the evaluation results, this study calculates the average weight of each
evaluation indicator of each dam block under these two conditions, as shown in Figure 10. It can be
seen in Figure 10 that the weights of key indicators C2, C3, and C4 will increase significantly in the
case of ignoring the correlation among indicators, which means that the conflict among C2, C3, and C4
is large, reflecting that their information similarity is small. However, according to the correlation
analysis of Figure 5, the correlation coefficient among C2, C3, and C4 is greater than 0.9, which is a
strong correlation; that is, the information similarity reflected by C2, C3, and C4 is large. Therefore,
it is necessary to consider the correlation among indicators in the calculation of indicator weights.
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In conclusion, compared with other commonly used methods for seepage safety evaluation,
the D-MEE method proposed in this paper is effective and superior. At the same time, in order to
obtain more reasonable and accurate evaluation results, it is necessary to consider the correlation
among the indicators when determining the indicator weights. In addition, according to the analysis of
Figures 7 and 8 in the previous chapter, the seepage safety state of each dam block is different, and the
combination of the safety state of each dam block through the spatial weight matrix can reflect the
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overall seepage safety level of the dam. Therefore, the evaluation method proposed in this paper is
of great significance for the dynamic comprehensive assessment of dam seepage safety and can be
applied to other similar fields.

5. Conclusions

Seepage safety assessment is an important work to ensure dam safety. In this paper, based on the
matter-element extension (MEE) model and functional data analysis (FDA), a dynamic matter-element
extension (D-MEE) model is proposed to dynamically and comprehensively assess the seepage safety
of a dam. It considers not only the correlation among indicators, but also considers the influence of
different dam sections on the overall seepage safety. The proposed method was successfully applied
to the seepage safety assessment of a concrete gravity dam in southwest China. As discussed in the
paper, and illustrated by the real-life hydraulic engineering application example, three advantages of
this method can be summarized:

• The proposed D-MEE model converts the discrete monitoring data into a dynamic and continuous
function curve through smoothing technology, which can reflect the dynamic change process
of seepage safety more intuitively and comprehensively. In addition, more information can be
obtained by the derivative analysis of the function curves. D-MEE can also solve the problems of
missing data and unequal sampling.

• The proposed D-CRITIC method effectively considers the correlation among indicators and avoids
the overlap of indicator information. At the same time, it determines the weights according to the
dynamic change of the indicators, making the weights more accurate.

• The spatial weight integrated with the dynamic evaluation eigenvalues can be effectively used to
assess the overall seepage safety and make the evaluation results more reasonable.

Overall, the method proposed in this paper is suitable for dynamic comprehensive assessment of
multi-indicator and multiregion problems. For future work, more indicators that affect the seepage
safety, such as creep and hydration temperature, can be considered into the indicator system to
establish a more comprehensive indicator system. In addition, the proposed method can be integrated
into the seepage automatic monitoring system for more effective assessment of seepage safety.
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