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Abstract: This paper proposes a strategy for sizing a battery energy storage system (BESS) that
supports primary frequency regulation (PFR) service of solar photo-voltaic plants. The strategy
is composed of an optimization model and a performance assessment algorithm. The optimization
model includes not only investment costs, but also a novel penalty function depending on the
state of charge (SoC). This function avoids the existence of a potential inappropriate SoC trajectory
during BESS operation that could impede the supply of PFR service. The performance assessment
algorithm, fed by the optimization model sizing results, allows the emulation of BESS operation and
determines either the success or failure of a particular BESS design. The quality of a BESS design
is measured through number of days in which BESS failed to satisfactorily provide PFR and its
associated penalization cost. Battery lifetime, battery replacements, and SoC are also key performance
indexes that finally permit making better decisions in the election of the best BESS size. The inclusion
of multiple BESS operational restrictions under PFR is another important advantage of this strategy
since it adds a realistic characterization of BESS to the analysis. The optimization model was coded
using GAMS/CPLEX, and the performance assessment algorithm was implemented in MATLAB.
Results were obtained using actual frequency data obtained from the Colombian power system;
and the resulting BESS sizes show that the number of BESS penalties, caused by failure to provide
PFR service, can be reduced to zero at minimum investment cost.

Keywords: battery energy storage system (BESS); primary frequency regulation (PFR); state of charge
(SoC); optimal sizing; photo-voltaic solar plants

1. Introduction

One of the most challenging issues for AC power systems is frequency regulation. Instantaneous
power generation and consumption must match to avoid frequency deviations from the nominal
value. Frequency deviations can lead to stability, safety, and power quality problems. All of this
makes necessary the establishment of three regulation levels (primary, secondary, and tertiary) for
frequency control purposes. Primary frequency regulation (PFR) is the first control response in case
of frequency deviation and acts by injecting or receiving power to stabilize the frequency. Therefore,
power generators must have an energy reserve to apply PFR whenever the frequency is outside of
its permissible limits [1–3]. PFR service has been traditionally provided by synchronous generators;
nevertheless, they have the following limitations: (1) a percentage of the available generator power
must be reserved, diminishing the energy that can be sold in the spot market; (2) the response speed to
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inject power can be slow; and (3) frequency regulation is indirectly performed through the generator
speed regulation system and may cause power system frequency oscillations.

The use of BESS has been proposed as an alternative to solve the limitations of performing PFR
service with synchronous generators. In general terms, a BESS is a device based on power electronics
containing a storage system (batteries) and an inverter, which in turn reacts quickly and allows the
provision of PFR service [4]. One of the benefits of using BESS for PFR service is its extremely fast
response under load variations. Additionally, research on BESS technology is making them more robust
to withstanding frequency imbalances, with more power capacity and a low self-discharge rate [5,6].
Furthermore, with the recent growth of renewable energies and micro-grids, BESS for PFR support has
become an emerging line of research [5,7–10]. Due to resource intermittency, solar plants are not able to
maintain an appropriate energy reserve, making BESS implementation necessary to accomplish PFR
requirements. For this reason, this paper proposes a BESS sizing strategy for PFR in these types
of applications.

Batteries in storage systems represent the highest equipment cost [11–13]; even more, designers
usually overestimate battery sizes in BESS to guarantee reliability in the system incurring an unnecessary
higher investment cost. For appropriate battery sizing, numerous researchers have presented optimization
techniques to trade off BESS size and system reliability in operation. The work of [2] proposed the
inclusion of emergency resistors to optimize BESS for PFR that must act when over-frequency events occur.
The authors also exposed an algorithm to adjust the SoC limits. In [14], the authors illustrated a method of
sizing BESS for isolated systems with high penetration of renewable energies; they had to face significant
frequency deviations due to the lack of a highly inertial synchronous generation system. In [15], a cost-based
multi-objective optimization that included the distribution system cost and the battery cycling cost
was presented. In [16], a methodology for optimizing a LiFePO4 battery in BESS that took into account
the U.K. regulatory framework was reported. The main input of the methodology is frequency historical
data. The work presented in [17] proposed a stochastic approach to operate a BESS that includes a battery
degradation model to obtain the maximal battery lifetime. The paper [5] designed an optimization of a
BESS that trades off investment and operating cost. The authors also considered keeping SoC within a
safe range. In general terms, most of the reviewed papers formulated the problem of BESS sizing as a
dynamic programming problem. It is basically approached from the perspective of the system operation in
which an optimization model seeks the minimum operating and investment cost.

This paper proposes a holistic strategy for sizing BESS for PFR support of solar photo-voltaic plants.
In addition to formulating an optimization problem for sizing BESS, the proposed strategy also
includes a performance evaluation algorithm that emulates BESS operation. The optimization model
mainly includes investment costs as is usually done by researchers in the reviewed papers. However,
with the aim to improve BESS sizing results for PFR, a novel penalty function for SoC is proposed
to ensure, once the BESS is in operation mode, that its SoC does not pose a risk to PFR service.
The performance assessment algorithm is fed by the results of the optimization model, emulates
BESS operation, and provides important performance indexes such as penalization costs, battery
lifetime, battery replacements, and SoC. This permits making better decisions in the election of the
BESS size. The performance assessment considers a great variety of operational restrictions and is less
computationally intensive than the optimization model. This algorithm properly complements the
BESS sizing strategy since it adds realistic operational aspects to this analysis. In summary, the main
contributions of the paper are listed as: (1) a novel penalty function included in the optimization model
to ensure that SoC does not pose a risk to PFR service; (2) a performance assessment algorithm that
emulates BESS operation and permits the calculation of performance indexes such as penalization
costs, battery lifetime, battery replacements, and SoC; and (3) a sizing strategy that is composed of
the optimization model and the performance assessment algorithm; together, the inclusion of multiple
BESS operational restrictions in the sizing process to add a realistic characterization of BESS in PFR
applications is possible.
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This paper is divided into the following sections: Section 2 illustrates BESS operation and defines
operational restrictions. Section 3 proposes the optimization model to find the optimal energy capacity.
Section 4 elaborates on the BESS performance assessment algorithm. Section 5 reports the results
of applying the strategy to a given case and discusses them. Section 6 presents the most relevant
conclusions of this research.

2. BESS Operation under PFR

Under PFR, BESS power is essentially a function of grid frequency, SoC, and frequency droop S.
For modeling purposes, BESS power is split into two terms namely PPFR

t and PSoC
t . Both represent

instantaneous power during period t; the first one is required to model the PFR service, whereas the
latter is employed to maintain SoC within a target SoC band. Furthermore, BESS maximum power
PBESS

n is defined as a given percentage ρ of a solar power plant PG
n , i.e., PBESS

n = ρPG
n .

Figure 1a shows different operation regions regarding the droop characteristic. The horizontal
axis represents grid frequency deviation ∆ ft, and the vertical axis represents BESS power for PFR
service PPFR

t . In Figure 1a, operation regions are indicated as (1), (2), (3), (4), and (5). Regions (1) and
(5) represent BESS power saturation, where BESS exchanges its maximal power PBESS

n with the grid.
Regions (2) and (4) represent linear operation where power is proportional to frequency deviation with
a slope equal to the droop factor S. Finally, Region (3) is the deadband, where PFR is not necessary
and BESS does not exchange power.

Figure 1. BESS operating regions: (a) from the droop characteristic; (b) from SoC.

BESS state of charge SoCt is defined as the quotient between its currently-stored energy Et and
its nominal storage capacity En, SoCt =

Et
En

. Figure 1b shows BESS operation regions according to
its SoCt as indicated in (I), (II), (III), (IV), and (V). Region (I) represents battery overcharge, that is
SoC > SoCmax, and thus, it is not possible to absorb power from the grid. Likewise, Region (V)
represents battery over-discharge, that is SoC < SoCmin, and it is not possible to deliver power to
the grid. Regions (II) and (IV) represent an SoC where it is possible to absorb and deliver power to
the grid. Thus, there are no limitations in providing PFR service, but SoC is out of its target band.
In Regions (I), (II), (IV), and (V), it is necessary to absorb or deliver power PSoC

t to return SoC to its
target band. Finally, SoC Region (III) is limited by SoC−tar ≤ SoCt ≤ SoC+

tar; no PSoC
t power is needed,

and PFR service can be provided without limitations.
Figure 2 explains how PSoC

t (Figure 2a) and PPFR
t (Figure 2b) powers are calculated according to

the regions defined in Figure 1. It is assumed a positive sign for power delivered from BESS to the
grid (discharge) and negative for power absorbed by the BESS from the grid (charge). In Figure 2b,
PPFR

t (∆ ft) is the portion of power that reacts in a linear fashion with respect to frequency deviations
and is given by Equation (1). A positive sign in bm applies when frequency deviation is positive, while
a negative sign applies when frequency deviation is negative.

PPFR
t (∆ ft) =

−1
S · fn

(∆ ft ± bm) (1)
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Notice that PSoC
t is allowed to be different from zero only when the grid frequency lies in the

deadband region (3). In this sense, PSoC
t can be understood as a sudden load or injection of power to the

system depending on its sign. If its magnitude is not small enough, it could cause imbalance between
power generation and demand, which in turn could eventually produce further frequency deviations.
Therefore, to avoid these perturbations in the system, PSoC

t is assumed to be at most a small percentage
γ of BESS nominal power PBESS

n .

Figure 2. BESS output power as function of SoC and grid frequency. (a) Power required for SoC
regulation; (b) Power required for PFR service.

The proposed BESS operation model does not take into account limitations due to the battery
charger or BMS (Battery Management System) operation. Previous works like [18,19] considered
current and voltage profiles that must be met to guarantee battery safety and health during battery
charge operations. Thus, power absorption can be, at certain times, limited to a value lower than that
specified by PSoC

t or PPFR
t . These limitations are not considered in this work.

3. Proposed Optimization Model for BESS Sizing

The proposed optimization model is aimed to find both the best BESS storage capacity En and
operation set points SoC−tar and SoC+

tar. One of the criteria used to achieve satisfactory BESS size for
PFR is investment cost. Thus, the authors of this paper have assembled this optimization model aimed
to find both a cost-effective BESS size that guarantees the proper PFR service and SoC set points that
guide the BESS operation in real time. To do so, the SoC dynamics, via difference equations, is modeled
using short integration periods that allow capturing frequency deviation dynamics. Two of the key
input parameters of the model are SoCmin and SoCmax since they allow tuning the model according to
the results of the performance assessment model. It is important to clarify that the key aspects of BESS
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that are relevant to this formulation are power exchange and energy storage. These parameters define
the ability (or inability) to offer a proper PFR service. Although the type of battery and its associated
chemistry process are relevant from a construction and design point of view, they are not part of the
inputs of the proposed BESS sizing strategy for PFR purposes. The mathematical model is given by
the objective function (2) and Constraints (3)–(11).

minimize f0 = I · En + λ
T

∑
t=1

pt, (2)

subject to pt ≥ m1
(
Et − E+

tar
)

, ∀t = 1, . . . , T, (3)

pt ≥ (m1 −m2)(SoCmax − 0.1)En −m1E+
tar + m2Et, ∀t = 1, . . . , T, (4)

pt ≥ −m1(Et − E−tar), ∀t = 1, . . . , T, (5)

pt ≥ −(m1 −m2)(SoCmin + 0.1)En + m1E−tar −m2Et, ∀t = 1, . . . , T, (6)

PPFR
t = PG

n max
(

0, min
(

ρ,
−1

S · fn
(∆ ft + bm)

))
+ PG

n max
(

0, min
(
−ρ,

−1
S · fn

(∆ ft − bm)

))
, (7)

Et = E−tar · 1{t=1} + Et−1 · 1{t≥1} + ∆t
(

PSoC
t + PPFR

t

)
, ∀t = 1, . . . , T, (8)

E+
tar − E−tar ≤ ρgapEn, (9)

SoCminEn ≤ Et ≤ SoCmaxEn, ∀t = 1, . . . , T, (10)

|PSoC
t | ≤ γ PBESS

n 1{−bm≤∆ ft≤bm}, ∀t = 1, . . . , T. (11)

The optimal BESS dimension is obtained by minimizing its investment cost and the penalty
function, as shown in Equation (2). I represents the unitary investment cost in $/MWh of storage
capacity; thus, the product I · En is the total BESS cost in $. pt, a convex and piecewise affine function
that is illustrated in Figure 3, penalizes SoC deviations during period t from its target band as described
in Equations (3)–(6). m1 and m2 (m1 < m2) are the slopes of pt. The set of inequalities (3)–(6) was
employed to describe the convex function pt. This is a common strategy in convex optimization
formulations and can be understood as the epigraph of the function. To address additional convex
optimization concepts, the interested reader can refer to the textbook [20].

Figure 3. SoC deviation penalty function pt.

Parameters SoCmin and SoCmax represent SoC hard limits, i.e., during the optimization, the BESS
is not allowed to operate outside the interval

[
SoCmin, SoCmax]. Furthermore, the resulting SoC



Energies 2019, 12, 317 6 of 16

target band is defined by interval
[
SoC−tar, SoC+

tar
]
. These bounds are related to decision variables

E−tar = SoC−tar En and E+
tar = SoC+

tar En (in MWh), which in turn define the lower and upper bounds of
the target storage level, respectively.

As depicted in Figure 3, pt penalizes the objective function when either Et < E−tar or Et > E+
tar;

and pt is even larger as long as Et approaches either SoCmin En or SoCmax En. In case E−tar ≤ Et ≤ E+
tar,

pt is zero. This function is constructed with the purpose of maintaining SoC far enough from its limits
(SoCmin and SoCmax), not only in the optimization model, but also during the PFR assessment, as will
be discussed later in Section 4.

Constraint (7) allows computing PPFR
t in terms of frequency deviation ∆ ft, as illustrated in Figure 1a.

The slope of linear segments depends on the system frequency regulation constant (or frequency droop) S,
nominal frequency fn, deadband (2bm), and PG

n . Signal PPFR
t , t = 1, . . . , T does not belong to the decision

variable set, but it is a signal resulting from the power system dynamics. In general terms, PPFR
t is the

power for the PFR service and is computed such that 1 MW of power should cause a relative change in
frequency S between 4% and 6% with respect to its nominal value fn.

A stored energy update is performed according to Constraint (8). This constraint is nothing
but a difference equation representing energy storage as the integral of net power handled by the
BESS. Indicator function 1{x∈A} is one whenever x ∈ A, and zero otherwise. The initial condition
assumes that the storage level is at E−tar. Energy stored Et is updated as a result of successive charge
and discharge signals throughout the analysis horizon. When −bm ≤ ∆ ft ≤ bm, frequency is located
in Region 3 of Figure 1a, which indicates that the BESS enters into either a charging or discharging
process. This process is developed to return storage level Et to the target band given by

[
E−tar, E+

tar
]

(this is equivalent to returning SoC to its target band given by
[
SoC−tar, SoC+

tar
]
) by the proper values of

PSoC
t , t = 1, . . . , T.

The storage target band is parameterized in Constraint (9) in terms of a percentage ρgap of
storage capacity En. This constraint basically states that the width of the gap (measured in units of
energy) cannot be larger than a small percentage of the nominal storage capacity. In any case, stored
energy Et cannot operate outside the operational limits SoCminEn and SoCmaxEn as suggested by the
restrictions (10).

Power signal PSoC
t , t = 1, . . . , T represents a key decision variable in this model. It allows

managing SoC at times when frequency is under the normal condition. The constraints (11) state
that PSoC

t needs to be at most a percentage γ of BESS nominal power. Note that PSoC
t can be either

positive or negative, i.e., it can represent charge or discharge only when frequency deviations are small.
The model chooses the magnitude of PSoC

t according to the “distance” of current SoC to its target band
during period t.

4. BESS Performance Assessment Algorithm

A performance assessment algorithm is proposed to emulate BESS operation using a predefined
frequency dataset. The assessment goal is to compute performance indexes such as penalization
costs, battery lifetime, battery replacements, and SoC target band. The outputs of the optimization
model (En, SoC−tar, SoC+

tar) represent the input parameters to the performance assessment algorithm.
This algorithm is presented as a two-step process:

4.1. Step 1: Continuous SoC Estimation

The goal of this step is to estimate SoC and penalization counts using the entire dataset of
frequency deviations. To do so, both PPFR

t and PSoC
t are computed using frequency deviation from

the dataset, current SoC, and the droop characteristic, as described in Figures 1 and 2. This is analogous
to restrictions (7) and (11) presented in Section 3.
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Then, an energy balance (resulting from the integral of net power PPFR
t + PSoC

t ) is proposed to
update the stored energy at the end of period t using Equation (12).

Et = Et−1 + (PPFR
t + PSoC

t )∆t, ∀t = 1, . . . , T (12)

Likewise, the corresponding SoC is updated by dividing both sides of Equation (12) by En as
presented in (13):

SoCt = SoCt−1 +
(PPFR

t + PSoC
t )∆t

En
, ∀t = 1, . . . , T (13)

To estimate BESS battery lifetime, Ecirc
t needs to be calculated. Ecirc

t is understood as the
energy that has circulated in the battery up to period t, regardless whether it is caused by charge or
discharge processes. It is computed using Equation (14):

Ecirc
t = Ecirc

t−1 +
(∣∣∣PPFR

t

∣∣∣+ ∣∣∣PSOC
t

∣∣∣)∆t, ∀t = 1, . . . , T (14)

A penalization is considered whenever SoC is in Region (V) and frequency deviation in Regions (1)
or (2), or when SoC is in Region (I) and frequency deviation in Regions (4) or (5). These cases represent
BESS failing to provide PFR service due to either BESS overcharge or over-discharge, which are
considered as over-frequency and low-frequency penalization, respectively. This is depicted at the
bottom-left and top-right corners of Figure 2b. The number of days with at least one over-frequency
penalty is represented by N+; whereas the number of days with at least one low-frequency penalty is
N−. The process of assessing the failure-to-provide-PFR is carried out continuously and will finally
return the total number of penalty days with at least one penalization N = N+ + N−.

4.2. Step 2: Performance Indexes’ Computation

Once Step 1 has been completed, penalization costs, battery lifetime, battery replacements,
and investment costs need to be computed. Given that the total number of penalization days N is
valid for the analysis horizon defined by the available frequency dataset, it is necessary to extrapolate
N over the solar plant’s lifetime, namely Nli f e. Assuming a similar behavior for frequency and BESS
during the solar plant lifetime, such an extrapolation is given by:

Nli f e =

(
Tsol
Tasm

)
N (15)

where Tsol is the estimated lifetime for the solar plant and Tasm refers to the amount of time covered in
the available frequency dataset. The selected criterion for computing penalization cost Cpen is adapted
from the Colombian PFR regulation [21] and shown in Equation (16). It is worth mentioning that
any other criterion for cost penalties when PFR is not properly offered can be easily assembled with
this methodology.

Cpen = 2 GR ρ ppen Nli f e (16)

GR represents the total estimated energy generation for the solar plant in a 24-h period; ρ is the
percentage of PFR reserve for the plant; and ppen is the penalization price. However, the proposed
BESS sizing strategy in this work is flexible enough to accommodate other penalization cost criteria.

In this work, a solar plant with an installed power capacity given by PG
n and an average capacity

factor given by CF is assumed. CF is known as the ratio of total electricity generated to the maximum
energy that a power plant can produce at continuous full-power operation [22]. Thus, it is the estimated
average daily energy production (GR) is given by:

GR = 24 CF PG
n (17)
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BESS battery lifetime is calculated by using the energy throughput model presented in [23,24]
and as presented in Equation (18):

TBESS =

(
Eth

Ecirc
T

)
Tasm (18)

Ecirc
T represents the battery wear during the analysis horizon time Tasm and refers to the the final

point of the energy circulating trajectory Ecirc
t , t = 1, . . . , T presented in Equation (14). This lifetime

model assumes a given amount of energy Eth that the battery can exchange (during charge or
discharge) before reaching its lifetime. According to the works [23,24], Eth can be computed from the
battery manufacturer curves that represent the number of cycles C f as a function of average depth
of discharge DoD. However, in this paper, Eth is calculated using Equation (19), which corresponds
to lead-acid batteries. Nevertheless, the authors of this paper do not pretend to limit the range of
application of this methodology to lead-acid batteries only. For other battery technologies, Eth can be
estimated using the approaches presented in [4,25].

Eth = DoD En C f (19)

Optimal BESS sizing for PFR purposes requires the evaluation of performance in operation.
A BESS with low energy capacity (En) has low initial investment costs; but in the end, it can be more
expensive if additional investment costs over the lifetime of the solar project are considered due to
future replacements. Thus, for a more realistic economic evaluation, the number of BESS replacements
Nr during the solar plant lifetime needs to be calculated. To do so, Equation (20) is employed:

Nr =

⌈
Tsol

TBESS

⌉
(20)

where dxe indicates the least integer that is greater than or equal to x. Thus, Nr indicates how many
BESS need to be invested in in order to fully cover the power plant’s lifetime period. Finally, total BESS
investment and replacement costs are calculated as follows:

CI = I En Nr (21)

The final decision regarding the optimal BESS size is chosen as the one that minimizes the total
project cost given by Cpen + CI .

5. Results

In order to test both the optimization model and the assessment algorithm, a PG
n =10 MW

solar PV power plant with a CF = 20% capacity factor was considered. Lifetime was assumed to
be Tsol = 25 years. As mentioned earlier, the BESS was designed entirely for providing PFR service
to which the solar PV plant was committed. ρ = 3% of the plant capacity had to be dedicated for
frequency control, which means the nominal BESS power was PBESS

n = 0.3 MW. The nominal frequency
was fn = 60 Hz and the deadband bm = 30 MHz. Furthermore, the frequency droop was S = 6%.
BESS investment cost was assumed to be I = 600 $/kW; this is considering the battery management
system and power conversion system. An SoC target bandwidth of ρgap = 5% was assumed, and slopes
for the penalty function were given by m1 = 40 and m2 = 80. The assumed number of BESS cycles
was C f = 100,000. The percentage of BESS nominal power γ to recover its SoC to the target band was
assumed to be 15%. Since nominal power was 300 kW,

∣∣PSoC
t
∣∣ was bounded by 45 kW in order to

prevent posterior frequency deviations.
Frequency event data were provided by the Colombian Independent System Operator (ISO)

called XM. It contains 10,819,703 frequency records, sampled every four seconds by a Phasor
Measurement Unit (PMU), and they were collected between December 2014 and April 2016. However,
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a sample of one million data points was considered in the optimization model described in Section 3.
The performance assessment algorithm used the entire set of available data.

The resulting linear program presented in Section 3 was solved using GAMS (24.4.6, GAMS
Development Corporation, Washington, DC, USA) and took one hour on average using a 3.3-GHz,
64-GB workstation; whereas the performance assessment algorithm was coded using MATLAB (R2014a,
Mathworks, Natick, MA, USA), and the average CPU time was 10 min.

5.1. Frequency Events’ Characterization

Figure 4 illustrates the frequency deviation distribution of the data. Frequency deviations ranged
between −0.48 Hz and 0.24 Hz; however, 95% of the data oscillated between −0.06 Hz and 0.06 Hz.
During 70.22% of the time, the frequency lied in its acceptable range; thus, PFR was required 29.78%
of the time. High-frequency events above the deadband were observed 12.5% of the time; whereas
low-frequency events occurred 17.28% of the time. Therefore, the frequency distribution implied that
BESS would be mostly absorbing power from the grid under PFR service.

Figure 4. ∆ f distribution.

Data samples employed for BESS sizing via the optimization model represented a time window
capturing the most extreme 47 days (one million data points) of frequency events. Out of these data,
47.22% of the frequency deviations required BESS control action for PFR; 18.83% and 28.39% of the
frequency represented high-frequency and low-frequency events.

Figure 5a shows the PPFR
t distribution resulting by employing Equation (7) to the entire dataset.

The 95% confidence interval of PPFR
t was [−0.0833, 0.0833] MW. Figure 5b shows PPFR

t for the sample
frequency data. According to these distributions, both datasets were statistically similar.
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Figure 5. PPFR
t distribution: (a) for the complete dataset; (b) for the optimization dataset.

5.2. BESS Sizing

The proposed optimization model was executed under different penalty levels λ and different
operational parameters SoCmin and SoCmax. The optimization model provided storage capacity En,
which is an input to the evaluation algorithm. This algorithm was useful in the sense that it performed
BESS assessment under typical operational rules for PFR purposes. The BESS assessment was measured
through the number of days in which PFR was not properly carried out. It was called the penalty
number N, split into N− and N+, representing the number of penalizations in low-frequency and
high-frequency events, respectively. Results are described in Table 1.

Table 1. Optimization and assessment results.

Optimization Parameters Optimization Output Assessment

SoCmin SoCmax λ En (MWh) Target Band (%)
N+ N− N

SoC−
tar SoC+

tar

0.10 0.90

2000 1.23 21.51 26.1 0 0 0
1000 0.546 25.17 30.17 0 0 0
667 0.442 27.30 32.30 0 0 0
500 0.359 29.78 34.78 0 0 0
333 0.263 34.57 39.57 0 1 1
60 0.135 46.68 46.68 0 1 1
6 0.111 47.07 52.07 1 1 2

0.25 0.75

2000 1.23 36.51 41.51 0 0 0
1000 0.546 40.17 45.17 0 0 0
667 0.442 42.30 47.30 0 0 0
500 0.359 44.77 49.77 0 0 0
333 0.293 47.62 52.62 0 1 1
60 0.254 47.15 52.15 0 1 1
6 0.177 47.52 52.52 0 3 3

0.30 0.70

2000 1.23 41.51 46.51 0 0 0
1000 0.546 45.17 50.17 0 0 0
667 0.443 47.26 52.26 0 0 0
500 0.435 47.20 52.20 0 1 1
333 0.424 47.13 52.13 1 0 1
60 0.373 46.96 51.96 0 1 1
6 0.221 47.76 52.76 5 0 5

As observed in Table 1, there was a clear dependence between BESS size and penalty level λ.
As long as λ increased, BESS sizing was also bigger. Penalty function pt became more important in
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the objective function (Equation (2)) whenever λ increased; then, SoC was less able to approach its
operational limits SoCmin and SoCmax during PFR. To do so in practical terms, BESS storage capacity En

needs to be large enough such that its energy storage level remains within the target band. The opposite
occurred as long as λ decreased, since investment cost tended to prevail over penalty pt. A graphical
representation of BESS size vs. penalty under different SoC bounds is provided in Figure 6. If λ > 700,
there was no perceived effect of SoC bounds on BESS size given that pt was too large to prevail over
investment cost. For lower values of λ, tighter SoC bounds led to bigger BESS sizes in order to avoid
penalization during the charging and discharging process in PFR. These bounds are hard constraints
that need to be satisfied at anytime.

Figure 6. Nominal BEES energy capacity as a function of λ.

5.3. Penalization

Results in Table 1 also provide the number of penalizations caused by different BESS sizes.
The 221-kWh BESS (0.3 ≤ SoC ≤ 0.7) displayed the worst performance against high frequency events,
i.e., under the excess of generation in the system. This means that when sudden positive frequency
deviations occurred, SoC was close to 70%, and BESS could not absorb the additional power required
for PFR. According to the results, this situation was observed during five days in the dataset.

Additionally, the larger the BESS sizing, the lower the penalization levels N. The resulting
111-kWh BESS (when λ = 6) yielded one penalization in PFR under, both for low-frequency and
high-frequency events. However, the 135-kWh/300-kW BESS (when λ = 60) yielded only one
penalization in PFR under low-frequency events. SoC target band location also played a key role
in affecting BESS performance. In fact, even the 359-kWh BESS displayed a zero penalization level
when the SoC target band was within 29.78% and 34.78%. Indeed, as depicted in Table 1, even for
a BESS with a fixed size En, N could change. The SoC target band was also a decision made by the
proposed model; but, based on the findings of this work, it is essential to have an assessment tool (as
described in Section 4) that provides realistic performance measures useful for determining the best
SoC target band. The reason is that from the optimization model perspective, it is not possible to know
the frequency signal in advance.

5.4. Investment Costs

In order to evaluate BESS investment cost, Figure 7 is presented. If BESS replacements were
neglected, the investment costs curve would be linear with slope I. Figure 7 also shows how the
number of BESS replacements Nr dramatically increased as long as En decreased. These results
were obtained once the lifetime was computed as presented in Equations (18) and (20). In fact,
if En = 300 kWh, the lifetime was four years according to the performance assessment algorithm,
and thus, seven replacements are needed in order to fully provide PFR during the 25-year period.
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This explains the increment in investment cost in Figure 7. Nr tended to increase since the charging and
discharging process was more intense as long as the BESS size was smaller. From the total investment
cost perspective, the 546-kWh BESS was the most cost-effective alternative. It is estimated that such a
BESS design would require four replacements throughout the solar plant’s lifetime.

Figure 7. Total BESS investment and replacement cost.

5.5. Penalization Cost

Three scenarios of penalization cost were considered: ppen = 33.33 $/MWh, 66.67 $/MWh,
and 100 $/MWh. These represent the typical power spot price observed in the Colombian power
market [26]. Penalization costs are computed once penalties (N, N−, N+) are found using the
performance assessment algorithm presented in Section 4.

Penalization cost results are illustrated in Figure 8. A BESS with reduced storage capacity
implies high penalization cost. For capacities around 110 kWh, the cost was over $20,000 during the
25-year period. Nevertheless, this is significantly lower—by several orders of magnitude—than the
corresponding investment cost (displayed in Figure 7). An important fact is that a 546-kWh BESS or
higher does not incur a penalization cost, i.e., this BESS always provides PFR satisfactorily.

Figure 8. Penalization cost.

The SoC performance of the 546-kWh BESS under different SoC target bands is presented in
Figure 9. Dotted horizontal lines represent the SoC limits (SoCmax, SoCmin), while continuous horizontal
lines are the target SoC band limits (SoC+

tar, SoC−tar). Each of these target bands are the product of the
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optimization model using 47 days of data. The target band in Figure 9a is [25.2%, 30.2%], in Figure 9b
is [40.2%, 45.2%], and in Figure 9c is [45.2%, 50.2%]. Based on these results, the resulting SoC lies most
of the time in the corresponding target bands. This empirical evidence highlights the effectiveness of
function pt, which is minimized in the objective function (2).

Figure 9. SoC trajectories for different SoC target bands. (a) [25.2%, 30.2%]; (b) [40.2%, 45.2%]; (c) [45.2%, 50.2%].

6. Conclusions

In conclusion, storage capacity, as well as operational criteria provided by the optimization model
lead to significant low penalty levels when BESS is assessed in PFR. It was also found that lower
and upper bounds of SoC impact BESS sizing as long as the penalty level λ decreases, the tighter
the bounds, the bigger the BESS. The impact is negligible when λ is high. As a general remark,
λ > 500 led to BESS designs with zero penalty levels assuming the aforementioned investment cost
and parameters.

Furthermore, in order to find satisfactory BESS sizing alternatives, it is crucial to extract a
subset of data properly—maintaining chronological order—with the most “extreme” frequency events.
By doing so, not only is the optimization model lighter than the model constructed with the entire
dataset, but the resulting sizing alternatives perform well in operation mode.

Additionally, in financial terms, assessing BESS performance during the solar plant’s lifetime
allows finding a better estimation of the total BESS investment cost. This cost should consider the
number of BESS replacements according to the operation behavior and charge/discharge patterns,
which are essentially random in PFR. The process of computing the number of replacements is
supported by a degradation model that considers these patterns. Otherwise, the optimal BESS size
would be smaller.

All in all, the resulting optimal BESS size balances investment and penalization cost under failure
in supporting PFR. Since the operational performance was assessed with 4-s sampled data covering
more than 15 months, and it is guaranteed that the optimal BESS size can perform satisfactorily
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under a great variety of frequency disturbances. In general, the proposed methodology was carefully
constructed and assembled to provide meaningful, practical, and applicable results in terms of proper
size of BESS dedicated to providing the PFR service for which solar power plants are responsible.
Most importantly, the proposed strategy for sizing of the BESS that supports PFR of solar power plants
is simple and can be applied by industries and companies involved in the integration of renewable
energy to power grids.
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Abbreviations

The following abbreviations are used in this manuscript:

BESS Battery Energy Storage System
BMS Battery Management System
PFR Primary Frequency Regulation
PMU Phasor Measurement Unit
SoC State of Charge

Nomenclature

Parameters
t Index of periods
∆t Sampling period (s)
I Cost of the battery ($/ MWh)
bm Half of the width of the deadband (Hz)
m1, m2 Slopes of the penalty function pt
SoCmin Minimum state of charge (%)
SoCmax Maximum state of charge (%)
SoC+

tar Upper limit for target state of charge (%)
SoC−tar Lower limit for target state of charge (%)
SoCt State of charge at the end of period t (%)
ρ Solar plant capacity percentage used for PFR (%)
S Frequency regulation constant (%)
fn Nominal frequency of operation (Hz)
∆ ft Frequency deviation during period t (Hz)
∆ f max Maximum frequency deviation for BESS power limitation (Hz)
∆ f min Minimum frequency deviation for BESS power limitation (Hz)
ρgap Maximum percentage of target SoC band (%)
γ Maximum percentage of charge/discharge during deadband frequency events (%)
PBESS

n BESS nominal power capacity (MW)
PG

n Solar power plant generation capacity (MW)
PPFR

t BESS power used in PFR during period t (MW)
PSoC

t BESS power used to manage SoC during period t (MW)
λ Factor that varies the penalty levels
Ecirc

t Energy that has circulated through the BESS up to period t (MWh)
Eth Sum of absolute energy values (charge and discharge) to reach the end of the battery life (MWh)
T Analysis horizon (periods)
Tasm Performance assessment period (years)
TBESS BESS estimated lifetime (years)
Tsol Solar power plant estimated lifetime (years)
Nr Number of BESS replacements during solar plant lifetime
Nli f e Penalization days during solar plant lifetime
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N Penalization days during evaluation (days)
N+ Penalization days during evaluation, due to over-frequency (days)
N− Penalization days during evaluation, due to under-frequency (days)
Cpen Penalization costs ($)
ppen Penalization price ($/MWh)
GR Average daily solar energy production (MWh)
CF Solar plant capacity factor (%)
CI Total BESS investment and replacement costs (millions $)
Decision variables
En Storage capacity in MWh
Et Stored energy at the end of period t in MWh
pt Penalty function of period t
E+

tar Upper limit of the target energy band (MWh)
E−tar Lower limit of the target energy band (MWh)
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