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Abstract: Given the large-scale exploitation and utilization of wind power, the problems caused by
the high stochastic and random characteristics of wind speed make researchers develop more reliable
and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study
proposes a novel compound WPF strategy by optimal integration of four base forecasting engines.
In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN)
is firstly employed to identify meaningful information and discard the abnormal wind power
data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange
interpolation method is developed to get the corrected values of the missing points. Then, the
two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD)
and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition
process, the empirical wind power data are disassembled into different intrinsic mode functions
(IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken
into different components by WT. After determination of the input matrix by a partial autocorrelation
function (PACF) and normalization into [0, 1], these decomposed components are used as the input
variables of all the base forecasting engines, including least square support vector machine (LSSVM),
wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated
moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the
forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking
search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted
coefficients of the individual forecasting results that produced by the four base forecasting engines to
generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are
carried out to assess the proposed forecasting strategy.

Keywords: two-stage decomposition; extreme learning machine; least square support vector machine;
wavelet neural network; partial autocorrelation function; wind power forecasting

1. Introduction

By the end of 2050, at least 80% of the greenhouse gas emission of many countries will have been
reduced. Wind energy, an abundant, widely distributed and environmentally friendly resource, is one
of the most likely alternatives to petrochemical energy [1]. In recent years, wind power technologies
have been developed and the capacity of installed wind turbines has increased rapidly. As reported by
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the World Wind Energy Association (WWEA), the capacity of the installed wind turbines in China,
India, Brazil, many other Asian markets, and some African countries, in 2018 grew robustly and
strongly. For example, the new installed capacity in China amounts to 25.9 GW and China has
become the first country with an accumulated installed wind power capacity of 221 GW by the end
of 2018. However, nonlinearity and the fluctuations of wind power seriously influence its practical
application [2–4]. The problems compel engineers and researchers to develop more reliable and
accuracy wind power forecasting (WPF) models.

In recent years, many statistical and artificial intelligent models based on historical wind power
data and meteorological information [1–11] have been developed for WPF. For example, Sebastian
Brusca proposed a new spiking neural network-based system using wind speed data and wind
direction of three different anemometric towers for predicting wind farm energy production [5]. As
stated by Meng [6], neither single individual statistical forecasting approaches nor single artificial
intelligent forecasting models can effectively catch the nonlinear characteristics of wind power time
series; a single individual statistical method or artificial intelligent model suffers from large errors
and cannot obtain high forecasting accuracy, thus, the single individual forecasting models may
produce higher decision risk to wind farm operators for their larger forecasting deviations. Fortunately,
hybrid models combining individual forecasting method with signal preprocessing technique can
yield good prediction results and the hybrid methods in the previous relevant literatures have been
proved to yield better forecasting results than the single individual prediction methods. For example,
in the work by the authors of [2], a novel hybrid intelligent method based on variational mode
decomposition (VMD) and extreme learning machine (ELM) was proposed to predict short-term wind
power. In the hybrid model, the original wind power data were disassembled into different modes
by VMD, then, these subseries modes were utilized to construct training patterns and forecasting
by ELM after feature selection. In the work by the authors of [6], the original wind speed data were
decomposed into different subseries by wavelet packet decomposition (WPD), then, this subseries
were used as the inputs of artificial neural network (ANN) for short-term wind speed forecasting
(WSF), the parameters in ANN were optimized by crisscross optimization algorithm. In the work by
the authors of [12], ensemble empirical mode decomposition (EEMD) was used as signal preprocessing
technique to make the original wind speed data decomposed into more stationary subseries, and
subsequently each subseries was utilized to train and test back-propagation neural network (BPNN)
and the weights coefficients in BPNN were optimized by genetic algorithm (GA). The case studies
illustrated the proposed EEMD-GA-BPNN obtained higher forecasting accuracy than the traditional
GA-BPNN. From the above-mentioned literatures, some conclusions can be drawn that artificial
intelligent forecasting method combined with the multiscale preprocessing technique can improve
WSF/WPF accuracy effectively; in these hybrid forecasting models, preprocessing techniques are firstly
used to decompose the original wind data into relatively stable subseries, and artificial intelligent
forecasting engines make WSF/WPF using the decomposed components.

Although single signal preprocessing technique are indispensable in WSF/WPF, they cannot
often handle the wind data thoroughly in that there is high fluctuation and a nonstationary and
random character in wind speed. Liu et al. [13] developed a novel hybrid approach combining the
secondary signal decomposition algorithm (SDA) with Elman neural network to predict wind speed,
in the SDA, FEEMD algorithm was utilized to re-decompose the high frequency, namely detailed
components obtained by WPD, into different components. In the work by the authors of [14], another
SDA integrating empirical mode decomposition (EMD) and WPD was developed to decompose the
wind speed for better WSP results. Peng et al. [15] applied a compound WSF model combining the
two-stage decomposition (TSD) with AdaBoost-extreme learning machine to make multistep WSF.
These two-stage wind speed decomposition methods can eliminate the nonstationary of wind speed
better in that the approaches yield higher accuracy. Thus, in this study, a TSD approach combining
EEMD with wavelet transform (WT) is exploited to preprocess the original wind power time series.
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Additionally, abnormal data or noise consist commonly in wind power data for malfunctioning
sensors, measurement error or misoperation, etc., which is one considerable obstacle to achieving
high WPF accuracy [16]. In the work by the authors of [17], binary particle swarm optimization and
gravitational search algorithm (BPSOGSA) was developed as feature selection to identify and discard
the ineffective candidate wind speed data. Coral reefs optimization algorithm (CRO) was employed
to yield a reduced number of input variables from the output of the Weather Research and Forecast
(WRF) model [18], which were used as the input of ELM for WPF. The multiple imputation approach
in the work by the authors of [16] was applied to impute each missing wind power data using a vector
of different plausible estimates. All of these wind power data processing have been proved to enhance
the WPF accuracy. In this study, density-based spatial clustering of applications with noise (DBSCAN)
method is developed to identify and discard abnormal data within wind power data.

Apart from applying the data processing method and parameter optimization algorithms on the
individual forecasting engines to improve the forecasting quality, the integrations of multiple individual
forecasting engines by artificial intelligent or optimization algorithm have been explored in the last few
years [3,16–21]. For example, Wang et al. [3] proposed a new hybrid model based on a robust combination
of different single individual forecasting models by Gaussian process regression (GPR) for probabilistic
WSF. The preliminary forecasting results obtained by different base forecasting models were mapped
into a feature space where the GPR approach was employed to integrate these candidates by a nonlinear
way. In the work by the authors of [20], a novel hybrid model based on weighted multiple forecasting
machines with VMD was proposed for short-term WPF. In the hybrid model, the final forecasting results
were obtained by combining the outputs of LSSVM, Echo State Network (ESN), and regularized extreme
learning machine (RELM) using optimal weighted coefficients. In Ref. [21], the modified support vector
regression was explored to combine all the forecasting values generated by three base forecasting engines
and yield the final forecasting values. These case studies in the literatures illustrate the hybrid forecasting
model outperform the base forecasting engines.

2. Innovations of the Proposed Forecasting Strategy

Inspired by the previous studies in the similar domain, a novel forecasting strategy based on
multiple forecasting engines is proposed for WPF; the proposal is evaluated by the actual historical
wind power data from a wind farm of China. The main novelties and works of the study with respect
to the previous research in the similar domain are summarized as follows.

(i) The proposed hybrid model has the advantages of wind power data preprocessing technique,
four individual forecasting engines, and a parameter optimization algorithm that can improve
prediction performance.

(ii) In the wind power data preprocessing procedure, DBSCAN is adopted as clustering approach to
identify and discard the abnormal data within the original wind power time series. Considering
that wind power data exhibit randomness and uncertainty, the TSD method is exploited to
decompose the modified wind power data into relatively stable components for improving the
regression performance of the forecasting engines.

(iii) The forecasting procedure includes two layers: In the primary forecasting layer, four
hybrid forecasting models, including DBSCAN-TSD-BSA-LSSVM, DBSCAN-TSD-BSA-ELM,
DBSCAN-TSD-BSA-WNN, and DBSCAN-TSD-ARIMA, are constructed as the base forecasting
engines in the proposed forecasting strategy to make the preliminary multistep WPF. ARIMA
has a strong capacity in the linear time series modeling, while ELM, WNN, and LSSVM can
well model and process the nonlinear time series, therefore, the proposed forecasting strategy
can better handle the nonlinear and linear information in the wind power data. To avoid local
optimal and improve forecasting quality, the parameter combinations in ELM, WNN, and LSSVM
are optimized by BSA algorithm. In the secondary forecasting layer, BSA is also employed to
optimize the weighted coefficient to integrate the forecasting results obtained by the four hybrid
forecasting models and yield the final forecasting results.
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The resting structures are organized as follows. The preprocessing technique and four base
forecasting engines are described in Section 3. Section 4 explains the proposed strategy for wind power
forecasting. The case study and the simulation modeling are illustrated in Section 5. Comparisons and
performance analysis of the proposed forecasting strategy are presented in Section 6. Finally, the
conclusions are presented.

3. Methodology

3.1. Density Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN, a density-based spatial data clustering method, is widely used in image processing [22] and
high-dimensional data procession [23,24]. The aims of the DBSCAN method are to group the candidate
points into core points, border points, or outliers. DBSCAN can yield clusters of arbitrary shapes effectively
under the given two parameters eps and minpts. The clustering process of DBSCAN is to determine the
quantity of points within the predefined distance eps neighborhood of a specified point. Assuming a set
of sample points, if the quantity of points within the eps-neighborhood of a point is bigger than threshold
parameter minpts, the point is labeled as a dense point, then a new cluster is obtained. Otherwise, it is
labeled as an outlier. In the same way, other points in the eps-neighborhood are grouped into the cluster in
the subsequent iteration. If no candidate points are in the eps-neighborhood of the cluster, the new clustering
processing is finished. To repeat the above process, other new clusters can be yielded [25,26]. The working
flowchart of DBSCAN is displayed in Figure 1.

Figure 1. The working flowchart of density-based spatial clustering of applications with noise
(DBSCAN).



Energies 2019, 12, 3586 5 of 22

3.2. Two-Stage Decomposition

3.2.1. Ensemble Empirical Mode Decomposition (EEMD)

EMD suffers from shortage of the mode mixing, which usually caused intermittency when applied
in analyzing nonlinear and nonstationary signals [27]. To eliminate the problem, a new data-driven
and adaptive signal analysis approach, EEMD, was proposed by Wu and Huang [28]. In signal analysis,
a set of Gaussian white noise with finite amplitude are added to the sample signal in each iterative
sifting process to reinforce the sample signal in all frequency bands. The final decomposed IMFs are
obtained through eliminating the Gaussian white noise with the help of the ensemble means. The
process of wind power decomposition by EEMD is illustrated in the Figure 2.

Figure 2. The working flowchart of ensemble empirical mode decomposition EEMD.

3.2.2. Wavelet Transform (WT)

Wavelet transform (WT) is an effective approach for nonstationary and nonlinear signal processing,
and it can distinguish specific patterns hidden in empirical samples when applied in time-series
analysis. Artificial intelligent or machine learning methods combining with WT have better forecasting
results [29,30]. WT can be classified into continuous WT (CWT) and discrete WT (DWT). In this study,
we utilize DWT to analyze the wind power time series. DWT is expressed mathematically as Equation
(1).

DWT(m, n) =
1√
2

∫ +∞

−∞
x(t)ϕ∗(

t− n
m

)dt (1)

where m = 2i, n = 2ik; x(t) denotes the original wind power data, and ϕ and ϕ∗ represent discrete
wavelet and its complex conjugate, respectively. t represents the discrete time index. In addition, the
4th Daubechies function (Db4) is adopted as mother function for its good capacity in a trade-off for
length and smoothness.

3.3. Extreme Learning Machine (ELM)

For a single-layer feedforward network (SLFN) with no weights adjustment in any iteration,
the training process of ELM is very fast. Through the input and output variables dimension, the number
of hidden neural nodes are easily determined in advance [2], thus ELM has been widely applied to
solve the classification and regression problems [18,31].

Supposed a training dataset {(xi, yi) ∈ Rn× Rm}, ELM with a three-layer structure, namely, input
layer, hidden layer, and output layer, is mathematically expressed as Equation (2).

N
∑

i=1
βiG(ωi, bi, xj) = yj j = 1, 2, · · · , N (2)

where ωi, bi, and βi are input weight vectors, the threshold, and output weight vector, respectively.
In the standard ELM algorithm, ωi, bi, and βi are randomly generated.
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After random selection of ωi, bi, and βi, the continuous function G(ωixi + bi) can be
determined [31], and the function y is approximated without adjusting the parameters in the hidden
layer by SLFN. In the ELM, the Sigmoid function, shown as Equation (3), is utilized as activation
function in the hidden nodes.

G(x) =
1

1 + e−x (3)

3.4. Wavelet Neural Network (WNN)

Wavelet neural network is constructed based on feedforward back-propagation network (BPNN),
namely, the transfer function, also named activation function, in hidden neurons nodes of BPNN is
replaced by wavelet function [32–34] . The basic structure of WNN includes an input layer, hidden
layer, and output layer. Given input variables X = [x1, x2, · · · xn], and target variable y. The mathematic
description of WNN is shown as Equation (4).

y =
n

∑
j=1

ωj

m

∑
i=1

ψai,jbi,j

xi − bi,j

ai,j
(4)

The regression performance of Morlet and Mexican hat wavelet functions have been compared
and the numerical results demonstrate that the effectiveness of Morlet wavelet function outperforms
that of Mexican hat wavelet function [28]; thus, the Morlet function, expressed as Equation (5), is
utilized as wavelet function in this study.

ψ(x) = e−0.5x cos(5x) (5)

3.5. Least Squares Support Vector Machine (LSSVM)

For its excellent generalization capacity and regression performance, LSSVM is adopted as
forecasting engine in this study. LSSVM is a classical machine learning approach based on the
working mechanism of structural risk minimization [35]. Given N samples xi, yi, where i = 1 · · ·N.
The regression function can be mathematically expressed as Equation (6).

y = ωT ϕ(x) + b (6)

where ω, b, and ϕ(·) represent weight vector, the bias term, and nonlinear mapping function,
respectively. ω can be calculated through minimizing the following cost function, as in Equation (7).

min C = min(0.5ωTω + 0.5γ
N

∑
i=1

e2
i ) (7)

subject to
ωT ϕ(xi) + b = 1− ei, i = 1, 2, · · · , N (8)

ei in Equations (7) and (8) denote the penalized regression error. γ represents a regularization parameter
used to adjust the trade-off between bias and variance. Based on above equations, the Lagrange
function can be obtained as Equation (9).

L(ω, b, e, α) = C−
N

∑
i=

βi(ω
T ϕ(xi) + b− yi + ei) (9)

where βi are Lagrange multipliers.
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The solutions to Equation (9) can be calculated through partially differentiating with respect to βi,
b, ω, and ei, and eliminating ω and ei, which yields following regression function Equation (10).

y =
N

∑
i=1

αi 〈ϕ(xi)ϕ(x)〉+ b =
N

∑
i=1

αik(xi, x) + b (10)

where k(xi, x) = 〈ϕ(xi), ϕ(x)〉 is a kernel function meeting Mercer’s condition.
It has been proven that the regression performance and generalization capacity of LSSVM highly

depend on the kind of kernel function and its parameters [36]. Among the common kernel functions,
radial basis function (RBF) has good regression capacity [35,36]. In the same way, RBF, expressed as
Equation (11), is adopted as the kernel function in LSSVM.

kRBF(xi, xj) = exp(−
||xi − xj||2

2δ2 ) (11)

3.6. Autoregressive Integrated Moving Average (ARIMA)

The ARIMA(p, d, q) model is developed based on ARMA(p, q). Given a time series samples x(i),
ARIMA modeling can be described as Equation (12).

ϕ(B)(1− B)dx(i) = θ(B)a(i)
ϕ(B) = 1− ϕ1B− · · · − ϕpBp

θ(B) = 1− θ1B− θ2B2 · · · − θqBq
(12)

where functions ϕ(B) and θ(B) represent the autoregressive (AR) model of order p and the moving
average function of order q, respectively. The parameter d in the functions stands for the lag order of
data that needs to be differentiated, and the parameters p and q have the same meaning as in ARMA.
The detailed modeling can be seen in the previous literature [37].

4. The Proposed Strategy for Wind Power Forecasting

4.1. Backtracking Search Algorithm

The population-based iterative algorithm BSA was firstly designed by Civicioglu for real-valued
numerical nonlinear optimization problem [38]. BSA can construct a memory to store previous
population and gain better experiences from this memory to generate a search-direction matrix, which
enables it solve optimization with powerful exploration and exploitation abilities [39,40]. In addition,
BSA has only one parameter that can be set straightforward, therefore BSA is utilized to solve the
optimization problems at hand. The main working procedures of BSA are described as follows.

(i) Initialization: the initial individuals and historical population in the BSA are randomly generated
in the search-space, which is expressed mathematically as Equations (13) and (14).

Pi,j = rand× (upi − lowj) + lowj (13)

oldPi,j = rand× (upi − lowj) + lowj (14)

where i andj represent the number of individuals and dimension of individuals, respectively.
rand ∼ U(0, 1) denotes the random number following uniform distribution within [0,1]. upi and
lowi represent the upper and lower boundary, respectively.

(ii) Selection-I: In first selection, the historical population oldPi,j is utilized to determine the search
direction for next iteration. a and b in Equation (15) are two (0, 1) uniform distribution random
numbers and redefine the historical population oldP, then, permuting in Equation (16), a randomly
shuffling function is employed to adjust the order of the individuals.



Energies 2019, 12, 3586 8 of 22

i f a < b then oldP := P|a, b ∼ U(0, 1) (15)

oldP := permuting(oldP) (16)

(iii) Mutation: BSA’s mutation process (see Equation (17)) generates an initial form, named Mutant,
of the trial population. Parameter F, called the scale factor, controls the motion amplitude of
search-direction matrix.

Mu tan t = P + F ∗ (oldP− P) (17)

where F = 3× rndn, rndn ∼ N(0, 1).
(iv) Crossover: BSA’s crossover operator defines its map in two steps. A binary integer-valued matrix

map, as expressed in Equation (18), is generated in the first step for mutation. The individuals Ti,j
of the trial population are replaced by the corresponding individuals of current population when
mapi,j = 1. To ensure feasibility, a boundary control mechanism is utilized for the new population
and the final trial population T is expressed as Equation (19).

i f r1 < r2|r1, r2 ∼ U(0, 1)
then map(i, u(1 : max rate× r× D)) = 0
else map(i, rand(D)) = 0

(18)

T = map · ∗P + (∼ map) · ∗Mu tan t (19)

(v) Selection-II: After calculation of the fitness function, if the fitness value of the individuals, Ti, of
the trial population is better than that of individual Pi in the original population, the value of Pi
will be updated by the value of Ti. The individual, P, with the best fitness value is determined
and recorded as best individual Pbest, the global optimal values are obtained by comparison in the
same manner.

4.2. Individual Forecasting Engine Modeling and Parameters Optimization

The developed forecasting framework consists of intelligent models WNN, ELM, LSSVM, and
statistical approach ARIMA. To improve the forecasting performance, the parameter combinations in
the intelligent models are optimized by BSA. In the BSA-LSSVM model, each particle in BSA stands
for the kernel parameters in LSSVM and its dimension denotes the quantity of the kernel parameters.
All the particles are assessed using the fitness function, shown as Equation (20), for the optimal
parameters in the iteration process.

In the BSA-WNN and BSA-ELM models, each particle in BSA stands for the weights and threshold,
and their dimensions denote the quantity of the weights and threshold. All the particles are also
assessed using the fitness function, see Equation (20).

NRMSE =

√√√√ 1
N

N

∑
i=1

(
P(i)− P̂(i)

Pcap
)2 × 100% (20)

where P(i) and (i) denote the actual and forecasting wind power at time period i, respectively; Pcap

represents the rated power of wind turbine; and N is the total number of test samples, which is 144.
The detailed working mechanism of the combined model BSA-LSSVM is illustrated as follows.

Step 1: Initialize the parameters in the BSA and LSSVM, including maximum iteration number,
population size, individual dimension quantity, and scale factor F;

Step 2: Generate the initial population using Equation (13) and the initial historical population
using Equation (14);
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Step 3: Make WPF by LSSVM using each population, and compute the fitness function using
Equation (20) for the forecasting results;

Step 4: Update oldP(i) using Equation (16);
Step 5: Compute scale factor F and population mutant using Equation (17);
Step 6: Compute the final trial population ( Tij) using Equation (19);
Step 7: Find the minimal fitness function values;
Step 8: Run the next step if reaching the maximum iteration number; otherwise, jump to Step 3

and execute;
Step 9: Obtain the optimum parameters in LSSVM for better forecasting accuracy.

Working mechanism of BSA-ELM and BSA-WNN are in the similar manners.

4.3. The Combined Forecasting Results by Optimized Weights

The latest time points, which can be obtained by the two-stage decomposition-based hybrid
models, are employed as the current forecasting points. Then, the optimal process can be established
for pursuing the minimum forecasting errors. Assuming the quantity of the virtual forecasting points
is l that can be determined by partial autocorrelation function (PACF) method, the forecasting results
obtained by the base forecasting engines can be expressed as Equation (21).

V f (t) =


v f1,1(t) v f1,2(t) · · · v f1,n(t)
v f2,1(t) v f2,2(t) · · · v f2,n(t)
v f3,1(t) v f3,2(t) · · · v f3,n(t)
v f4,1(t) v f4,2(t) · · · v f4,n(t)


4×n

(21)

where t = 1, 2, · · · l.
Each candidate in the matrix of Equation (21) stands for the forecasting value by the corresponding

base model. v fk,j is the jth forecasting value obtained by the kth base forecasting model, and k is set
as 1, 2, 3 and 4, which represents the base model WNN, LSSVM, ELM, and ARIMA, respectively; n
denotes the quantity of forecasting values. The weight coefficients of the corresponding forecasting
value points are set as Equation (22).

W =


w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

w3,1 w3,2 · · · w3,n

w4,1 w4,2 · · · w4,n


4×n

(22)

where wk,j, a uniformly distributed random data in [0, 1], is the weight coefficient of v fk,j, wk,j ≥ 0,
and ∑4

k=1 wk,j = 1 . To satisfy this constraint, the conversion operations of wk,j in Equation (24) are
expressed as Equation (23), thus the candidates in Equation (22) are rewritten as Equation (24).

w∗k,j =
wk,j

4
∑

k=1
wk,j

, j = 1, 2, · · · , n
(23)

W∗ =


w∗1.1 w∗1.2 · · · w∗1.n
w∗2.1 w∗2.2 · · · w∗2.n
w∗3.1 w∗3.2 · · · w∗3.n
w∗4.1 w∗4.2 · · · w∗4.n


4×n

(24)

To optimize the adjustment of the weight coefficient for the best forecasting results, the fitness
function is defined as Equation (25).

f itness =
l

∑
i=1

[
4

∑
k=1

n

∑
j=1

wk,jv fk,j(t)− act(t)]2, (25)
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where act(t) represents the actual wind power data. From the formula, it can be seen that optimal
weight coefficients can minimize the errors between the forecasting values and the actual data. The final
WPF results can be determined by the product of the weight coefficient and the corresponding
forecasting subseries that are obtained by the different base model. In this study, BSA is developed to
tune these weight coefficients in Equation (24).

4.4. The Working Mechanism of the Proposal

The artificial intelligent algorithms—ELM, LSSVM, and WNN–can effectively handle the
nonlinear data; they usually exhibit good regression performance in many engineering applications.
Owing to the random and intermittent characteristics of wind power data, the single individual
artificial intelligent algorithms cannot always obtain good forecasting accuracy. Therefore, a hybrid
strategy for short-term WPF is proposed in this study, which is illustrated in the Figures 3 and 4.
The working process of the proposal can be divided into four stages and described as follows.

(1) Stage I: Abnormal wind power data identification. DBSCAN is first adopted as a clustering
approach to identify and discard the abnormal data in the original wind power time series.
To eliminate the adverse influence of the discontinuity of the missing data on the prediction results,
Lagrange interpolation method is employed to get the corrected values of the missing points.

(2) Stage II: Wind power data decomposition. The TSD method is exploited to handle the modified
wind power data; firstly, the empirical original wind power data are decomposed by EEMD into
several IMFs with different frequency and one residual (Res), secondly, the highest frequency
IMF1 obtained by EEMD is further broken into several modes by WT. This decomposed process
transforms the empirical wind power data into relatively stable subseries, which can improve the
forecasting accuracy.

(2) Stage III: Input variables matrix construction. Prior to make WPF by the forecasting engines, the
PACF, a widely used lag identification approach [7,22], is utilized to determine the variable input
matrix for the forecasting engines. To lower the forecasting difficulties, the input variables are
normalized within [0, 1].

(3) Stage IV: Training the base forecasting engines. Apply the BSA algorithm to tune the respective
parameters of the base forecasting engines with the confirmed inputs. Make deterministic WPF
using the fitness function Equation (20) by the base well-trained forecasting engines for each
subseries in the primary forecasting layer. As for some base forecasting engines, the combination
of forecasting values for all the decomposed subseries is the final forecasting results of the
corresponding hybrid forecasting model.

(4) Stage V: Yield the final wind power data. The fitting values generated by the base forecasting
engines are employed to establish the combination of the forecasting results of each base
forecasting engine. These weighted coefficients are optimally selected by BSA algorithm according
to the fitness function Equation (25).
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Figure 3. Overall working mechanism of the proposal.

Figure 4. Simplified overall framework of the proposal.

5. Case Studies

All the simulated experiments are executed in an R2014a version Matlab with a Windows 8
operating system on a personal computer (PC) with 3.3GHz CPU and 8GBRAM. To illustrate the
superiority of the proposal, the actual wind power data are randomly selected from the output of
one wind turbine to test the proposed model and the three previously developed forecasting models.
The forecasting effectiveness of the proposal is illustrated and compared comprehensively with other
models in this section, which is divided into four subsections: statistical description of empirical wind
power data, performance evaluation criteria, the proposed forecasting strategy modeling, and modeling
parameter selection.

5.1. Empirical Wind Power Data Description

In this study, the empirical wind power data were collected from a wind farm located at the top
of a mountain (32◦28′ N, 118◦26′ E) of 300 m height. The wind farm contains 23 wind turbines with
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a rated output power of 2250 kW, which can supply total installed capacity of 51.75 MW. Four sets
of the original 1440 10-minute interval wind power time series are randomly selected from different
wind turbine and illustrated in the Figure 5. The first 1296 data points (those in blue in the subfigure of
Figure 5) are used as the training data, and the subsequent 144 data points, in red in the subfigure, are
employed to test the models. From the figure, it can be seen that the original wind power time series
exhibit high nonlinearity and randomness. The statistical description for the empirical wind power
time series is listed in Table 1.
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Figure 5. Original wind power time series(kW). (a) Wind power dataset A. (b) Wind power dataset B.

Table 1. Statistical description of the empirical wind power data.

Wind Power Data Max Mean Min Std.dev

Set A
All data 2196.4 750.55 0 586.31

Training data 2196.46 723.36 0 566.45
Testing data 2186.11 973.82 0 699.66

Set B
All data 2186.1 953.52 0 626.18

Training data 2180.8 957.48 0 622.61
Testing data 2186.1 890.78 14.8 644.11

5.2. Performance Evaluation Criteria

To access the forecasting capacity of the proposal and other comparative models, two widely
used statistical indices, namely, normalized root-mean-square-error (NRMSE) and normalized mean
absolute error (NMAE) [2,20], are applied to measure forecasting results, which are expressed as
Equations (20) and (26). To illustrate the improving degree of the proposed forecasting strategy
over the other comparing models, the improved indexes of NMAE and NRMSE, as shown in
Equations (27) and (28), are utilized to evaluate the models.

NMAE =
1

NPcap

N

∑
i=1
|P(i)− P̂(i)| × 100% (26)

PNMAE =
NMAE1 − NMAE2

NMAE1
(27)

PNRMSE =
NRMSE1 − NRMSE2

NRMSE1
(28)

NRMSE reveals the overall deviation between the measured and forecasting values,
whereas NMAE can illustrate the similarity between the measured and forecasting values. Thus,
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these two statistical indices can evaluate comprehensively the forecasting performance of the base
forecasting engines.

5.3. Forecasting Strategy Modeling and Simulation

The 1st to 1296th wind power time series in the subfigure of Figure 5 are utilized to train the
forecasting engines, and the subsequent 1297th to 1440th values are employed to test the forecasting
engines. To illustrate the superiority of the proposal, three previously developed forecasting models
are constructed and compared. In this section, modeling of the proposed short-term WPF using the
wind power dataset A is carried out, the modeling process for the other wind power datasets B are
made in the same manner.

5.3.1. Identification of Abnormal Wind Power Data Using DBSCAN Algorithm

There exist some abnormal data, also named erroneous data, in the wind power time series, which
are generally caused by measurement error or maintenance operation. Apart from these reasons,
dirt on the blades and other operational problems can also produce the deviations from the normal
power curve. These abnormal data that influence the training results should not be employed as the
training samples. The experienced analysts can manually identify and filter the subtle errors abnormal
data in the stored historical data in the supervisory control and data acquisition (SCADA) files, but is
time-consuming and expensive.

To yield the best forecasting results, an automatic filter method DBSCAN is utilized to identify
and trim the abnormal data in the preprocessing step. To eliminate the adverse influence on the
discontinuity of the missing data on the prediction results, Lagrange interpolation method is employed
to get the corrected values of the missing points. In the DBSCN, rolling window amplitude, radius of
search space and Minpts are set as 40, 2, and 209, respectively. The abnormal wind power data identified
by DBSCAN are shown in Figure 6a. The abnormal data are modified by Lagrange interpolation
method, which is illustrated in Figure 6b.
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Figure 6. The empirical wind power time series processed by DBSCAN. (a) Abnormal data identified
by DBSCAN for set A. (b) Modified wind power by Lagrange interpolation for set A.

5.3.2. Wind Power Data Preprocessing

As suggested by Jiang et al. [41], the ensemble number and the amplitude of the added Gaussian
distribution white noise in EEMD are set to 100 and 0.2, respectively. Owing to the high fluctuation and
randomness characteristic of wind speed, the EEMD algorithm is employed to break the original wind
speed data into different relatively stable IMFs and one residual (Res), which is shown in Figure 7a.
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From IMF1 to Res, the frequencies decrease while the wavelength increases. Among these subseries,
IMF1 with highest frequency reveals the detailed information, and the Res reflects the general tendency
of original empirical wind speed. In the second decomposition stage, the IMF1 is decomposed into
four subseries, namely A3, D1, D2 and D3, by WT to further reduce nonstationarity and fluctuation of
IMF1, which is displayed in the Figure 7b.
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Figure 7. Empirical wind power data decomposed by two-stage decomposition (TSD) method. (a)
Decomposition of wind power by Ensemble Empirical Mode Decomposition (EEMD) (×100kW). (b)
Decomposition of IMF1 by wavelet transform (WT).

The input–output candidate matrix of each decomposed subseries is constructed for training
and testing. The input vector of each base forecasting engine can be represented as Xj =

f j(t + 1), f j(t + 2), · · · , f j(t + d) and the output as yj = f j(t + d + k), where t, d, and k denote the
time point, dimension of input variables, and forecasting step, respectively. Prior to forecasting, the
dimensions of the input variables are obtained by the PACF technique. Lags from 1 to 30 are calculated
and the input candidate dimensions of the other subseries are listed in Table 2. The input and output
format for LSSVM model are displayed as Figure 8, which illustrates that the inputs of the forecasting
engine can be from the past values of the target variable.

Table 2. Lag values partial autocorrelation function (PACF) for the different subseries.

Data Set A3 D1 D2 D3 IMF2 IMF3 IMF4 IMF5 IMF6 Res

A 8 7 6 7 12 6 7 6 6 4
B 10 6 8 6 8 9 6 9 8 6

Figure 8. Construction of input matrix of the decomposed componoent A3 of dataset A for the
proposed LSSVM.
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5.4. Modeling Parameter Selection

The artificial intelligent methods ELM, WNN, and LSSVM and statistical approach ARIMA are
employed as the base forecasting engines in the proposed model. The parameters in the artificial
intelligent methods are tuned by the optimization algorithm BSA. In the modeling, the parameters are
selected as following.

i: In the ARIMA, the order of autoregressive and moving average play a significant role in the
construction of the model and influence its performance. The fitting effects are measured by
Akaike’s information criteria (AIC) to determine the lag order of ARIMA; in other words, the
smallest AIC values mean the optimal lag order of ARIMA. The detailed parameter selection for
ARIMA can be referred to the work by the authors of [37].

ii: For the BSA algorithm, the population size and iteration number are set as 30 and 100, respectively.
The dimension numbers of input nodes, hidden nodes, and output nodes in ELM are set according
to the works by the authors of [2,34], and the parameters in WNN are determined according to
the work by the authors of [32]. The dimension in BSA-LSSSVM is set as 2.

6. Comparisons and Performance Analysis

In the proposed WPF, the individual artificial intelligent forecasting engines in the proposed
hybrid models are trained and tested using the optimization algorithm with the preprocessed wind
power data, and the future 1-day wind power data are predicted in 1-step, 2-step, and 3-step horizontal
in the primary forecasting layer. Then, the optimization algorithm BSA is also utilized to make an
ensemble of the predicted outputs of the individual forecasting engines by optimal weights in the
secondary forecasting layer, and the forecasting results are shown in Figure 9.
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Figure 9. Forecasting results by the proposed model. (a) Wind power dataset A. (b) Forecasting
absolute error for dataset A. (c) Wind power dataset B. (d) Forecasting absolute error for dataset B.

To compare and analyze the proposal comprehensively, two categories of experiments
are constructed in this section: (1) First, the individual models, including ARIMA, BSA-ELM,
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BSA-WNN, and BSA-LSSVM, and the individual models with the TSD method, namely, TSD-ARIMA,
TSD-BSA-ELM, TSD-BSA-WNN, and TSD-BSA-LSSVM, are established to make multistep WPF;
(2) second, four based forecasting models, including DSCAN-TSD-ARIMA, DSCAN-TSD-BSA-ELM,
DSCAN-TSD-BSA-WNN, and DSCAN-TSD-BSA-LSSVM, and three recently developed forecasting
models are constructed for further comparisons, which can effectively illustrate the superiority of
the proposal.

Experiment I: The statistical indexes of the multistep forecasting results and their improved
indexes are listed in Tables 3 and 4, respectively. As seen from the statistical indices listed in Table 3,
some comparisons and analysis for wind power dataset A are carried out as follows.

Table 3. Forecasting results obtained by different individual models (%).

Data Set Models
1-Step 2-Step 3-Step

NMAE NRMSE NMAE NRMSE NMAE NRMSE

A

ARIMA 11.4552 12.7560 13.5724 14.3098 14.948 16.1302
BSA-WNN 9.5132 10.8760 11.3219 12.1886 12.7042 13.4546
BSA-ELM 9.3438 10.5605 10.5882 11.6710 12.0525 12.9604

BSA-LSSVM 8.5835 9.8063 9.9734 11.0931 11.7808 12.4766
TSD-ARIMA 8.8375 9.6144 9.9153 10.5903 11.3281 12.0057

TSD-BSA-WNN 7.1002 8.0323 8.3087 9.1712 9.4961 10.2937
TSD-BSA-ELM 6.9839 7.9755 8.0655 9.0816 9.4608 10.3241

TSD-BSA-LSSVM 6.4898 7.4604 7.9686 8.6205 9.0078 9.6605
the proposal 5.2666 5.7101 6.5405 6.9165 7.9519 8.3074

B

ARIMA 14.1615 15.2955 14.3199 16.4747 15.9409 17.9055
BSA-WNN 9.1196 12.3092 10.7669 13.4590 12.5276 14.7803
BSA-ELM 9.5805 12.3503 10.9315 13.5029 12.4378 14.6774

BSA-LSSVM 8.6852 11.8929 10.6203 13.0649 13.2596 14.4198
TSD-ARIMA 9.6087 10.5808 10.2031 11.6028 12.0384 13.0031

TSD-BSA-WNN 7.4451 8.8870 8.7559 9.8618 9.9223 11.0996
TSD-BSA-ELM 7.4638 8.4263 8.8018 9.5989 9.6256 10.7062

TSD-BSA-LSSVM 6.7509 7.7327 8.4016 9.0933 9.2788 10.1088
the proposal 5.6610 6.3589 7.1099 7.4632 8.3761 8.6682

Table 4. The improved normalized mean absolute error (NMAE) and normalized
root-mean-square-error (NRMSE) PNMAE and PNRMSE of different forecasting models compared with
the proposed model (%).

Data Set Models
1-Step 2-Step 3-Step

PN MAE PRMSE PN MAE PRMSE PN MAE PRMSE

A

ARIMA 54.0242 55.2363 51.8104 51.666 46.8027 48.4979
BSA-WNN 44.6389 47.4985 42.2314 43.2548 37.4068 38.2557
BSA-ELM 43.6349 45.9299 38.2287 40.7382 34.0224 35.902

BSA-LSSVM 38.6426 41.7711 34.4207 37.6509 32.5010 33.4165
TSD-ARIMA 40.4056 40.6093 34.0364 34.6905 29.8036 30.8045

TSD-BSA-WNN 25.8236 28.9108 21.2817 24.5851 16.2602 19.2962
TSD-BSA-ELM 24.5891 28.4050 18.9080 23.8410 15.9482 19.5342

TSD-BSA-LSSVM 18.8472 23.4616 16.3173 17.8418 11.7216 14.0065

B

ARIMA 60.0254 58.4261 50.3491 54.6989 47.4551 51.5891
BSA-WNN 37.9245 48.3399 33.9645 44.5486 33.1383 41.3529
BSA-ELM 40.9114 48.5116 34.9594 44.7291 32.6559 40.9417

BSA-LSSVM 34.8198 46.5319 33.0531 42.8760 36.8294 39.8868
TSD-ARIMA 41.0845 39.9008 30.3157 35.6774 30.4213 33.3377

TSD-BSA-WNN 23.9628 28.4466 18.7988 24.3218 15.5829 21.9056
TSD-BSA-ELM 24.1544 24.5348 19.2215 22.2496 12.9804 19.0360

TSD-BSA-LSSVM 16.1455 17.7655 15.3735 17.9267 9.72819 14.2506
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i: Among the four individual forecasting models, the BSA-LSSVM approach performs best in
multi-step-ahead prediction, the NRMSE values of BSA-LSSVM are smallest. For dataset A,
the NRMSE values of BSA-LSSVM are 9.8063%, 11.0931%, and 12.4766% in 1-step, 2-step, and
3-step, respectively, whereas those of BSA-ELM, BSA-WNN, and ARIMA are 10.5605%, 11.6710%,
and 12.9604%; 10.8760%, 12.1886%, and 13.4546%; 12.7560%, 14.3098%, and 16.1302% in 1-step,
2-step, and 3-step, respectively. From the statistical indexes, the ARIMA model performs worst in
multi-step-ahead prediction.

ii: From the statistical indexes listed in the Table 3, the four individual forecasting engines with
signal decomposition approaches TSD perform better than the four individual forecasting
engines without signal decomposition technique. For dataset A, compared with the individual
statistical approach ARIMA, the index NRMSE of TSD-ARIMA method leads to reductions of
3.1416%, 3.7195%, and 4.1245% in 1-step, 2-step, and 3-step, respectively; the NRMSE values
of TSD-BSA-LSSVM method over those of BSA-LSSVM approach in 1-step, 2-step, and 3-step
forecasting are cut by 2.3458%, 2.4726%, and 2.8162%, respectively.

iii: From the improved indexes listed in the Table 4, the improved index PNRMSE values of the
proposal over TSD-ARIMA are 40.6093%, 34.6905%, and 30.8045% for 1-step, 2-step, and
3-step forecasting, respectively. Compared with TSD-BSA-LSSVM, the improved index PNRMSE
values of the proposal are 23.4616%, 17.8418%, and 14.0065% for 1-step, 2-step, and 3-step
forecasting, respectively.

Remarks: The artificial intelligent models ELM, WNN, and LSSVM have better regression capacity
in signal process than statistical approaches ARIMA, especially in dealing with nonlinear signal,
because the artificial intelligent models can better capture nonlinear signal components. Not only
the statistical model ARIMA, but also the intelligent models WNN, ELM, and LSSVM with signal
decomposition TSD, can yield better forecasting performance, the reasons of which are that the original
wind powder time series are highly fluctuate, nonlinear, and random and the signal decomposition
method TSD decomposes the wind power into a few relatively stable time series and relieves the
forecasting difficulties of the four forecasting engines, thus making great contributions to enhance the
forecasting performance. For the four based forecasting models, the predicting accuracy decreases with
the forecasting step increasing. The LSSVM-based method performs best among the hybrid forecasting
models and individual forecasting models because LSSVM excels in dealing with the small sample
and nonlinear signals. For the wind power data, B, similar conclusions can be also obtained.

Experiment II: In this section, the forecasting results obtained by four based forecasting models
and their improved indexes are listed in the Tables 5 and 6, respectively. The proposed WPF integrating
the four based forecasting models is employed to make multistep WPF by optimal weighted coefficients.
The results show that the integrated forecasting model performs better than the four based benchmark
WPF model. From Tables 5 and 6, the reasons why the proposed compound forecasting strategy can
outperform the other hybrid forecasting models are drawn as follows.

i: As can be seen from Tables 3 and 5, the four based forecasting engines that are embedded with
signal decomposition TSD and abnormal signal identification technique DBSCAN perform better
than those based models that embedded with sign decomposition TSD. For dataset A, compared
with TSD-ARIMA model, the NRMSE values of DBSCAN-TSD-ARIMA are decreased by 0.6759%,
0.4754%, and 0.6024% in 1-step, 2-step, and 3-step, respectively. Compared with TSD-BSA-LSSVM,
the NRMSE values of DBSCAN-TSD-BSA-LSSVM are decreased by 0.4829%, 0.5959%, and 0.3706%
in 1-step, 2-step, and 3-step, respectively.

ii: Each method has its strengths and weaknesses, and every forecasting engine has its own merits
and disadvantages. The proposed combined model takes advantages of the individual merits
of statistical method and artificial intelligent approaches by optimal weighted coefficients. The
model comparisons in terms of statistical indexes illustrate that the proposed combined model
outperforms the four based forecasting models. For dataset A in the Table 5, compared with
DBSCAN-TSD-ARIMA, the NRMSE values of the proposal lead to reduction of 3.2284%, 3.1984%,
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and 3.0959%, in 1-step, 2-step, and 3-step, respectively; compared with DBSCAN-TSD-BSA-WNN,
the NRMSE values of the proposal lead to reduction of 1.9781%, 1.9567%, and 2.0054% in 1-step,
2-step, and 3-step, respectively; compared with DBSCAN-TSD-BSA-ELM, the NRMSE values
of the proposal lead to reduction of 1.714%, 1.7739%, and 1.7114% in 1-step, 2-step, and 3-step,
respectively; compared with DBSCAN-TSD-BSA-LSSVM, the NRMSE values of the proposal lead
to reduction of 1.2674%, 1.1081%, and 1.0925% in 1-step, 2-step, and 3-step, respectively. Seen
from the improved statistical indices in Table 6, compared with the DBSCAN-TSD-BSA-LSSVM
model, the PNRMSEs of the proposal are 18.1645%, 13.8093%, and 11.6226% in 1-step, 2-step, and
3-step, respectively. For dataset B, a similar conclusion can be also obtained.

Table 5. Forecasting results obtained by individual models based on TSD and DBSCAN (%).

Data Set Models
1-Step 2-Step 3-Step

NMAE NRMSE NMAE NRMSE NMAE NRMSE

A

DBSCAN-TSD-ARIMA 8.3124 8.9385 9.4431 10.1149 10.4781 11.4033
DBSCAN-TSD-BSA-WNN 6.8698 7.6882 8.0929 8.8733 9.7169 10.3128
DBSCAN-TSD-BSA-ELM 6.6845 7.4241 7.872 8.6905 9.1861 10.0188

DBSCAN-TSD-BSA-LSSVM 6.0617 6.9775 7.5309 8.0246 8.8469 9.3999
the proposal 5.2666 5.7101 6.5405 6.9165 7.9519 8.3074

B

DBSCAN-TSD-ARIMA 8.9655 9.7026 10.3926 11.2242 11.6509 12.7083
DBSCAN-TSD-BSA-WNN 7.0259 8.2353 8.4681 9.3617 9.4779 10.43019
DBSCAN-TSD-BSA-ELM 7.2453 7.9738 8.6607 9.2453 9.5571 10.3791

DBSCAN-TSD-BSA-LSSVM 6.4954 7.3295 8.0224 8.677 8.9815 9.7429
the proposal 5.6610 6.3589 7.1099 7.4632 8.3761 8.6682

Table 6. Improved index PNMAE and PNRMSE of the four based forecasting models compared with the
proposed model (%).

Data Set Models
1-Step 2-Step 3-Step

PN MAE PNRMSE PN MAE PNRMSE PN MAE PNRMSE

A

DBSCAN-TSD-ARIMA 36.6408 36.1181 30.7378 31.8232 24.1093 27.1492
DBSCAN-TSD-BSA-WNN 23.3362 25.7291 19.1833 22.0534 18.1641 19.4457
DBSCAN-TSD-BSA-ELM 21.2117 23.0875 16.9145 20.4131 13.4348 17.0819

DBSCAN-TSD-BSA-LSSVM 13.1161 18.1645 13.1519 13.8093 10.1155 11.6226

B

DBSCAN-TSD-ARIMA 36.8577 34.4614 31.5864 33.5081 28.1073 31.7909
DBSCAN-TSD-BSA-WNN 19.4267 22.7843 16.0387 20.2799 11.6244 16.8927
DBSCAN-TSD-BSA-ELM 21.8669 20.2519 17.9059 19.2758 12.35602 16.4841

DBSCAN-TSD-BSA-LSSVM 12.8459 13.2419 11.3744 13.9893 6.73986 11.0309

Remark: Compared with the forecasting statistical indexes listed in Tables 3 and 5, the abnormal
data identification DSCAN has improved the prediction accuracy in NRMSE and NMAE values. This
is because DBSCAN identifies and discards the abnormal data within the wind power time series and
eliminates some disturbing factors. The foregoing operations including abnormal data identification,
two-stage decomposition and parameters optimization in the first forecasting layer can make the four
based forecasting engines easier to capture and deal with the nonlinear relationship within the wind
power time series. The forecasting performance of the individual forecasting engines might change
with different wind power time series, which influences seriously the actual industrial application, one
solution to this problem is to take advantages of some different plausible forecasting engines.

In the further comparisons, the recently developed models including WPD-HPSOGSA-ELM [34],
EEMD-HGSA-LSSVM [39], and TSD-HBSA-DAWNN [42] are constructed to illustrate the
effectiveness of the proposed model. The forecasting results and their improved indexes are
listed in the Tables 7 and 8, respectively. As seen from Tables 7 and 8, the proposed combined
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forecasting model yields better forecasting performance than the previous developed hybrid models
WPD-HPSOGSA-ELM, EEMD-HGSA-LSSVM, and TSD-HBSA-DAWNN for multistep prediction. For
example, the improved NRMSEs PNRMSEs of the proposal over the EEMD-HGSA-LSSVM model for
dataset A are 19.4469%, 15.0278%, and 11.9169%; for dataset B are 12.6462%, 14.3813% and 12.1499%
in 1-step, 2-step, and 3-step, respectively. The way of the proposed wind power prediction model
integrating four basic hybrid models by optimal weighted coefficients increases the complexity of the
prediction strategy, but it is not a challenging problem for current computer technology.

Table 7. Forecasting results obtained by the recently developed models (%).

Data Set Models
1-Step 2-Step 3-Step

NMAE NRMSE NMAE NRMSE NMAE NRMSE

A

WPD-HPSOGSA-ELM 7.1396 7.7877 8.4412 9.0793 9.7849 10.4674
TSD-HBSA-DAWNN 6.8182 7.3927 7.9497 8.6379 9.3161 9.9087
EEMD-HGSA-LSSVM 6.2003 7.0886 7.6483 8.1397 8.9079 9.4313

the proposal 5.2666 5.7101 6.5405 6.9165 7.9519 8.3074

B

WPD-HPSOGSA-ELM 7.1719 7.9865 9.0313 9.6298 10.219 10.9857
TSD-HBSA-DAWNN 6.9761 8.1038 8.5585 9.3485 9.7254 10.6243
EEMD-HGSA-LSSVM 6.5189 7.2795 8.1514 8.7167 9.3243 9.9080

the proposal 5.6610 6.3589 7.1099 7.4632 8.3761 8.6682

Table 8. Improved indexes PNMAE and PNRMSE of the recently developed forecasting models compared
with the proposed model (%).

Data Set Models
1-Step 2-Step 3-Step

PN MAE PNRMSE PN MAE PNRMSE PN MAE PNRMSE

A
WPD-HPSOGSA-ELM 26.2334 26.6781 22.5170 23.8217 18.7326 20.6359
TSD-HBSA-DAWNN 22.7567 22.7607 17.7268 19.9293 14.6428 16.1607
EEMD-HGSA-LSSVM 15.0581 19.4469 14.4844 15.0278 10.7315 11.9169

B
WPD-HPSOGSA-ELM 21.0667 20.3788 21.2749 22.4991 18.0359 21.0956
TSD-HBSA-DAWNN 18.8508 21.5309 16.9253 20.1665 13.8737 18.4116
EEMD-HGSA-LSSVM 13.1596 12.6462 12.7764 14.3813 9.6009 12.1499

7. Conclusions

In this study, a compound forecasting strategy combining multiple forecasting enginess with
clustering, two-stage decomposition, and parameter optimization is proposed for short-term WPF.
The forecasting framework includes four based hybrid forecasting models in the first layer and optimal
integration of four individual forecasting models by optimization algorithm BSA in the secondary
layer. Two sets of wind power time series are selected from a wind farm located in Anhui, China, to
evaluate the performance of the proposed forecasting strategy. From comprehensive comparisons
between the proposed model and other different forecasting models, some conclusions can be obtained
as follows.

i: The aforementioned comparisons and analysis illustrate that the prediction performance of the
four hybrid models TSD-ARIMA, TSD-BSA-ELM, TSD-BSA-WNN and TSD-BSA-LSSVM can
be remarkably improved when compared with the individual forecasting models regardless of
BSA-LSSVM, BSA-WNN, BSA-ELM, or ARIMA. Compared with TSD-ARIMA, TSD-BSA-WNN,
TSD-BSA-ELM, and TSD-BSA-LSSVM models, these four based forecasting engines with DBSCAN
and TSD methods obtain better forecasting results. Therefore, wind power data preprocessing
method TSD and DBSCAN can effectively contribute to the forecasting performance of the
forecasting engines because TSD decomposes the empirical wind power into relatively reliable
components and DBSCAN idenitifies the abnormal wind power data.
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ii: In the primary forecasting layer, the statistical method ARIMA excels in catching the linear
variables within wind power, whereas the artificial intelligent approaches ELM, WNN, and
LSSVM have good capacities in processing the nonlinear variables. What is more, the artificial
intelligent algorithm BSA is employed to optimize the parameters combination in the ELM,
WNN, and LSSVM for avoiding local optima. In the end, BSA is developed to tune the weighted
coefficients for optimal combination of individual advantages of the four based hybrid forecasting
models. Therefore, the proposed hybrid model outperforms all the four based hybrid forecasting
models.

iii: For dataset A, compared with the recently developed forecasting models WPD-HPSOGSA-ELM,
TSD-HBSA-DAWNN, and EEMD-HGSA-LSSVM, the NRMSE errors of the proposal are cut
by 2.0776%, 2.1628%, and 2.1601%; 1.6826%, 1.7215%, and 1.6013%; and 1.3785%, 1.2232%, and
1.1239% in 1-step, 2-step, and 3-step forecasting, respectively. A similar conclusion can be obtained
for dataset B.

Therefore, the proposed hybrid model combining multiple forecasting engines with clustering
approach, two-stage decomposition and parameter optimization is an efficient and effective wind
power forecasting method. For further studies, this proposed forecasting strategy will be evaluated for
other wind farms using environmental and meteorological information and historical wind power data.
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