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Abstract: In order to meet the user’s electricity demand and make full use of distributed energy, a
hybrid energy system (HES) was proposed and designed, including wind turbines (WTs), photovoltaic
(PV) power generation, conventional gas turbines (CGTs), incentive-based demand response (IBDR),
combined heat and power (CHP) and regenerative electric (RE) boilers. Then, the collaborative
operation problem of HES is discussed. First, the paper describes the HES’ basic structure and
presents the output model of power sources and heating sources. Next, the maximum operating
income and minimum load fluctuation are taken as the objective function, and a multi-objective
model of HES scheduling is proposed. Then an algorithm for solving the model is proposed that
comprises two steps: processing the objective functions and constraints into linear equations and
determining the optimal weight of the objective functions. The selected simulation system is a
microgrid located on an eastern island of China to comparatively analyze the influence of RE-heating
storage (RE-HS) and price-based demand response (PBDR) on HES operation in relation to four cases.
By analyzing the results, the following three conclusions are drawn: (1) HES can comprehensively
utilize a variety of distributed energy sources to meet load demand. In particular, RE technology
can convert the abandoned energy of WT and PV into heat during the valley load time, to meet
the load demand combined with CHP; (2) The proposed multi-objective scheduling model of HES
operation not only considers the maximum operating income but also considers the minimum load
fluctuation, thus achieving the optimal balancing operation; (3) RE-HS and PBDR have a synergistic
optimization effect, and when RE-HS and PBDR are both applied, an HES can achieve optimal
operation results. Overall, the proposed decision method is highly effective and applicable, and
decision makers could utilize this method to design an optimal HES operation strategy according to
their own actual conditions.

Keywords: hybrid energy system; multi-objective model; heating storage; optimization scheduling

1. Introduction

Nowadays, energy and environmental pollution problems are getting more and more serious
and people are paying attention to them. The role of distributed energy resources (DERs) in the
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structure of power generation systems is increasing, especially wind and solar photovoltaic power
generation. In particular, with the development of regenerative electric (RE) boiler technology, clean
energy is no longer only used for power generation. It has also been gradually extended to heating
sectors to form a thermal–electrical coupled operation mode. Meanwhile, combined heat and power
(CHP) units are rapidly being more widely adopted due to the advantages of energy saving and
environment friendliness [1]. However, due to the disadvantages of distributed energy sources, such as
small capacity, intermittent availability, and dispersivity, they cannot be used in the electricity market
alone, while the characteristics of CHP power generation closely combine with the supply of heating
reduce the flexibility [2]. Therefore, the effective management of wind turbines (WTs), photovoltaic
(PV) systems, and other distributed energy sources as well as CHP systems is urgently required to
meet the current energy system needs and meeting this requirement has important theoretical and
practical significance.

In recent years, the development and continuous maturity of virtual power plant (VPP) technology
has provided a new means for the aggregation of distributed energy sources [3]. VPP technology does
not change the use of a grid to connect distributed power sources; various types of distributed energy
resources (DERs) are combined through advanced control, method of measurement, communication,
and other technologies to achieve the coordinated optimization operation of multiple DERs and
resources are rationally allocated through a higher level of software architecture [4]. For the analysis,
a hybrid energy system (HES) is proposed, which controls the virtual power plant through the energy
management system to realize the coordinated operation of CHP and DER.

The proposal of HES has received extensive attention at home and abroad. The German and
Spanish governments jointly completed a virtual fuel cell power plant project. The project consisted
of 31 CHP systems [5]. In 2007, the Netherlands established the HES program with 10 CHP units [6].
Cassell University in Germany has created the largest HES pilot project to combine wind turbines,
solar systems, biogas power stations and hydropower stations [7]. In 2009, Danish Electric Vehicles
considered the uncertainty of large-scale wind farms in the project of accessing smart grids, and
the intelligent charging and discharging of electric vehicles was managed by HES technology [8].
In 2008, a distributed energy station was put into operation in Guangdong University City in China.
The station uses a gas-steam combined cycle unit to generate electricity [9]. In 2014, China Power
Corporation successfully connected a wind and solar project to the grid, and has already carried out
business in Yunnan Province [10]. From 2010 to 2015, the EU conducted the WEB2ENERRGY program,
implemented and validated three intelligent technologies in intelligent power distribution, including
smart metering, energy management and distribution automation [11].

Current research on HES economic operations at home and abroad mainly focuses on the
electricity energy level, but the electrothermal coupling operation of HES with CHP is less considered.
Zapata et al. [12] proposed an optimization model that can increase the revenue of the HES operation,
and control the uncertainty of the wind power output by using a controllable load. Saeed et al. [13]
analyzed coordination between solar photovoltaic power generation, wind power and hydropower.
Moghaddam et al. [14] on the basis of fully considering the daily scheduling of HES components,
proposed a hybrid integer linear programming (MILP)-based HES structure optimization method.
Pandzic et al. [15] fully considered the influencing factors of the power market, using the MILP method
to optimize the structure of HES. Wang et al. [16] proposed a method for scheduling and surging
power in multiple HES cases, and also discussed the scheduling period. Carrion et al. [17] analyzed the
scheduling and cost of small nuclear power plants and offshore wind farms. Erdinc [18] analyzed the
economic impact of different demand response strategies in smart homes on storage units, small-scale
self-generation and electric vehicles.

Previous research related to HES thermal–electrical coupled operation has mainly discussed
the problem of coordinated operation of DERs and CHP, but has not discussed the aggregate
utilization problem. Aboelsood et al. [19] considered the fluctuation of WT output and investigated
the thermal–electrical scheduling problem of micro-grids (MGs) with WT and CHP. Zhang et al. [20]
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developed an economic operation model for micro-grids with batteries and CHP in active power
balance and reactive power balance. Aluisio et al. [21] discussed the application of CHP and energy
storage technology in MGs, analyzed the effect of the time-of use (TOU) price on system operation, and
comparatively analyzed the operation results of MGs with and without CHP. Taher et al. [22] proposed
a combined optimization model of heat storage devices together with CHP. Mohammad et al. [23]
developed an economic optimization model for a CHP-MG composed of a WT and fuel cells and
solved the model by using an evolutionary algorithm. Furthermore, Wille-Haussmann et al. [24]
combined CHP, and heating (HS) into an HES and discussed the thermal–electrical optimization
scheduling problem. Giuntoli et al. [25] introduced an integrated dispatch model for CHP, WT, and
HS. Manijeh et al. [26] developed an optimal operation model of an MG with CHP considering the
revenue of supplying heating to establish the optimal operation strategy. [27] developed a nonlinear
model based on the price elasticity of demand and benefit function of the customer. The behaviors of
the derived models against elasticity change, incentive, penalty and potential of implementation are
examined and degree of the reliance is determined. Reference [28] proposed a combination of these
two programs with the merged program with incentive demand response, the time based demand
response programs can be improved by using smart metering infrastructure and different resources.
Reference [29] developed an incentive demand response with commercial energy management system
based on diffusion model, smart meters and a new communication protocol.

The above studies have extensively discussed the optimization of the operation of HES, proposed
a capacity allocation method for HES, and run optimization models and model solving algorithms.
However, there are still some shortcomings. First, although there have been studies combining WT,
PV, battery storage and CHP into HES, they have not considered the active response behavior of end
customers, especially based on incentive demand response (IBDR), which can be involved in HES
optimization operation and should be carefully considered. Secondly, previous studies related to
the economic aspect of HES operation have mainly focused on the optimal strategy for integrating
distributed power sources into a HES to meet terminal-customers’ power demands, but they have
failed to discuss the HS capability of RE technology, which could transfer electricity energy into heating
energy for the optimal scheduling of the energy market. Thirdly, previous research has ignored the
thermal-electrical synergy supply of CHP and RE. However, RE can be used to help manage electric
power systems and heating systems, In particular, the heating storage capability could flatten the
heating load demand curve; thus, it is urgent to study how the use of RE could influence HES operation.
Based on the above analysis, we propose an optimized scheduling model for HES. The main results of
this paper are as follows:

• We design a HES including WT, PV, conventional gas turbine (CGT), IBDR, RE and CHP.
RE can convert electric energy into heating energy for thermal–electrical synergy supply.
A multi-objective thermal–electrical scheduling model and an output model of power and heat
sources are proposed.

• Based on the HES maximum operating income and minimum load fluctuation as the objective
function, a multi-objective optimization model for HES thermoelectric scheduling is constructed
according to the heating storage mechanism under the objective functions. Then, a model solution
algorithm is proposed that comprises two steps: linearization of the objective functions and
constraints and determination of the optimal weight coefficients of the objective functions.

• Four HES operation cases are set and the selected simulation system is a microgrid on an eastern
island of China, validating the effects of the proposed models and algorithms. First, the four cases
are set by considering the system without and with RE-HS and PBDR to analyze their combined
optimization effect. Then, calculate the results of HES scheduling under various conditions, and
compare and analyze the calculation results.

The rest of this article is as follows: The first part introduces the basic structure of multi-energy
system (HES), the output model of power supply and heat source. The second section introduces the
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multi-objective optimization model of HES scheduling based on the objective function of maximum
operating income and minimum load fluctuation of HES. Next, the linearization method of objective
functions and constraints as well as the weights calculation method of the objective functions are
presented in Section 4. Then, the operation scenarios for HES are described for comparatively
analysis in Section 5. At last, taking the microgrid built on an island in eastern China as an example,
the microgrid is used as the simulation system to verify the proposed multi-objective model and
solving algorithm, and verify its validity and applicability, in the Section 6. Section 7 emphasizes the
contributions and conclusions of the paper.

2. Hybrid Energy System Structure Description

2.1. Basic Structure

In this study, WT, PV, CGT, CHP, RE, and IBDR are combined in a HES. RE, includes EB and HS,
which could convert electric energy to heating energy. Then, to achieve the optimal operation, by using
PBDR on the user side, not only can the load demand curve of power and heating be balanced, but
also the grid space of WT and PV can be increased. Figure 1 shows a basic HES structure.
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The CHP operates in both a follow-up electrical load (FTL) and a follow-up thermal load (FTL)
mode. WT, PV, gas turbine (GT), and CHP could meet the electricity load demand, but only RE and
CHP can meet the demand of heating load. Therefore, in this work, CHP is set to operate in FTL mode
to guarantee the reliability of supplying heating. Then, to maximize energy efficiency, WT, PV, and
CHP are set to have high priority to meets the power load demand, while GT is set to provide auxiliary
services for WT and PV. The demand for heating load is mainly provided by CHP, and if there is any
remaining, it is provided by RE, which converts electric energy into heating energy.

2.2. Electricity Power Output Model

The main power sources of the HES include WT, PV, GT, IBDR, and CHP. However, in this work,
CHP is designated as a heating source since CHP main users meet the demand for heating load.

2.2.1. WT Output

The main influencing factors of WT output power in natural customs. The randomness of the
wind speed of natural winds leads to the random nature of the power everywhere. However, in [7],
wind velocity was described as having a Rayleigh distribution:

f (v) =
ϕ

ϑ

( v
ϑ

)ϕ−1
e−(v/ϑ)ϕ

, (1)
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where v is the real-time wind speed, ϕ is the form factor and ϑ is the scale factor. Simulate the
distribution of natural winds by the average and variance of wind speed as shown in Equation (1).
Then, calculate the output power of the WT by the following formula:

g∗W,t =


0, 0 ≤ vt < vin, vt > vout

vt−vin
vrated−vin

gR, vin ≤ vt ≤ vrated

gR, vrated ≤ vt ≤ vout

, (2)

where g∗W means the maximum output of the WT; gR means the WT rated output; v is the real-time
wind velocity, t means time; and in, rated, and out means the cut-in, rated, and cut-out, respectively.

2.2.2. PV Output

Solar radiation intensity will directly affect the output of photovoltaic power generation. Similarly,
the random characteristics of PV radiation intensity lead to the random output of PV. In [7], it has been
demonstrated that beta PDF can be used to distort the distribution of irradiance:

f (θ) =

{
Γ(α)Γ(β)

Γ(α)+Γ(β)
θα−1(1− θ)β−1 , 0 ≤ θ ≤ 1, α ≥ 0, β ≥ 0

0 , otherwise
, (3)

where θ is the solar radiation intensity, α and β are the shape parameters of the beta distribution.
The values of α and β can be obtained by the following formula:

β = (1− µ)×
(

u× (1− µ)

σ2 − 1
)

, (4)

α = µ

[
µ(1− µ)

σ2 − 1
]

, (5)

where u and σ are the expected value and standard deviations of the PV radiation intensity, respectively.
Further, according to the principle of photoelectric conversion, the PV output power can be obtained
by the following formula:

g∗PV,t = ηPV × SPV × θt, (6)

where g* represents the output power, ηPV represents the efficiency, S represents the total area, and θ is
the radiation intensity.

2.2.3. Incentive-Based DR Output Model

In IBDR, users usually sign an agreement in advance. When the user is required to respond,
the user needs to take corresponding response measures according to the content of the agreement
signed by the user to adjust its power consumption and get compensation. Since the supply price of
demand response determines the revenue of the Demand Response Provider (DRP), the DRP should
not only consider the fluctuation of electricity market price but also the price of demand response
when formulating IBDR plan [8]. Figure 2 shows the gradual price and demand curve for Demand
Response (DR).

According to Figure 2, in step j, the minimum demand response is Dj,min
i , and the largest demand

response is Dj,max
i . Therefore, DRP needs to participate in the scheduling of the energy market by

meeting the following principles:

Dj,min
i ≤ ∆Lj

i,t ≤ Dj
i,t, j = 1, (7)

0 ≤ ∆Lj
i,t ≤

(
Dj

i,t − Dj−1
i,t

)
, j = 2, 3, . . . , J (8)
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∆LIB,t =
I

∑
i=1

J

∑
j=1

∆Lj
i,t (9)

where ∆Li is actual load reduction, t is the time and j is the step, Di is available load reduction, and
∆LIB is the output power provided by IBDR.
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2.3. Heating Output Model

The main heating output sources of the HES are CHP and RE. CHP also provides electric power
and heating power. Although CHP is the component that couples the electric and heating power
systems, in this work, CHP is regarded as a heating source.

2.3.1. CHP Output Model

The heating power provided by CHP determines the interval threshold of its electricity power
supply. In general, CHP can be categorized as either backpressure type or exhaust-pressure type.
This paper mainly discusses the exhaust-pressure type of CHP with emphasis on the constraint on
electricity power and heating power [6]. Figure 3 shows the relationship between electric power and
heating power of the CHP.
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The paper mainly consider the constraints of CHP in power generation and heating supply as
shown follows:

0 ≤ gh
CHP,t ≤ gh,max

CHP,t (10)

ge
CHP,t ≤ gê,max

CHP + cmaxgh
CHP,t (11)
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ge
CHP,t ≥ gê,min

CHP + cmingh
CHP,t (12)

ge
CHP,t ≥ ge,min

CHP,t + cm

(
gh

CHP,t − gh,m
CHP,t

)
(13)

where gh
CHP,t and ge

CHP,t are the supply of heating power and electricity power of CHP at time

t, and gh,max
CHP is the maximum heating power supply. Here, gê,min

CHP and gê,max
CHP are the maximum and

minimum values of CHP power supply under pure condensation conditions, and ge,min
CHP is the minimum

heating power of CHP corresponding to the minimum electricity power. Also, cmax and cmin are
the linear supply slopes of heating power and electric power of CHP, while ge,min

CHP is the minimum
electricity power of CHP, and gh,m

CHP is the heating power of CHP when the electric power reaches the
minimum value.

2.3.2. RE Output Model

RE includes RE-EB and RE-HS modules. During peak load of WT and PV generation, RE-HS can
convert surplus electric energy into heating energy, further enhancing the space for energy management
system (EMS) to absorb WT and PV. The heating energy generated by RE is stored in a hot water tank
as a heating accumulator which uses water as the heating medium.

(1) RE-EB operation model

RE-EB is based on a coupling unit of energy conversion, relying on electrical elements to achieve
heating purposes. If the heating energy generated by RE-EB comes from waste energy, the local
electricity load will relatively increase. The detailed model is expressed as:

QRE
EB,t = gRE

EB,t · ηRE
EB,t (14)

where gRE
EB is the electric power for the heating supply of RE-EB, QRE

EB means the heating power supply
of RE-EB, and ηRE

EB means the efficiency of thermal–electrical conversion.

(2) RE-HS operation model

When RE is installed with a heating storage device, heating storage can be performed using waste
energy when the WT and PV power output are high. Then, the heat can be released during the peak
load period of heating energy demand:

SRE
HS,t = (1− ϕHS)SRE

HS,t−1 +

(
QRE

HS,tη
in
HS −

Qout
HS,t

ηout
HS

)
(15)

where SRE
HS is the storage capacity for RE-HS, ϕHS is the heat dissipation loss rate of HS, QRE

HS is
the heating power used for RE-HS, and the calculation method is the same as Equation (14). Here,
Qout

HS is the exothermic power for RE-HS, and ηin
HS and ηout

HS are the endothermic and exothermic
efficiency, respectively.

3. Multi-Objective Scheduling Optimization Model

3.1. Objective Functions

The purpose of HES optimization scheduling is to meet the power and heating load requirements
combined with CGT and CHP by enhancing the connection between WT and PV and the grid. Since
WT and PV are environmentally friendly and their marginal power generation costs are very small,
the maximum economic benefit can be obtained by maximizing the power output of both. However,
the randomness of WT and PV brings a high risk of unstable system operation. How to minimize the
operational risk while maximizing revenue is the key issue of HES operation. Therefore, in this work,
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we chose the maximum economic revenue and the minimum risk level as the objective functions of
HES optimization operation.

3.1.1. The Maximum Operation Revenue Objective

The net revenue of HES operation mainly depends on two factors: revenue and cost. HES
operation revenue comes from WT, PV, CGT, IBDR, CHP, and RE, while the operating costs of HES
consist of four parts, the operating costs of CGT, CHP and RE, and the cost of buying electricity from
the public grid. We use the maximum operating income as the objective function:

max F1 =
T

∑
t=1
{RWPP,t + RPV,t + RCGT,t + RIBDR,t + RCHP,t + RRE,t − ρUG,tgUG,t} (16)

where F1 is the objective function of HES operation net revenue; R is the operating income. ρ is the
price of buying electricity from the grid, g is the amount of electricity purchased. The revenue models
of the above components are calculated as follows:

RCGT,t = ρCGT,tgCGT,t − Cpg
CGT,t − Css

CGT,t (17)

Cpg
CGT,t = aCGT + bCGT gCGT + cCGT(gCGT,t)

2 (18)

Css
CGT,t = [uCGT,t(1− uCGT,t−1)] ·

{
Nhot

CGT , Tmin
CGT < Toff

CGT,t ≤ Tmin
CGT + Tcold

CGT

Ncold
CGT , Toff

CGT,t > Tmin
CGT + Tcold

CGT

(19)

where C is the cost of power generation; pg means start and ss means close; t is the time, and a, b, and
c are the cost coefficients. Here, g is the power output; u is the operation status, a binary variable. Also,
Nhot

CGT and Ncold
CGT are the CGT cold and hot startup costs, respectively; while T is the operating time.

RIBDR,t =
I

∑
i=1

J

∑
j=1

∆Lj
i,tρ

j
i,t, (20)

where ρ is the output price, j is the step and t is the time. Moreover, CHP’s operating income is
calculated by the following formula:

RCHP,t =
T

∑
t=1

{(
ρe

CHP,tg
e
CHP,t + ρh

CHP,tg
h
CHP,t

)
−
(

f (gCHP,t) + Csd
CHP,t

)}
(21)

f (gCHP,t) = ai

(
ge

CHP,t + θe
hgh

CHP,t

)2
+ bi

(
ge

CHP,t + θe
hgh

CHP,t

)
+ ci (22)

Csd
CHP,t =

[
µu

CHP,t(1− µu
CHP,t−1)

]
Cu

CHP,t +
[
µd

CHP,s(1− µd
CHP,s+1)

]
Cd

CHP,s+1 (23)

where f is the cost function and C is the cost of power generation, sd means startup–shutdown. Here,
t and s are the indexes for time, t 6= s; ρ is the grid-prices and e means power, h means heating; g is the
output; and a, b, and c are the cost coefficients. Also, θe

h is the thermal–electricity conversion coefficient
of CHP; µ is the operation status, 0–1 variables:

RRE,t =
T

∑
t=1

(
ρh

RE,tQRE,t − ρe
RE,tgRE,t

)
(24)

where t is the time; ρe
RE is the prices for power and ρk

RE the prices for heating; QRE is the heating output
of RE; and gRE is the power input of RE.
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3.1.2. The Minimum Load Fluctuation Objective

Large-scale integration of WT and PV into the grid will bring high risk of unstable system
operation because their power output is intermittent and volatile. Thus, reasonable control of this HES
operation risk is essential. In this work, the net load fluctuation was chosen as the risk index, and the
objective function selects the minimum load fluctuation and represent it by the following formula:

minF2 =

{
T

∑
t=1

[
gWPP,t + gPV,t −

(
∆L−IB,t − ∆L+

IB,t

)
−
(

Qout
HS,t −QRE

HS,t

)
/ηin

HS − gVPP

]2/
T

}1/2

(25)

gVPP =
T

∑
t=1

[
gWPP,t + gPV,t −

(
∆L−IB,t − ∆L+

IB,t

)
−
(

Qout
HS,t −QRE

HS,t

)
/ηin

HS

]/
T (26)

where F2 is the objective of HES load fluctuation, gVPP,t is the average load fluctuation for the HES

throughout the entire scheduling period, t is the time. The
(

∆L−IB,t − ∆L+
IB,t

)
is the net output of IBDR.

3.2. Constraint Conditions

For HES operations, three constraints are considered, supply and demand balance constraints,
energy operation constraints, and system reserve constraints.

3.2.1. Energy Balance Constraints

(1) Electricity Balance Constraints

{
ge

WPP,t(1− ϕWPP) + ge
PV,t(1− ϕPV) + ge

CHP,t(1− ϕCHP) + uIB,t∆LE
IB,t −

(
gRE

EB,t + gRE
HS,t

)}
︸ ︷︷ ︸

MES Power output in day ahead scheduling

+ gUG,t ≥ L0
t − ue

PB,t∆LPB,t (27)

where ϕWPP, ϕPV , and ϕCHP are the power loss rates. Here, gUG,t is the electricity purchased from
the grid; L0

t is the load required by the end user; and gRE
EB is the input electricity of RE-EB and gRE

HS
is the input electricity of RE-HS. Also, µIB is the status variables of IBDR and µPB is the status
variables of PBDR, binary variables. Use 1 and 0 to indicate whether DR is implemented, where 1
is the implementation and 0 is not implemented. Use ∆L to indicate the amount of change in load.
According to microeconomic theory, PBDR can also be described by demand and price, as follows:

est =
∆Ls/L0

s

∆Pt/P0
t

{
est ≤ 0, s = t
est ≥ 0, s 6= t

(28)

where ∆ represents the amount of change after adding PBDR, L is the demand, P is the price. Then,
calculate the load change after adding PBDR by the following formula:

∆LPB,t = L0
t ×


ett ×

[
Pt − P0

t
]

P0
t

+
24

∑
s = 1
s 6= t

est ×
[
Ps − P0

s
]

P0
s


(29)

where L0
t is the load demand before PBDR and Lt is the load demand after PBDR; P0

t is the electricity
price before PBDR and Pt is the electricity price after PBDR; and est represents the elasticity of price
and demand. If s = t then est is called self-elasticity, if s 6= t then est is called cross-elasticity. [8] gave a
detailed mathematical description of the above relationship.

(2) Heating balance constraints
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gh
CHP,t + QRE

EB,t + Qout
HS,t = Qt − uh

PB,t∆Qt (30)

where Q is the heating demand of terminal customers, Qout is the heating output, and uh
PB is the

status variable of implementing PBDR for the heating load, a binary variable. Use 1 and 0 to indicate
whether PBDR is implemented, where 1 is the implementation and 0 is not implemented. ∆Q indicates
the amount of load change before and after adding PBDR. The detailed calculations are the same as
Equations (28) and (29). The constraints for the load of power and heating produced by PBDR are
given in [8].

3.2.2. Power Source Operation Constraints

(1) CGT operation constraints

The constraints of the conventional turbine generation (CTG) operation consist of three parts, the
operation constraint, the climb constraint, and the start closure constraint, which can be expressed
as follows:

uCGT,tgmin
CGT ≤ gCGT,t ≤ uCGT,tgmax

CGT (31)

uCGT,t∆g−CGT ≤ gCGT,t − gCGT,t−1 ≤ uCGT,t∆g+CGT (32)

(Ton
CGT,t−1 −Mon

CGT)(uCGT,t−1 − uCGT,t) ≥ 0 (33)

(Toff
CGT,t−1 −Moff

CGT)(uCGT,t − uCGT,t−1) ≥ 0 (34)

where gmin
CGT and ∆g+CGT is the upper limits of CGT, and gmax

CGT and ∆g−CGT is the lower limits of CGT,
T is the duration time, M is the shortest time, on stands for running or power on, and off stands
for downtime.

(2) IBDR constraints

IBDR can be used to schedule energy and reserve markets. Specific restrictions are expressed by
the following formula:

∆LE
IB,t + ∆Lup

IB,t ≤ ∆Lmax
IB,t (35)

∆LE
IB,t + ∆Ldn

IB,t ≥ ∆Lmin
IB,t (36)

where ∆L dicates the amount of change in scheduling capability after joining IBDR, t means time and
E means load; ∆Lup

IB and ∆Ldn
IB are the maximum and minimum reserve outputs of IBDR in the reserve

market; ∆Lmax
IB and ∆Lmin

IB are the maximum and minimum output of IBDR. The IBDR should also
consider the upper and lower reserve capacities of the heat load. The specific formula is as follows:

uIB,t∆L−IB ≤ ∆LIB,t − ∆LIB,t−1 ≤ uIB,t∆L+
IB (37)

(Ton
IB,t−1 −Mon

IB)(uIB,t−1 − uIB,t) ≥ 0 (38)

(Toff
IB,t−1 −Moff

IB )(uIB,t − uIB,t−1) ≥ 0 (39)

where + represents the upper limit − represents the lower limit; T represents the continuous time and
M represents the shortest time, and on is the operating state off is the stop state.

(3) WT and PV Operation constraints

0 ≤ gNE,t ≤ g∗NE,t, {NE} = {WPP, PV} (40)

where gNE is the output of NE, and g∗NE means the revised output of NE.
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3.2.3. Heating Power Operation Constraints

(1) CHP operation constraints

Changes in the CHP output should be realized by changing the operation state of the boiler.
Therefore, the power output should be converted by combing power and heating under the working
condition of a pure condensing condition for constructing the climbing output constraint. The detailed
conversion process is expressed as:

gCHP,t = ge
CHP,t + θe

hgh
CHP,t (41)

where gCHP is the output of CHP under the working condition of the pure condensing condition. CGT
and CHP operation also must meet the upper and lower climbing constraints, startup–shutdown time
constraints, and power output constraints. The detailed constraints are the same as Equations (31)–(34).

(2) RE operation constraints

There are three main types of RE operating restrictions: electric boiler operating constraints,
HS operating constraints and energy balance constraints, which are expressed as follows:

0 ≤ QRE
EB,t + Qout

HS,t ≤ Qmax
RE,t (42)

SRE
HS,T = SRE

HS,0 (43)

SRE,min
HS ≤ SRE

HS,t ≤ SRE,max
HS (44)

0 ≤ Qout
HS,t ≤ ηout

HSQHS,nom (45)

0 ≤ QRE
HS,t ≤ ηin

HSQHS,nom (46)

Qout
HS,tQ

RE
HS,t = 0 (47)

where Qmax
RE represents the maximum output of RE; SRE

HS,0 and SRE
HS,T represent the storage heating

by the HS at the beginning and end of the schedule, respectively; SRE,min
HS and SRE,max

HS represent the
minimum and maximum capacities of HS under stable operation condition, respectively. QHS,nom is
the rated capacity of HS.

3.2.4. System Reserve Constraints

Fluctuations in WT and PV output can affect the stability of HES operation, so by preserving the
corresponding power to overcome the impact, the corresponding power capacity should be reserved,
and the constraints are expressed in detail as:

ge,max
EMS,t − ge

EMS,t + ∆Lup
IB,t ≥ r1Lt + r2gWPP,t + r3gPV,t (48)

ge
EMS,t − ge,min

EMS,t + ∆Ldn
IB,t ≥ r4gWPP,t + r5gPV,t (49)

where gmax
MES and gmin

MES represent the maximum and minimum values of the HES output, respectively;
gVPP represents the output of HES; r1, r2, and r3 represent the upper reserve factors of power load, WT,
and PV, respectively; r4 and r5 represent the lower reserve factors of WT and PV, respectively. Similarly,
the upper and lower reserve capacities for the heating load should be considered. The constraints are
expressed in detail as: (

gh,max
CHP,t − gh

CHP,t

)
+
(

Qmax
RE,t −QRE

HS,t −Qout
EB,t

)
≥ r6Qt (50)

(
gh

CHP,t − gh,min
CHP,t

)
+ max

{
Qout

HS,t, SRE,max
HS − SRE

HS,t

}
≥ r7Qt (51)
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where r6 and r7 are the upper and lower reserve coefficients of the heating load.

4. Solution Methodology for Multi-Objective Model

4.1. Linearization

4.1.1. Linearization of Objective Functions

According to Equations (18), (20), and (22), there are many functions with quadratic terms in the
objective function F1. Therefore, to simplify the solution process, we handle them with the following
method. Taking Equation (18) as an example, the CGT’s output limitation

[
gmin

CGT,t, gmax
CGT,t

]
is divided

into N segments. The length of each segment is ∆gCGT , so the segmentation function can be represented
by F1 when gCGT,t ∈

[
gmin

CGT,t + n∆gCGT , gmax
CGT,t + (n + 1)∆gCGT

]
:

f ′(gCGT,t) = f ′
(

gmin
CGT + n∆gCGT

)
+
(

gCGT,t − gmin
CGT − n∆gCGT

)
×
[
bCGT + (2n + 1)cCGT · ∆gCGT + 2cCGT gmin

CGT

]
(52)

Here, n = 0, 1, . . . , N− 1 and ∆gCGT = (gmax
CGT − gmin

CGT)/N. Similarly, the output of other quadratic
terms is the same as Equation (18). When N ≥ 5, the relative error of the objective function does not
exceed 1%, and most of it is below 0.5%. The approximation error of the segmented figure is close to 0.
Figure 4 shows the objective function linearization process.
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4.1.2. Linearization of Constraint Conditions

According to Equations (33), (34), (38), and (39), there are also functions with quadratic terms in
the constraints, which also must be linearized. Similarly, taking CGTs as an example, the linearization
progress of constraint conditions is carried out as follows:

(1) Initial status constraints
L

∑
t=1

(1− ui,t) = 0 (53)

D

∑
t=1

(ui,t) = 0 (54)
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where L is the number of CGTs in the initial status. L = 0 is no initial state. Here, M indicates the
number of CGTs that are not in the initial state, and U0 is the time period of CGT operation at the start
of the scheduling period. Then L can be calculated as:

L = min
{

T,
(

Mon
CGT −U0

)
uCGT,t

}
(55)

M = min
{

T, Mo f f
CGT(1− uCGT,t)

}
(56)

(2) Startup–shutdown constraints

T1

∑
τ=t

uCGT,t ≥ Ton
CGT,t Mon

CGT , T1 = t + Mon
CGT − 1, ∀t = L + 1, . . . , T −Mon

CGT + 1 (57)

T2

∑
τ=t

[1− uCGT,t] ≥ To f f
CGT,t Mo f f

CGT ,T2 = t + Mo f f
CGT − 1, ∀t = D + 1, . . . , T −Mo f f

CGT + 1 (58)

T

∑
τ=t

[uCGT,t − Ton
CGT ] ≥ 0 ∀t = T −Mo f f

CGT + 2, . . . , T (59)

T

∑
τ=t

[
1− uCGT,t − To f f

CGT,t

]
≥ 0 ∀t = T −Mo f f

i + 2, . . . , T (60)

4.2. Comprehensive Objective Function

HES optimization scheduling model proposed by the two objective functions consisting of
maximum economic return and minimum load fluctuation. In general, high system operating income
will result in relatively high load fluctuations in HES output. Different weights are usually set for
each target to achieve an optimization scheme, for example, by setting different weights to convert
multi-target HES into single-target HES. Therefore, the operation optimization problem of HES can be
divided into three stages. First, the biggest economic gain is the optimization goal, the optimal value
of HES economical revenue Fmax

1 and the output fluctuation F12 are obtained. Second, the minimum
output fluctuation is the optimization goal, the minimum value of the output fluctuation Fmin

2 and the
economical revenue F21 are obtained. Third, due to the differences in the optimization directions of the
objective function, the weight coefficients of the objective functions are set as α1 and α2, Where α1 is
the weighting factor of the largest economic income, and α2 is the weighting factor of the minimum
output fluctuation. The two objective functions are combined into one objective function by weighting
them. The weight objective function is:

F = min

{
α1 ·

Fmax
1 − F1

Fmax
1

+ α2 ·
F2 − Fmin

2
Fmin

2

}
(61)

where α1 + α2 = 1; if α1 and α2 are set, the optimal F1 and F2 can be achieved. Figure 5 shows a flow
chart of the HES scheduling optimization model.
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5. HES Simulation Scenarios

Case 1: The fundamental scenario, HES has on RE-HS or PBDR self-scheduling. This scenario
is used as a reference scenario mainly to determine the optimal weight coefficient of the objective
function. This case is mainly used for comparatively analyzing the improvement effect of RE-HS and
PBDR on clean energy for HES operation.

Case 2: The PBDR scenario, HES only uses PBDR for self-scheduling. Comparing this situation
with Case 1, we can determine the optimization results of PBDR for HES operation. PBDR can use
the time-of use (TOU) price to optimize the load distribution, which influences the operation plan of
different HES components. The flattening effect of PBDR on the load demand curve is analyzed.

Case 3: The RE-HS scenario, HES only uses RE-HS for self-scheduling. Unlike Case 1, this cases
considers the status of HES operation with RE-HS. RE changes the basic operation mode of WT and
PV only satisfying the load demand of power electricity, and transform the remaining wind and solar
energy into heating energy. RE-HS can also use the energy stored in the load valley for the load peak,
which also flattens the heating demand curve.

Case 4: Integrated programs, HES use RE-HS and PBDR for self-scheduling. Based on Case 2 and
Case 3, this case is used to determine the optimal scheduling strategy of HES operation and analyzes
the synergistic optimization effect when RE and PBDR are simultaneously applied.
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6. Simulation Analysis

6.1. Basic Data

The selected simulation system is a microgrid on an island located in eastern China. The proposed
multi-objective optimal scheduling model is validated and verified whether the proposed algorithm
is effective and applicable [30]. The micro-grid comprises 2 × 0.5 × 103 kW WTs, 5 × 0.2 × 103 kW
PV plants, 1 × 1.5 × 103 kW CGTs, 1 × 0.5 × 103 kW RE boilers with a 5 × 103 kWh energy storage
system, and 1 CHP with the maximum heating output of 1.44 × 103 kW and maximum power output
of 1.2 × 103 kW. The thermoelectric output ratio of CHP is 1.2, and other operating parameters were
adopted according to [30]. The CGT units are diesel generators. The rate of rise is 0.1 × 103 kWh rate
at which 0.2 × 103 kWh decreases. It takes 0.2 hours to start the machine and 0.1 hours to shut down
the machine. It takes 0.102 ¥/kW h to start and shut down. In [8], divides the cost curve into two
linearized segments of different slopes with slopes 1.1 × 105 ¥/ kW and 3.62 × 105 ¥/ kW, respectively.
To facilitate the calculation, set all of the reserve coefficients as 0.05. Furthermore, based on historical
data of electricity load and heating load, the demand load distribution for power and heating on a
typical load day is predicted using an autoregressive moving average model (ARMA). Figure 6 is the
demand load distribution of electricity and heating in typical daily load.
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Figure 6. Demand load distribution of electricity and heating in typical daily load.

For power supply, the grid-connected electricity price of CGT, WT, PV are 0.57 ¥/kWh, 0.85 ¥/kWh
and 0.52 ¥/kWh in the micro-grid, respectively. According to [30], the parameters of WT are vin = 3 m/s,
vrated = 14 m/s, vout = 25 m/s, and ϕ is a shape parameter, its value is 2; θ is a proportional parameter,
and its value is 2v/

√
π. The illumination intensity parameter α is equal to 0.39, β equal to 8.54.

We simulate the output of the WT and PV using the method proposed in [31], and a total of 50 different
simulation scenarios were thus obtained. After that, use some measures to reduce 50 simulated scenes
to 10 typical scenes, as shown in [8]. Input data is the average of all scenarios. Figure 7 is the typical
scene set for WT and PV simulation.

As shown in Figure 6, the load can be divided into three time periods: peak period (9:00–11:00
and 18:00–24:00), floating period (12:00–17:00) and valley period (0:00–8:00). Comparing the price of
electricity before and after PBDR application, before the application, the power consumption price
is 0.55 ¥/kWh. After the application, the electricity price of the three time periods has changed, the
peak price has increased by 25%, and the floating period remains unchanged. The valley period has
dropped by 50%. The load change caused by adding PBDR is limited to 0.4× 103 kW below. The prices
for participating in the reserve are 0.65 ¥/kWh and 0.25 ¥/kW h, respectively.
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50%. Depending on the heating price, the load in the three periods also changed, with a peak period of 15%, a 
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time. Figure 7 shows the system wind power output levels at different P2G equipment capacities. In addition, 
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and reduce system energy consumption and reduce system carbon emissions. P2G equipment converts 
surplus wind power into natural gas, and generates electricity from local CHP at the peak of power load, 
which reduces the natural gas and electricity that the energy center obtains from the network, thereby reducing 
the transmission loss and the ratio of the gas used by the pressurized station to the total gas consumption. 
CHP can reduce the natural gas and electricity that the energy center obtains from the network, thereby 
reducing the transmission loss and the ratio of the gas used by the pressurized station to the total gas 
consumption. We input the above basic data and solve the proposed four models using GAMS software 
described in [31]. 
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For heating supply, the marginal cost of wind and photovoltaic power generation is almost zero or
even negative, a preferential electricity price of 0.1 ¥/kWh is given to encourage RE to use waste energy
to provide heating at nighttime. The electric power supply price of CHP is the same as that of CGT,
and the heating power supply price is 0.25 ¥/kWh. Since there have been few studies related to the
price elasticity of heating demand, this paper mainly discuss the optimal operation of PBDR in relation
to heating load for HES operation. Therefore, according to the change of electricity price, the heating
price of three different load periods is set, in which the peak period rises by 25%, the floating period
remains unchanged, and the valley period drops by 50%. Depending on the heating price, the load in
the three periods also changed, with a peak period of 15%, a floating period of 5%, and a valley period
of 15%. All the load changes follow proportional allocation at each time. Figure 7 shows the system
wind power output levels at different P2G equipment capacities. In addition, P2G equipment can
improve the integration of renewable energy in the electric-gas-heat combination system and reduce
system energy consumption and reduce system carbon emissions. P2G equipment converts surplus
wind power into natural gas, and generates electricity from local CHP at the peak of power load,
which reduces the natural gas and electricity that the energy center obtains from the network, thereby
reducing the transmission loss and the ratio of the gas used by the pressurized station to the total gas
consumption. CHP can reduce the natural gas and electricity that the energy center obtains from the
network, thereby reducing the transmission loss and the ratio of the gas used by the pressurized station
to the total gas consumption. We input the above basic data and solve the proposed four models using
GAMS software described in [31].

6.2. Scheduling Operation Results

6.2.1. Self-Scheduling of HES Operation in Case 1

Case 1 is mainly used as a reference scenario for analyzing the optimizing effects of RE-HS and
PBDR on HES operation. When HES operates without RE, heating energy is mainly supplied by CHP.
Under the FTL mode, the power generated by CHP contributes to the power coordination optimization
for HES operation scheduling. Table 1 shows the scheduling results of HES operation for different
objective functions.

Table 1. Scheduling results of hybrid energy system (HES) operation for different objective functions.

Objective
Objective Value

CGT WT PV IBDR
CHP

RE-EB
Waste Energy

F1/¥ F2/× 103 kW Power Heating WT PV

F1 50837.03 0.275 26.61 11.13 5.39 3.285 25.857 31.028 2.54 4.835 3.31

F2 49852.45 0.246 36.90 3.71 2.11 3.435 26.132 31.358 2.21 12.25 6.60
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According to Table 1, the HES makes full use of WT and PV to obtain higher economic benefits
under the maximum operation revenue mode (mode 1), but a higher grid connection ratio of WT
and PV also causes higher load fluctuations. Compared with the minimum load fluctuation mode
(mode 2), HES operation revenue increases 984.58 ¥, and the energy wasted by WT and PV reduces
7.421× 103 kWh and 3.287× 103 kWh, respectively, but the load fluctuation increases by 0.029× 103 kW.
On the other hand, the heating supply of RE decreases from 2.545 × 103 kWh to 2.215 × 103 kWh
in mode 1; however, the value decreases 0.33 × 103 h in mode 2. In general, mode 1 follows the
maximum operation economic revenue, while mode 2 follows the minimum operational risks, so it is
necessary to consider how to balance the two modes. Then, to determine the optimal weight coefficient,
sensitivity analysis of the weighting coefficients of the objective function. The weight of F1 is gradually
increased from 0.1 to 1, and the interval is 0.1 each time. The HES scheduling results under various
weighted combination schemes are obtained. Figure 8 shows the objective function values under
various weight coefficients.

As seen in Figure 8a, when α1 = 1 and α2 = 0, the revenue of HES operation reaches the optimal
value (Fmax

1 ), and when α2 = 1 and α1 = 0, the load fluctuation of HES operation reaches the optimal
value (Fmin

2 ). Then, the trend of F1 and F2 is analyzed in relation to changes in α1. When α1 ∈ [0, 0.2]
and α1 ∈ [0.7, 0.9], the objective function value rises especially quickly because, in the actual operation,
the maximum economic benefits meet the demands of the decision makers. When α1 ∈ [0, 0.2], the
revenue is lower than that when α1 ∈ [0.7, 0.9], therefore, the optimal weight coefficients should be
distributed when α1 ∈ [0.7, 0.9].
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As seen in Figure 8b, when α1 ∈ [0.74, 0.86], the revenue and load fluctuation of HES operation
basically become stable, that is, HES operation reaches an overall optimum. When α1 /∈ [0.74, 0.86], the
objective value of ESM operation varies widely, which indicates that HES can be continually optimized.
Therefore, we selected α1 ∈ [0.74, 0.86] as the optimal weight coefficients and set the weight of the
objective function as α1 = 0.78 and α2 = 0.22. Then, the optimal results of HES operation could be
obtained under the weighted signal objective function. Obviously, decision makers can adjust the
weight of the objective function according to their own actual situations. In general, when decision
makers are more sensitive to risk, they will set a relatively large α2. Figure 9 shows the scheduling
results of HES operation for Case 1.
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According to the weights shown in Figure 8, the scheduling results of HES operation in Case 1 can
be obtained. The revenue value and load fluctuation are 50337.03 ¥ and 0.253 × 103 kW, respectively.
In terms of power supply, WT, PV, and CHP are high-priority to provide power. CGT can quickly start
and stop; therefore, CGT is scheduled more during the peak load periods. During the valley load and
float load periods, IBDR is scheduled because the power output of PV is low. In terms of heating supply,
CHP is preferentially scheduled to meet heating demand, in order to meet the remaining heating
energy demand, RE is scheduled during peak load. The output of WT is 13.575 × 103 kWh waste
energy is 2.395 × 103 kWh, and the output of PV is 6.417 × 103 kWh waste energy is 2.293 × 103 kWh.
In general, since RE does not install heating storage devices in this case, the power generated by WT
and PV can hardly be stored during the peak load periods. Further utilization of WT and PV should be
studied. Meanwhile, if PBDR can be used to flatten the load demand curve and increase the demand
for load in the valley period, it may also increase the grid connection space of WT and PV.

6.2.2. Self-Scheduling of HES Operation in Case 2

Case 2 can analyze the effects of adding PBDR to HES operations. We join the PBDR and balance
the power load demand curve with the TOU price. Referring to the weight calculation method in
Case 1, in Case 2, the weight coefficients of F1 and F2 were set as 0.72 and 0.28, respectively. Then
get the optimal scheduling result of HES operation after joining PBDR. First, the load demand curve
of power and heating after application of PBDR were determined. Table 2 shows the load demand
changes added to the PBDR.

Table 2. Load demand changes added to the price-based demand response (PBDR).

Scenario
Power Load × 103 kW Heating Load × 103 kW Peak–Valley Ratio

Peak Float Valley Peak Float Valley Power Heating

Before PBDR 24.141 24.522 20.425 11.646 13.198 8.551 1.282 1.737
After PBDR 23.176 24.414 20.833 11.180 13.149 8.722 1.207 1.703
Difference −0.966 −0.108 0.408 −0.466 −0.049 0.171 −0.075 −0.034

As shown in Table 2, the power load requirements of the three periods after the addition of
PBDR have changed, with the peak period decreasing, the valley period increasing, and the floating
period being appropriately reduced, which leads to a significant peak-shaving and valley-filling
effect. Regarding the power load, the total demand decreases 0.966 × 103 kWh during the peak
periods, whereas the value increases 0.408 × 103 kWh during the valley period, peak to valley ratio
decreased by 0.075. Similarly, regarding the heating load, peak to valley ratio decreased by 0.034.
All in all, by increasing PBDR, not only can the load demand curve be balanced, but also the grid
connection space between WT and PV can be increased. Figure 10 shows the results of HES scheduling
optimization in Case 2.
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Figure 10. The results of HES operation after application of PBDR (a) and RE-HS (b)in Case 2.

As seen in Figure 10, the grid connection of WT and PV increases obviously after PBDR. WT’s total
grid connected power is 13.894 × 103 kWh and PV’s total grid-connected power is 6.503 × 103 kWh.
The waste energy values of WT decrease 0.319× 103 kWh and PV decrease 0.086× 103 kWh. Both more
meet the power needs, which decreases the power for RE-EB, so the heating demand is mainly satisfied
by CHP. Accordingly, the power output of CHP also increases as needed. However, the heating output
of RE-EB decrease from 2.499 × 103 kWh to 1.958 × 103 kWh, which is mainly concentrated during
the peak load periods. Because the power output of WT and PV increases, the revenue and load
fluctuation of HES operation increase by 52474.01 ¥ and 0.269 × 103 kW, respectively. In general, PBDR
improves the revenue of HES operation, but higher grid connection of WT and PV can also lead to
higher load fluctuation, which requires decision makers to make balanced decisions according to their
actual situations.

6.2.3. Self-Scheduling of HES in Case 3

Case 3 can analyze the optimization effect of adding RE-HS in HES operation. HS can convert
surplus electricity, especially from WT and PV, to storage heating in during the valley period. Then,
heating is released during peak load periods to obtain increased economic returns. The weight
coefficients of F1 and F2 are 0.76 and 0.24 in Case 3. The economic revenue and load fluctuation of HES
operation are 53259.95 ¥ and 0.273 × 103 kW, which are 292.92 ¥ and 0.02 × 103 kW more than those in
Case 1, respectively. These results also indicate that RE-HS can increase the operation revenue and risk
level. Figure 11 shows the scheduling results of HES operation for Case 3.
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As seen in Figure 11, during peak load, the output power of the WT and PV increases significantly.
The waste energy values of the two are 1.118 × 103 kWh and 2.18 × 103 kWh, respectively. Compared
with Case 1, WT decreases 1.277 × 103 kWh, and PV decreases by 0.113 × 103 kWh. This is because
RE-HS can convert surplus power to heating energy during peak load. Correspondingly, the heating
output of CHP reduced by 0.384 × 103 kWh contrast with Case 1, but in order to provide reserves, CGT
increases its output power from 23.077 × 103 kWh to 23.492 × 103 kWh. Compared with Case 1, the
output power of WT and PV and reserve demand in Case 3 have increased. Compared with Case 1,
due to the significant increase in the output power of WT and PV, the reserve demand also increases,
which makes IBDR’s efforts more concentrated during peak load periods and float load periods. In
general, RE-HS can not only increase the absorption of WT and PV but also increase the operating
income of HES. Figure 12 shows the scheduling results of RE operation for Case 3.
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Figure 12. Scheduling results of regenerative electric (RE) operation for Case 3.

As seen in Figure 12, RE-HS mainly stores heat during the valley load period (7:00–9:00) and float
load period (12:00–16:00). The heating source is mainly the waste energy of WT and PV during floating
load. The heat is mainly released during peak load periods, and some of the heat is released during
the float load period. Meanwhile, RE-EB releases heat during the float load period (9:00–15:00) and
only releases heat during part of the peak load period (18:00–21:00). Obviously, RE-HS can connect
the power subsystem and heating subsystem. Heating can be stored when the available output of
WT and PV are high and released during peak load periods. Meanwhile, RE-EB can convert power
to heat according to the heating load demand. The coordinated operation of RE-HS and RE-EB not
only makes full use of WT and PV, but also better meets heating energy demand. Furthermore, the
objective function values under different RE scales are analyzed. Figure 13 shows the objective values
of HES operation with various RE capacities.
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As seen in Figure 13, the objective values of HES operation increase with increasing RE capacity.
When the capacity of RE is less than 0.125 × 103 kW, the increase of the objective value is relatively
small. This is because when RE capacity is low, the capacity of absorbing WT and PV is limited;
thus, the contribution for the objective function value is low. When the capacity of RE is higher
than 0.75 × 103 kW, the objective function value increases less. This is because when RE capacity
is high enough, the capacity of absorbing WT and PV reaches the upper limit. When the capacity
of RE is between 0.25 × 103 kW and 0.625 × 103 kW, with the increase in RE capacity, the objective
function value rises quickly, and the power output of WT and PV also increases. This indicates that, for
economical and rational HES operation, decision makers must set a reasonable RE capacity according
to their actual situations. When the capacity is too low, the desired effect is difficult to achieve. When
the capacity is too high, investment waste may occur.

6.2.4. Self-Scheduling of HES in Case 4

Case 4 was mainly used to analyze the optimization scheduling result of HES operation after
application of RE-HS and PBDR. PBDR not only balances the load demand curve but also provides
more space for HES to absorb WT and PV. RE can convert power into heating according to the heating
load demand. Especially during the night, more power output of WT can be converted to storage
heating energy. During the peak load periods, heating can be released. In general, both RE and
PBDR may increase the grid space of WT and PV. Correspondingly, the economical revenue and load
fluctuation of HES operation are 53311.05 ¥ and 0.270 × 103 kW, respectively, which are 2974.02 ¥ and
0.017 × 103 kW more than those in Case 1. Figure 14 shows the scheduling results of HES operation for
Case 4.
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As seen in Figure 14, when PBDR and RE are applied together, the HES can absorb more power
output of WT and PV. Correspondingly, the waste energy of WT and PV decrease 0.798 × 103 kWh
and 1.307 × 103 kWh, respectively, which are 1.597 × 103 kWh and 0.986 × 103 kWh lower than those
in Case 1. Similarly, since PBDR is implemented, IBDR’s efforts are focused on the peak load period,
which mainly provides reserve services for WT and PV. However, the power output of CGT decreases
by 2.992 × 103 kWh, which indicates that the reserve demand from CGT also decreases. Furthermore,
RE-HS converts the surplus power (especially WT and PV) to heating energy, and CHP is mainly used
to satisfy the surplus heating demand. Since PBDR has the function of peaking and grain filling, the
heating load significantly decreases during some peak load periods. Thus, the output of CHP and
RE-HS decreases. Note that RE-EB no longer provides heating during the non-peak load periods.
Only RE-HS provides heating at 22:00 and 24:00. Table 3 shows a comparison of Case 3 and Case 4 RE
scheduling results.
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Table 3. Comparison of Case 3 and Case 4 regenerative electric (RE) scheduling results.

Scenario

Heating Output/× 103 kW Heating Storage/× 103 kWh Waste Energy/× 103 kWh
RE

Revenue/¥

RE-EB EB-HS Peak
Load

Float
Load

Valley
Load WT PV

Case 3 2.105 0.784 0.154 0.355 0.504 1.118 2.180 686.71
Case 4 1.932 0.767 0 0.425 0.584 0.798 1.30 642.37

As seen in Table 3, the heating output of RE operation is reduced from 686.71 × 103 kWh to
642.37 × 103 kWh while the waste energy of WT and PV is also reduced. This indicates that WT and
PV are scheduled more to satisfy power load demands, which improves system energy efficiency.
Energy loss will occur in the process of converting power into heating and more revenue will be gained
because the power price is higher than the heating price. Thus, since the heating outputs of RE-EB and
RE-HS both decrease, PBDR indeed changes the energy supply mode. WT and PV output power can
not only meet the power load requirements but also bring higher economic benefits. RE mainly uses
the waste energy of WT and PV to provide heating, which makes the overall result more reasonable.
Correspondingly, RE-HS mainly stores heat during load valley period and floating period, while
RE-HS has a heating storage capacity of 0.154 × 103 kWh in Case 3 during peak load periods.

6.3. Results Analysis

The scheduling results of the above cases demonstrate that both PBDR and RE-HS have direct
impacts on HES operation. The former can change the load demand curve of power and heating to
influence the scheduling plan of various HES components. The latter can be used to maintain energy
balance by releasing heat stored during the load of the valley during peak periods. Furthermore,
to analyze the scheduling results of HES operation in various scenarios, we comparatively analyze
three aspects of the scheduling results, the net load curve, and IBDR operation result. Table 4 shows
HES scheduling optimization results for different cases.

Table 4. HES scheduling optimization results for different cases.

Scenario
Weight Power Output/× 103 kWh Heating Output/× 103 kWh Objective Value

F1 F2 CGT WT PV CHP IBDR CHP RE-EB RE-HS F1/¥ F2/× 103 kW

Case 1 0.78 0.22 23.077 13.575 6.417 25.897 5.694 31.074 2.499 - 50337.03 0.253
Case 2 0.72 0.28 21.044 13.894 6.503 26.046 5.616 31.256 1.958 - 52474.01 0.269
Case 3 0.76 0.24 23.492 14.853 6.530 25.555 5.285 30.663 2.105 0.784 53259.95 0.273
Case 4 0.75 0.25 20.085 15.172 7.403 25.394 5.122 30.476 1.932 0.767 53311.05 0.268

First, the weight of the objective function, the weights of F1 in the other three cases are lower than
that in Case 1. This is because both PBDR and RE-HS add the grid connection for WT and PV, which
results in the load fluctuation becoming stronger. It is necessary to increase the weight of F2 to achieve
economical and stable HES operation. Furthermore, the value of F1 in Case 4 reaches the maximum,
while the value of F2 in Case 1 reaches the minimum. The values in Cases 2 and 4 are smaller than that
in Case 3, which indicates that RE-HS and PBDR can maximize the operation revenue. On the other
hand, the grid connection space of WT and PV is increased by adding RE-HS and PBDR, resulting in
significantly increased load fluctuations, but PBDR can not only be a smoother load demand curve but
also optimize the operation results of RE-HS. Therefore, there in less load fluctuation in Case 4 than in
Cases 2 and 3. In general, RE-HS and PBDR can improve the economical revenue of HES operation,
but they also increase the load fluctuation. However, when they are both applied, the load fluctuation
decreases. This indicates that RE-HS and PBDR have combined optimization effects. Figure 15 shows
the net power load demand in various cases.
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As seen in Figure 15, in comparison with Case 1, the peak load is 3.387 × 103 kW and the valley
load is 2.541 × 103 kW, and the peak-to-valley ratio is 1.333. The power load curve in Case 3 is
the steepest. Peak and valley loads are 3.486 × 103 kW and 2.539 × 103 kW, respectively, and the
peak-to-valley ratio is 1.373. However, the peak–valley ratios in Cases 2 and 4 are 1.363 and 1.343,
respectively, which shows that RE-HE can play the role of cutting peaks and filling valleys. Moreover,
PBDR plays a role in reducing peak load and peak-to-valley ratio. When RE-HS and PBDR are both
applied, the peak-to-valley ratio is 1.333, which indicates that RE-HS and PBDR have combined
optimization effect. Furthermore, the operation situations of IBDR in various cases are considered,
especially the scheduling results of IBDR contributing to energy scheduling and reserve scheduling.
Figure 16 shows the power distributions of IBDR scheduling in various cases.
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As seen in Figure 16, the scheduling output values of IBDR in the energy and electricity reserve
market in Cases 2 and 3 are lower than those in Cases 1 and 4. The power output of IBDR scheduling
in the energy market are 3.327 × 103 kWh, 3.291 × 103 kWh, 3.315 × 103 kWh, and 3.285 × 103 kWh,
respectively. This shows that PBDR can reduce the reserve demand of IBDR by balancing the load
demand curve. Further, comparing Case 2 with Case 3 shows that when RE-HS and PBDR are both
applied, the scheduling output of IBDR in the energy and electricity reserve market reach the lowest
levels. This is because the application of both RE-HS and PBDR makes the load curve flatter. RE-HS
mainly takes advantage of the waste energy of WT and PV to satisfy the heating demand, which
decreases the system upper reserves. Therefore, the reserve output of IBDR scheduling reaches the
lowest level.
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The simulation results show that the optimized control method proposed in this paper can
effectively improve the utilization efficiency of the energy system to abandon the wind, extend the
service life of the equipment, and improve the system economy. It provides more flexibility for P2G
equipment to participate in the abandonment of wind consumption, economic operation methods and
theoretical basis.

In the day-to-day scheduling of integrated energy systems with P2G, this paper considers the
impact of P2G operating costs on system wind power acceptance and operational economy, and
proposes a multi-objective optimization model to coordinate the contradiction between the two.
The results of the example show that the higher P2G operating cost will affect the wind power
acceptance capability and operational economy of the system to a certain extent, which will cause
certain contradictions between the two; however, the multi-objective model proposed in this paper
can take into account the system operation. Economic and wind power acceptance capabilities and a
variety of options for scheduling decisions. In the follow-up work, the model will be further refined,
such as considering wind power prediction error, gas network dynamic characteristics, etc. In addition,
it will also expand the flexibility of the research system in terms of “source” and “charge”, such as
multi-energy time-sharing pricing, consideration Use alternative comprehensive demand response.

7. Conclusions

To satisfy the load demand for power and heating, WT, PV, CGT, IBDR, RE, CHP are integrated
into build a HES. The collaborative optimization problem of HES was discussed. Firstly, based on the
objective function of HES maximum working income and minimum load fluctuation, a multi-objective
optimization model of HES scheduling is proposed. Secondly, the linearization method of the objective
function and the constraint and the weight calculation method of the objective function are proposed
to solve the objective function. Finally, based on whether RE-HS and PBDR are used, four simulation
schemes are proposed. Taking an island in eastern China as an example, the microgrid is used as a
simulation system to verify the effects of the proposed model and algorithm. The results are as follows:

(1) HES can meet the load demand by making full use of DER. RE can not only convert the waste
energy of WT and PV in the load valley period into heat energy, but also cooperate with CHP
to meet the heating needs. In FTL mode, the main heat source is CHP, the main power source
is CHP, WT and PV.WT and PV reserve IBDR and CGT can be provided. The difference is that
IBDR is mainly concentrated in the period of load peak, and CGT is in the period of load valley.

(2) The proposed HES operation multi-objective scheduling model can maximize operational benefits
and minimize load fluctuations. Under the optimal operation revenue mode, the values of F1
and F2 are 50837.03 ¥ and 0.275 × 103 kW, respectively. Under the optimal load fluctuation
mode, the values of F1 and F2 are 49852.45 ¥ and 0.246 × 103 kW, respectively. Under the
integrated optimization mode, the values of F1 and F2 are 50337.03 ¥ and 0.253 × 103 kW. In
comparison with the single-objective optimization mode, the objective function value of the
integrated optimization mode can better consider the two optimization models and achieve
optimal equilibrium HES operation.

(3) RE-HS and PBDR have a synergistic optimization effect and can achieve optimal results of HES
operation. Compared with the cases of HES scheduling with RE-HS or PBDR alone, when both of
them are applied, the values of F1 and F2 in Case 1 increase from 50337.03 ¥ and 0.253 × 103 kW
to 53311.05 ¥ and 0.268 × 103 kW in Case 4. The power output values of WT and PV increase from
13.575 × 103 kWh and 6.417 × 103 kWh in Case 1 to 15.172 × 103 kWh and 7.403 × 103 kW. The
peak-to-valley ratio reaches the minimum, 1.333. Correspondingly, the power output of IBDR
reaches the minimum in Case 4.

(4) This paper focused on the aggregation utilization problem of WT, PV, CGT, and other distributed
power sources with CHP, a multi-objective scheduling model and its corresponding algorithm
are proposed. The simulation results also prove that the proposed model and algorithm are
effective. However, the strong uncertainty of WT and PV directly influence the optimal decisions
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for HES operation. This problem should be investigated further and will be the focus of our
future research.

In the daily dispatching of P2G integrated energy system, considering the impact of P2G operating
cost on system wind power acceptance and operational economy, this paper proposes a multi-objective
optimization model to coordinate the contradiction between the two. It can balance the economics
of system operation with wind power acceptance and provide a variety of options for scheduling
decisions. In the follow-up work, the model will be further refined, such as considering wind power
prediction error, gas network dynamic characteristics, etc. In addition, it will also expand the flexibility
of the research system in terms of “energy” and “load”, such as multi-energy time-sharing pricing,
consideration Use alternative comprehensive demand response.
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Nomenclature

DERs distributed energy
RE regenerative electric
CHP combined heat and power
VPP virtual power plant
HES hybrid energy system
IBDR incentive demand response
FTL follow-up electrical load
TOU time-of use
MGs micro-grids
WTs wind turbine
PV photovoltaic
v the real-time wind speed
ϕ the form factor
ϑ the scale factor
g∗W the maximum output of the WT
gR the WT rated output
v the real-time wind velocity
t time
θ the solar radiation intensity
α, β the shape parameters of the beta distribution
u the expected value of the PV radiation intensity
σ the standard deviations of the PV radiation intensity
g∗ output power
ηPV efficiency
S total area
θ radiation intensity
Dj,min

i the minimum demand response

Dj,max
i the largest demand response

∆Li actual load reduction
j the step
Di available load reduction
∆LIB the output power provided by IBDR
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gh
CHP,t the supply of heating power of CHP at time t

ge
CHP,t the supply of electricity power of CHP at time t

gh,max
CHP the maximum heating power supply

gê,min
CHP the minimum values of CHP power supply under pure condensation conditions

gê,max
CHP the minimum values of CHP power supply under pure condensation conditions

ge,min
CHP the minimum heating power of CHP corresponding to the minimum electricity power

cmax,cmin the linear supply slopes of heating power and electric power of CHP
ge,min

CHP the minimum electricity power of CHP
gh,m

CHP the heating power of CHP when the electric power reaches the minimum value
gRE

EB the electric power for the heating supply of RE-EB
QRE

EB the heating power supply of RE-EB
ηRE

EB the efficiency of thermal–electrical conversion
SRE

HS the storage capacity for RE-HS
ϕHS the heat dissipation loss rate of HS
QRE

HS the heating power used for RE-HS
Qout

HS the exothermic power for RE-HS
ηin

HS,ηout
HS the endothermic and exothermic efficiency

F1 the objective function of HES operation net revenue
R the operating income
ρ the price of buying electricity from the grid
g the amount of electricity purchased
C the cost of power generation
pg start
ss close
a, b, c the cost coefficients
u the operation status
Nhot

CGT and Ncold
CGT the CGT cold and hot startup costs

T the operating time
ρ the output price
f the cost function
C the cost of power generation
sd startup–shutdown
t, s the indexes for time
ρ the grid-prices
e power
h heating
g the output
θe

h the thermal–electricity conversion coefficient of CHP
ρe

RE the prices for power
ρk

RE the prices for heating
QRE the heating output of RE
gRE the power input of RE
F2 the objective of HES load fluctuation
gVPP,t the average load fluctuation for the HES throughout the entire scheduling period(

∆L−IB,t − ∆L+
IB,t

)
the net output of IBDR

ϕWPP, ϕPV , and ϕCHP the power loss rates
gUG,t the electricity purchased from the grid
gRE

EB the input electricity of RE-EB
gRE

HS the input electricity of RE-HS
µIB the status variables of IBDR
µPB the status variables of PBDR
∆ the amount of change after adding PBDR
L the demand
P the price
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L0
t the load demand before PBDR

Lt the load demand after PBDR
P0

t the electricity price before PBDR
Pt the electricity price after PBDR
est the elasticity of price and demand
Q the heating demand of terminal customers
Qout the heating output
uh

PB the status variable of implementing PBDR for the heating load
∆Q the amount of load change before and after adding PBDR
gmin

CGT , ∆g+CGT the upper limits of CGT
gmax

CGT ,∆g−CGT the lower limits of CGT
∆Lup

IB , ∆Ldn
IB the maximum and minimum reserve outputs of IBDR in the reserve market

∆Lmax
IB , ∆Lmin

IB the maximum and minimum output of IBDR
gNE the output of NE
g∗NE the revised output of NE
gCHP the output of CHP under the working condition of the pure condensing condition
Qmax

RE the maximum output of RE
SRE

HS,0, SRE
HS,T the storage heating by the HS at the beginning and end of the schedule

SRE,min
HS , SRE,max

HS the minimum and maximum capacities of HS under stable operation condition
QHS,nom the rated capacity of HS
gmax

MES, gmin
MES the maximum and minimum values of the HES output

r1,r2, and r3 the upper reserve factors of power load, WT, and PV
r4, r5 the lower reserve factors of WT and PV
r6, r7 the upper and lower reserve coefficients of the heating load
U0 the time period of CGT operation at the start of the scheduling period
α1, α2 set
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