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Abstract: This paper examines the impact on experimental uncertainty of introducing aerodynamic
and rotor gyroscopic loading on a model multirotor floating wind energy platform during physical
testing. In addition, a methodology and a metric are presented for the assessment of the uncertainty
across the full time series for the response of a floating wind energy platform during wave basin
testing. It is shown that there is a significant cost incurred in terms of experimental uncertainty
through the addition of rotor thrust in the laboratory environment for the considered platform.
A slight reduction in experimental uncertainty is observed through the introduction of gyroscopic
rotor loading for most platform responses.

Keywords: uncertainty; accuracy; precision; multi rotor; floating wind; offshore wind; wave basin;
physical testing; validation

1. Introduction

With the installation of the 30 MW Hywind pilot project in 2017 and the ongoing works on
the 50 MW Kincardine farm, floating offshore wind turbines (FOWTs) are now a commercial reality.
However, many floating wind platform concepts are still progressing through the technology readiness
levels (TRLs) via a combination of experimental and physical testing, and over 30 such concepts
were identified in [1]. The progression of these technologies through the TRLs has resulted in a
wealth of fundamental research in the areas of both physical and numerical hydrodynamics to support
advancement to commercialisation.

In terms of physical testing of FOWTs, research has focused on increasing accuracy or
realism through the introduction of wind turbine emulation systems, such as pulleys, ducted fans,
Software-in-Loop, rotating weighted beams, and fully Reynolds scaled turbines, designed to operate
at the Froude scaled timescales of a wave basin test campaign. A review of the available options and
recent development are presented in [2,3]. It is generally accepted that these wind turbine emulation
systems increase the realism of wave basin testing by allowing the impact of atmospheric turbulence,
turbine control algorithms, and the contribution of platform motion to the wind speed experienced
across the rotor to be considered. However, there has been little consideration of the impact of
increasingly realistic wave basin representations of FOWTs on testing uncertainty.

This paper examines the impact on testing uncertainty in a laboratory environment observed
by introducing wind thrust and gyroscopic rotor loading on a 1:36 Froude scaled multirotor floating
platform. This work will inform the analysis in the H2020 project, MaRINET2 Offshore Wind Round
Robin Tests, in which the FP7 INNWIND semi-submersible platform will be tested at a scale of 1:60
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across four separate European test facilities using a range of wind emulation systems during 2019
and 2020.

2. Uncertainty Assessment

The title of this paper refers to a potential trade-off between accuracy and precision when
undertaking experimental testing of FOWTs. Different terminology is used in various sources; in this
paper, accuracy is taken to be a measure of how close the results achieved at the model scale are to the
‘real’ value, i.e., what would be observed for a fully operating FOWT at full scale. Precision is taken to
be a measure of the scatter observed in the results at the model scale, i.e., the repeatability of the tests.
Together, accuracy and precision are taken as measures of experimental uncertainty. These definitions
are summarised graphically in Figure 1, where the centre of the target is the “real” value and the black
dots are experimental assessments of this value.
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There is a long history of model testing in the shipbuilding sector stretching back to the work of 
Leonardo da Vinci in the 1500s, however, the systematic assessment of experimental uncertainty has 
only emerged in the past 15 years [4]. Guidelines are provided for the assessment of uncertainty in 
tank testing by both ASME [5] and the ITTC [6] with specific guidance provided by the ITTC for the 
testing of offshore wind turbines [7]. However, these are guidelines only and do not provide a 
systemic approach for the assessment of experimental uncertainty, an unenviable task given the 
broad spectrum of testing undertaken in wave basins facilities. As the physical testing of FOWTs is 
relatively new, a standardised approach has yet to emerge and thus a quantification of experimental 
uncertainty is often absent from the relevant literature. For example, in [8–11], experimental 
uncertainty was not addressed, whilst in [12–17], comparisons between numerical and physical data 
were presented, which can be considered a measure of experimental accuracy, but with no 
assessment of experimental precision. 

There are exceptions to this trend of omitting an assessment of experimental uncertainty in 
FOWT test campaigns. Most notably, in a recent paper [18], the subject of which is a test campaign 
on the OC5-DeepCwind semisubmersible platform at a scale of 1:50. The authors followed the 
uncertainty assessment guidelines provided by ASME [5], identified all potential sources of 
experimental uncertainty, and quantified some examples, such as wave elevation, model centre of 
gravity determination, platform motions, and mooring line loads. The ultimate aim of the work 
presented in [18] was to quantify all sources of both experimental precision and accuracy for a 
particular test campaign and to propagate using statistical techniques to determine an overall 
threshold for experimental uncertainty. The motivation for this rigorous assessment were the 
requirements of the OC5 community to allow a meaningful inter-comparison of their increasingly 
advanced FOWT numerical simulations with a robust physical validation dataset. 

This paper does not attempt to quantify all sources of experimental uncertainty, but focuses 
specifically on the precision of measured model responses (pitch, surge, heave) and mooring line 
loads. A methodology and metric are presented, which allow the precision across the full time series 
to be assessed rather than focusing on the variation observed in statistical measures, such as max, 
mean, standard deviation, or variation in the top 10 peaks. Whilst this methodology was devised 
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There is a long history of model testing in the shipbuilding sector stretching back to the work of
Leonardo da Vinci in the 1500s, however, the systematic assessment of experimental uncertainty has
only emerged in the past 15 years [4]. Guidelines are provided for the assessment of uncertainty in tank
testing by both ASME [5] and the ITTC [6] with specific guidance provided by the ITTC for the testing of
offshore wind turbines [7]. However, these are guidelines only and do not provide a systemic approach
for the assessment of experimental uncertainty, an unenviable task given the broad spectrum of testing
undertaken in wave basins facilities. As the physical testing of FOWTs is relatively new, a standardised
approach has yet to emerge and thus a quantification of experimental uncertainty is often absent from
the relevant literature. For example, in [8–11], experimental uncertainty was not addressed, whilst
in [12–17], comparisons between numerical and physical data were presented, which can be considered
a measure of experimental accuracy, but with no assessment of experimental precision.

There are exceptions to this trend of omitting an assessment of experimental uncertainty
in FOWT test campaigns. Most notably, in a recent paper [18], the subject of which is a test
campaign on the OC5-DeepCwind semisubmersible platform at a scale of 1:50. The authors followed
the uncertainty assessment guidelines provided by ASME [5], identified all potential sources of
experimental uncertainty, and quantified some examples, such as wave elevation, model centre of
gravity determination, platform motions, and mooring line loads. The ultimate aim of the work
presented in [18] was to quantify all sources of both experimental precision and accuracy for a
particular test campaign and to propagate using statistical techniques to determine an overall threshold
for experimental uncertainty. The motivation for this rigorous assessment were the requirements of
the OC5 community to allow a meaningful inter-comparison of their increasingly advanced FOWT
numerical simulations with a robust physical validation dataset.

This paper does not attempt to quantify all sources of experimental uncertainty, but focuses
specifically on the precision of measured model responses (pitch, surge, heave) and mooring line loads.
A methodology and metric are presented, which allow the precision across the full time series to be
assessed rather than focusing on the variation observed in statistical measures, such as max, mean,
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standard deviation, or variation in the top 10 peaks. Whilst this methodology was devised specifically
to examine the impact of rotor thrust and gyroscopic loading on the experimental precision of the
considered test campaign, it also provides an insight into the dynamic nature of experimental precision
and allows for robust comparison with numerical models across the full time series. This may be
particularly useful for identifying the points in a time series at which numerical and physical results
diverge or for understanding system fatigue, where an appreciation of potential dynamic loadings and
their relative variations are key.

3. Validation Data

The validation data for this paper was sourced from an experimental test campaign considering
the SCDnezzy2 platform in the Lir National Ocean Test Facility (NOTF). Details are provided below.

3.1. SCDNezzy2

A multirotor FOWT is being developed by aerodyn engineering gmbh, Büdelsdorf, Germany.
The technology consists of a turret mooring system, a semisubmersible platform, and 2 No. 7.5 MW
wind turbines. The platform is referred to as SCDnezzy2 and the 1:36 Froude scaled non-elastic model
considered during the test campaign is presented in Figure 2. The turret mooring system is connected
to the keel of the bow vertical leg. At the model scale, SCDnezzy2 has a total length of 2.6 m, hub
height of 2.4 m, freeboard of 0.5 m, draft of 0.4 m, and total mass of approximately 135 kg. The full
details of the SCDnezzy2 design are commercially sensitive.
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Figure 2. SCDnezzy2 during testing at Lir NOTF. The Qualisys markers appear as points of light on
the bow and tower.

Wind thrust during the experimental campaign was simulated using 2 No. 89 mm ducted fans
(Midi Fan pro ducted fan unit / HET 650-68-1500). During testing, both fans were set at a thrust of
10 N, equivalent to the full scale thrust, which would be expected at approximately 6.5 m/s during
operation [19]. The ducted fans were connected to a 3-axis load cell (Applied Measurements Limited
Three Axis Force Sensor OBUXYZ120, 500N rating, non-linearity 0.2%, hysteresis 0.02%), which was
used to calibrate and balance the fan thrusts prior to the commencement of testing. In order to set
the fans’ thrust, the floor of the Deep Ocean Basin was first raised to lift the model out of the water.
The control settings for both fans were then adjusted to provide a downwind thrust of 10 N on each
tower as measured using the 3-axis load cell. Once the thrust settings were balanced and consistent,
the floor was dropped to the required level for testing. This process was conducted once prior to
starting the testing outlined in this paper, thus ensuring that the same thrust and fan configuration was
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used for all tests. Fan thrust was also monitored during testing, however, these data are less reliable
due to the motions of the floating platform.

Gyroscopic rotor loading was simulated by 2 No. weighted rotating beams. Each rotating beam
consisted of a 25 mm × 10 mm × 1350 mm aluminum beam, with a mass of 732 g. Lead was added to
both ends of each beam to bring the total mass per beam to 2 kg. These beams were rotated at a constant
76.2 RPM by use of stepper motors (NEME 23–60 mm High Torque Stepper Motors). During the testing
examined in this paper, the beams were contra-rotating and in sync (i.e., both were vertical/horizontal
at the same time). The rotating beams were kept in sync by providing a single control signal (produced
by an Arduino Mega 2560) to both stepper motor drivers (DMD556 Digital Stepper Drive). The control
signal frequency was gradually ramped up/down over a period of one minute to provide a soft
start/stop for the rotating beams. Both beams were placed in the horizontal position prior to beginning
each test to ensure consistency of the experimental approach. The synchronicity and rotation speed of
the beams were confirmed by filming both beams for a period of 1 min during testing.

The experimental configuration at each nacelle is shown in Figure 3, and the direction of the
wind thrust is indicated by the blue arrow. Further views and schematics are provided in Figures 4–6.
As can be seen, the rotating weighted beams intermittently obstructed the air intakes of the ducted
fans during operation.
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3.2. Wave Basin

The SCDnezzy2 model was tested in the Deep Ocean Basin of the Lir NOTF. The basin, shown
in Figure 7, has dimensions of 35 m long × 12 m wide × 4 m deep and is equipped with 16 hinged
force feedback paddles capable of a peak wave generation condition of Hs = 0.6 m, Tp = 2.7 s,
and Hmax = 1.1 m. A movable floor plate allows the water depth to be adjusted to a maximum of 3 m.
During testing of the SCDnezzy2 model, the tank water depth was set to 1.111 m in order to simulate a
water depth of 40 m at full scale.

To track the motion of models in the Deep Ocean Basin, a system provided by Qualisys, Göteborg,
Sweden was used. The installation consists of four Opus 3-series cameras data from which were
captured at a rate of 96 Hz during the SCDnezzy2 test campaign and processed using the Qualisys
Track Manager (QTM) software (Qualisys, Göteborg, Sweden). A total of 5 markers were placed on the
SCDnezzy2 model during testing; the location of these markers can be seen in Figure 2.
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During testing, mooring line forces were replicated by use of taut 3 mm stainless steel wires with
springs in parallel to provide the load-displacement performance of the full scale catenary system.
These mooring lines were anchored to the basin floor at a horizontal spread of 4 m. The mooring springs
had a stiffness of 0.09 N/mm up to a load of 10 N and 0.4 N/mm for higher loads. The pretension at
equilibrium was 3.2 N. Line loads were monitored at the interface with the turret mooring through the
use of single axis load cells. A total of 5 No. mooring lines and load cells were connected to the model.
In this paper, only the data relating to the front mooring line was analysed. The load cell used on this
mooring line was a 445N Futex submersible S-Beam (Model LSB210 connected to a 10 V D.C. power
source, non-linearity 1%, hysteresis 1.5%), data from which were collected at a rate of 100 Hz.

3.3. Test Matrix

Three test groups were conducted, with each being repeated 5 times to provide an assessment of
experimental precision as per [18]. These three test groups are described in Table 1. A Bretschneider
spectrum was used for all tests.

Table 1. Test matrix. All values are in model scale.

Group Hs (m) Tp (sec) Thrust (N/kN) Beams Rotating

A 0.1 1.3 0 No
B 0.1 1.3 10 No
C 0.1 1.3 10 Yes

As can be seen in Table 1, Group C tests are the most representative of a full scale operating FOWT
as both the rotor thrust and gyroscopic loading are included. Thus, Group C tests represent the highest
level of accuracy or realism considered in this paper. The focus of the presented analysis will be the
impact of increasing the levels of accuracy on the experimental precision.

For each test, the wind thrust and rotating beams were started (if used), the model was allowed
to settle before wave generation commenced. A 1-min wave ramp up period was provided, data were
recorded for 10 min, and the tank was allowed to settle for 5 min prior to starting the next test.

4. Precision Assessment Method

The first step used in the assessment of experimental precision was to assess the background
“noise” in all data signals. The tank was allowed to settle overnight and data from all sensors were
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recorded for a period of 5 min. The error ranges observed (maximum value–minimum value) over this
period are given in Table 2.

Table 2. Noise on measurement signals at equilibrium. All values are in model scale.

Value Error Range Units

Pitch 0.05 Degrees
Surge 0.93 mm
Heave 1.29 mm

Front line load 0.47 N

Next, all data from repeat tests in each group, see Table 1, were extracted for the 10 min active
test period. The time series for the pitch, surge, heave, and front line load tests in each group were
adjusted for the time shift by examining the Pearson’s correlation coefficient (PCC). Typically, a time
adjustment of 0.05 sec was required and a PCC of 0.99 was achieved across all comparable time series
in each group. Figure 8 shows a sample of a set of adjusted time series data. This time shift is due to a
slight variable lag between starting the wave maker and the data acquisition systems.
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The error range (maximum value–minimum value) was then calculated at every time step for
each group of time series. As mentioned previously, all motion data were recorded at 96 Hz and line
load data at 100 Hz, thus a total of 57,600 error range values were calculated for motions and 60,000 for
line load over the 10 min active test period for each Group of 5 repetitions. For visualisation, these
error range data are presented as exceedance probability plots; a sample is shown in Figure 9.

The shaded region in Figure 9 indicates the error range which can be attributed to sensor noise,
the values in Table 2. The orange data points indicate the error range observed across the 5 repetitions
for the 10 top peaks, the precision metric used in [18]. As can be seen in Figures 8 and 9, the magnitude
of the error range is not well correlated to the magnitude of the value being measured with 8 of the top
10 peak error range values being exceeded for at least 85% of the 10-min time concurrent time series
for Group B in pitch. Thus, examining the error in the top 10 peaks or maximum peak does not give an
appreciation of the error observed across the full time series. To capture this detail, the precision metric
used in this paper will be P5

5 ; that is, the error range which is exceeded 5% of the time for concurrent
time series with 5 repetitions. For the data presented in Figure 9, the P5

5 = 0.49 degrees.
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5. Results

In this section, results are presented for the experimental precision observed in Group A, B,
and C for the main platform responses and the front line load. In all exceedance probability plots,
the error range which can be attributed to sensor noise, that is the values in Table 2, is indicated as a
highlighted region.

5.1. Pitch

As can be seen in Figure 10, the precision of the Group A tests is very high in pitch with just
40% of the observed error range values falling inside the threshold, which can be attributed to sensor
“noise”. The precision of Group B and C tests is significantly lower with a fivefold increase in P5

5 .
The comparison between Group B and Group C displays a higher level of precision at lower error
ranges thresholds, however, and, ultimately, the P5

5 values are approximately equal. Overall, a marked
reduction in experimental precision is observed through the introduction of wind loading whilst
the impact of gyroscopic loading is inconclusive. Maximum pitch values are included in Table 3 for
information, the error associated with Qualisys measurements is not dependent on the magnitude of
the value being measured.

Table 3. Pitch P5
5 values. The maximum values are the average of the peak pitch values for the five

repetitions in each group.

Group Pitch P5
5 (Degrees) Max Pitch (Degrees)

A 0.10 1.5
B 0.49 4.9
C 0.51 4.9

It is also interesting to examine the positioning of the orange data points in Figure 10, the range
observed in the top 10 peaks. As can be seen, eight of these points fall below an error range of
0.1 degrees for Group B and six for Group C. This indicates that the experimental precision in pitch is
not related to the absolute value of pitch and highlights the requirement for a metric that summarises
the precision across the full time series.
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5.2. Surge

Figure 11 highlights a marked trend of a decrease in experimental precision in the surge
measurements through the introduction of wind thrust loading (Group A versus Group B) and
a decrease through the introduction of gyroscopic loading (Group B versus Group C). The data points
for the top 10 peaks are well scattered across the exceedance probability plots for all three groups,
indicating that this metric provides a reasonable approximation of the full time series precision for
surge. However, the ranges observed, particularly for Group B and Group C, are below the P5

5 values.
For comparison with values in Table 4, the maximum range observed across the top 10 peaks for Group
B and C are 4.34 mm and 5.15 mm respectively. Thus, relying on the top ten peaks metric alone would
indicate a higher level of experimental precision for Group B when compared to Group C. This is
shown to not be the case in Figure 11 and the P5

5 values in Table 4. Maximum surge values are included
in Table 3 for information, the error associated with Qualisys measurements is not dependent on the
magnitude of the value being measured.

Table 4. Surge P5
5 values. The maximum values are the average of the peak surge values for the five

repetitions in each group.

Group Surge P5
5 (mm) Max Surge (mm)

A 3.8 47
B 6.8 161
C 5.7 162

5.3. Heave

As can be seen in Figure 12 and Table 5, the precision of Group A, B, and C are broadly comparable
when considering heave. The vast majority of the top 10 peak values fall within the shaded region
attributable to sensor noise for Group A (9) and Group B (9) with a better distribution for Group C.
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Table 5. Heave P5
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repetitions in each group.

Group Heave P5
5 (mm) Max Heave (mm)

A 2.2 23
B 2.2 18
C 2.6 19
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5.4. Front Line Load

Figure 13 indicates a marked decrease in front line load experimental precision through the
introduction of wind thrust (Group A versus Group B) and an increase in experimental precision
through the introduction of gyroscopic loading (Group B versus Group C). It is well established that the
error associated with load cell measurement is related to the magnitude of the load. However, this does
not appear to be the prevailing source of experimental error in front line load for the considered group
of tests as can be seen by examining the location of the error ranges associated with the top 10 peaks.
This may be due to the fact that the load cell rating (445 N) was relatively large for the experienced
loads (<20 N), an artefact of the fact that these uncertainty tests were conducted as part of a larger
commercial experimental campaign, which also examined survival conditions.
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The error range across the concurrent front line load time series was also calculated as a percentage
of the average instantaneous load measurement. However, this resulted in large error range values
during instances when the mooring line was near slack. It would be possible to filter the data for such
instances, however, this defeats the aim of assessing experimental precision across the full time series.

This point regarding the magnitude of the error being related to the magnitude of the line load
being measured is only a potential concern when comparing Group A to the other two groups in
Figure 13 and Table 6. The front line loads observed in Group B and C are comparable and thus the
impact of gyroscopic loading is evidenced by the data.

Table 6. Front line load P5
5 values.

Group Load P5
5 (N) Max Load (N)

A 0.781 6.3
B 2.83 30
C 2.35 30

6. Conclusions

This paper primarily set out to assess if there is a trade-off between precision and accuracy when
conducting experimental analysis of FOWTs. In terms of the addition of wind thrust loading (Group A



Energies 2019, 12, 435 12 of 14

compared with Group B), the presented results for pitch and surge certainty indicate that this is the
case, with a significant reduction in experimental precision observed with the introduction of thrust
through the use of ducted fans. This trend is also observed in the front line load results, however,
these are disputable as line load precision is known to decrease with increasing load unlike the error
associated with the Qualisys measurements, which are absolute values. Thus, the reduced precision of
the front line load measurements of Group B and C when compared to Group A may be attributed to
the increased load being measured due to the combined 20 N of applied thrust at hub height.

These findings in relation to the reduction in experimental precision when introducing wind
loading can be attributed to the modulating nature of the incident thrust generated by the ducted fans.
The magnitude of precision reduction observed in this study comes with the obvious caveat that this
is for a multirotor system, where the impact is doubled. Also, the sacrifice of experimental precision
must be weighed up against the increased accuracy, which allows the impact of the rotor thrust to be
examined, a key point in the design of FOWTs. However, it is important to highlight this potential
trade off and to take steps to mitigate it in future physical test campaigns.

In terms of the addition of rotor gyroscopic loading, all results, with the exception of pitch and
heave, indicate an increase in experimental precision as can be seen from the comparison of the Group
B and C results. It is known [20] that the impact of a rotating body is twofold, a tendency to rotate the
axis of the rotating body in a given direction (yaw in the case of a horizontal axis wind turbine) and a
tendency to resist external forces, resulting in increased system stability. There have been a number of
studies investigating the combined impact on single rotor FOWT dynamics [21,22] using experimental
and numerical techniques to focus on the induced yaw force. In [23], it was shown experimentally that
the rotor gyroscopic load impacts the magnitude of the resonant platform response and also showed
a slight reduction in the high frequency response in heave and pitch for the 1:100 scale tension leg
platform that was studied. This suggests an increase in system stability due to gyroscopic forcing
similar to what was observed in the current study.

This result is somewhat surprising given that each rotating weighted beams interrupts the air
flow through the ducted fans at a rate of 2.5 Hz, thus adding to the modulating thrust issue discussed
above. Whilst the combined impact of wind thrust and rotor gyroscopic loading will vary for each
platform, in the current study, it appears that the inherent system stability introduced by the two
contra-rotating weighted beams is more important, in terms of experimental precision, than the
additional thrust modulation.

These findings drawn from the comparison of Group B and Group C results come with the caveat
that the observed difference in experimental precision is small and may be within the precision range
of the precision assessment methodology itself. An investigation into this matter would require a large
number of additional repeat tests, which may be conducted as a piece of future work.

The P5
5 experimental metric was a useful tool to assess experimental precision in this paper and

captured a higher level of detail across the full response time series when compared to the top 10 peak
method. Thus, the P5

5 metric may be a suitable measure of experimental uncertainty for use in the
Monto Carlo style assessment suggested by ASME [5] and being pursued by the OC5 community [18].
It is clear, however, that it is impractical to repeat all experiments at least five times and so future
work on the P5

5 metric will focus on generalising results and possibly the use of a single experiment of
regular waves to quantify experimental precision.

As mentioned in the introduction, the impact of a much broader range of wind turbine emulation
systems on model test uncertainty will be investigated during a future study under the MaRINET2
project in which a single 1:60 scale semi-submersible platform will be tested at four separate
EU facilities.
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