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Abstract: This paper describes an analytical-numerical method for the skin and proximity effects in a
system of two parallel conductors of circular cross section—a system very frequently encountered
in various applications. The magnetic field generated by the current applied on each conductor
is expressed by means of vector magnetic potential and expanded into Fourier series. Using the
Laplace and Helmholtz equations, as well as the classical boundary conditions, the current density
induced due to the proximity and skin effect is determined in each conductor. The resulting current
density is expressed as a series of successive reactions. The results obtained are compared with those
obtained via finite elements. Although the paper is theoretical, the considered problem has a practical
significance, because transmission lines with round conductors are universally used. Besides, the
results can be used to estimate errors when only the first reaction is taken into account, which gives
relatively simple formulas.

Keywords: skin effect; proximity effect; cylindrical conductors; current density; successive
approximations

1. Introduction

A system of two or more wires of circular cross section (cylindrical wires, briefly called round
wires) is very often used in power and signal transmission lines. For example, in a three phase cable
line, there are three round wires arranged into a three-core cable or three single-core cables in the
trefoil or flat formation [1]. In each conductor, eddy currents are induced by a magnetic field generated
by the current in the wire itself (skin effect), as well as by the neighboring alternating phase currents
(proximity effect). These currents add to the applied currents. Consequently, the total current densities
in conductors become non-uniform and non-symmetrical, and significantly affect the electromagnetic
field, power losses in the wires, and the impedance matrix of such a system of conductors [2–5]. Thus,
the knowledge on the current density distribution is essential in determining the network properties of
such lines.

Throughout the last 150 years, since Maxwell’s formulation of the electromagnetic field equations,
the proximity effect in parallel conductors with sinusoidal currents has been investigated by many
researchers who have proposed a variety of methods to calculate the current density inside wires
and/or their impedance. In general, the methods use differential or integral formulation. The first
requires solving the Helmholtz equation in the conductive regions, and the Laplace equation in
the surrounding region, whereas the second leads to integral equation(s). Excluding coaxial cables,
a purely analytical approach to obtain exact solution in both formulations encounters mathematical
problems. For example, the method of separation of variables for two identical round wires cannot
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be used, because the variables in the Helmholtz equation in bipolar coordinates cannot be separated.
The situation is even worse for other shapes of wire cross sections, or in case of multiple wires.
To overcome these problems a variety of approximate approaches are used, like:

• Introducing significant simplifications—the most radical simplification is a configuration of two
extensive plates (often encountered in academic handbooks to illustrate the proximity effect);
much more sophisticated is substituting some wires with filaments (e.g., [6–10]).

• Using approximate analytical expressions—e.g., various approximate formulas for alternating
current resistance can be found in [11–13] and approximations for inductances are given in [14];
integral equation with current density approximated with finite power series was proposed
in [15,16]; multipole expansion with finite number of terms was used in [17].

• Using numerical methods, like finite elements (e.g., [5,18,19]), boundary elements (e.g., [20]),
FDTD [21], solving the Fredholm equation with various basis functions (e.g., [22,23]), and others.

• Mixing analytical and numerical methods—e.g., Rolicz proposed solving the problem with the
Bubnov–Galerkin method in the wires and the method of separation of variables in the surrounding
region [24].

• Representing the conductors as multiple wires of “small” cross sections and connected in
parallel—e.g., [2,4,25,26].

The above classification is not meant to be complete, but it shows that the investigations on the
proximity effect are still up to date. From the scientific point of view, the most valuable are simple
analytical solutions. Such an approach is shown, among others, in [7,8], where the neighboring round
wires are considered as current filaments. This paper can be regarded as an extension the mentioned
works. The idea is to represent the neighboring wire not with a single filament, but with a set of
filaments rather, similarly as in [26]. This makes it possible to take into account the reverse reaction
of the induced eddy currents, keeping analytical form of the solution. It is worth emphasizing that
in contrary to many methods described in the literature, the proposed approach does not require
numerical solving of any system of algebraic equations.

2. Methodology

2.1. The Idea of the Method

Let us start with the geometry shown in Figure 1, where two infinitely long parallel conductors
of circular cross sections are shown. The radii of the conductors are R1 and R2, respectively, and the
distance between the conductor axes is d. A sinusoidal current of angular frequency ω and complex
root mean square (r.m.s.) value I1 flows through the first conductor (on the right).

Figure 1. Current I1 induces eddy currents of density J(1)2,1 in the left conductor, which in turn generates

eddy currents J(2)1,2 in the right conductor.
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Suppose the current has a density of J(0)1 , where (0) in the superscript indicates the 0th

approximation. This current generates a time harmonic magnetic field H(0)
1 , which induces eddy

currents of density J(1)2,1 in the second conductor (on the left). This current is a secondary source of

magnetic field H(1)
2,1 , which in turn induces eddy currents J(2)1,2 in the first conductor. This sequence of

successive reactions can be continued, but in practice, the next reactions can often be neglected.
In [7,8], the current in the first conductor, I1, was assumed to be located at the axis of wire 1 as

a filament current. The magnetic field generated by it was expressed in terms of magnetic vector
potential in the form of power series. In the non-conducting region outside the second conductor, the
Laplace equation was used, taking into account the reverse reaction of the eddy currents induced in
the considered conductor. Inside the conductor, the Helmholtz equation for the eddy current density
was used and supplemented with classical continuity conditions. The solutions obtained were used
to determine the total eddy current density induced in the first conductor, as well as in the second
one. The essential Equations describing the approach are given below. It is convenient to introduce a
coordinate system with a z-axis along the axis of the left wire. Due to assumed infinite length of the
conductors and their fixed cross section, the fields are independent on z coordinate. Moreover, current
density only has a z-component, (J = Jẑ). The current density in conductor 2, induced by current I1
concentrated in a filament located on the axis of wire 1, can be expressed as follows (see Equation (A18)
in Appendix A for details):

J(1)2,1 (r,θ) = −
I1

πR2
2

Γ2R2

∞∑
n=1

(R2

d

)n In
(
Γ2r

)
In−1

(
Γ2R2

) cos nθ (1a)

in which In(x) is the modified Bessel function of the first kind of orders n, and

Γ2 =
√

jωµ2σ2 =
1 + j
δ2

, (1b)

where σ2 and µ2 are the electric conductivity and magnetic permeability of wire 2, respectively,
δ2 =

√
2/ωµ2σ2 is the skin depth in wire 2, and j =

√
−1 is the imaginary unit.

By interchanging the roles of the conductors, it is easy to obtain the current density in conductor 2,
induced by current I2 concentrated in filament located on the axis of wire 2:

J(1)1,2 (ρ,ϕ) = −
I2

πR2
1

Γ1R1

∞∑
n=1

(−1)n
(R1

d

)n In
(
Γ1ρ

)
In−1

(
Γ1R1

) cos nϕ (2a)

with
Γ1 =

√
jωµ1σ1, (2b)

where σ1 is the electric conductivity of wire 1, and µ1 is the magnetic permeability of wire 1.
However, it should be realized that the eddy currents of density given by Equation (1a) induce

eddy currents of density J(2)1,2 (ρ,ϕ) in the first conductor, which in turn induce eddy currents J(3)2,1 (r,θ)
in wire 2, and so forth. Similarly, eddy currents of density given by Equation (2a) induce currents
J(2)2,1 (r,θ) in conductor 2, and so on. Hence, the total current density in the second conductor can be
regarded as the following sum:

J
2
(r,θ) = J(0)2 (r,θ) +

∞∑
m=1

J(m)
2,1 (r,θ). (3a)
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In practice, it is usually necessary to cut the infinite series at certain M as follows:

J[M]
2 (r,θ) = J(0)2 (r,θ) +

M∑
m=1

J(m)
2,1 (r,θ). (3b)

where in this work [M] in the superscript is used to indicate the series cut at Mth term.
Similar Equations can be written for wire 1. In previous works, e.g., [7,8], the stress was put on

J(1)2,1 (r,θ) and J[1]2,1(r,θ) with I1 focused on the axis of wire 1, whereas in this paper the reactions of
higher order are considered. Of course, such an approach is somewhat artificial, because none of the
successive reactions exists alone; thus, they cannot be measured. The method should be regarded as a
certain way of calculating the total current density distribution. It can be used, for example, to estimate
how the higher reactions affect the results obtained from the lowest ones.

2.2. The Skin Effect as the Initial Approximation

In approximation 0, it is assumed that the current is distributed as if the wires were standalone
with the skin effect taken into account. The well-known Equation for the current density in a long
straight cylindrical wire with time harmonic current leads to the following result for wire 1 [27]:

J[0]1 (ρ,ϕ) = J(0)1 (ρ,ϕ) =
I1

πR2
1

Γ1R1

2

I0
(
Γ1ρ

)
I1
(
Γ1R1

) . (4a)

Similarly, the following Equation can be written for wire 2:

J[0]2 (r,θ) = J(0)2 (r,θ) =
I2

πR2
2

Γ2R2

2

I0
(
Γ2ρ

)
I1
(
Γ2R2

) . (4b)

2.3. The First Correction Due to the Proximity Effect

In Equations (4a) and (4b), the skin effect is taken into account, but the proximity effect is neglected.
The next step is to take into account the first correction related with the proximity effect. In terms of
the notation used in the paper, this correction for wire 2 is denoted as J(1)2,1 , and it is generated by J(0)1 .

In general, to take into account the non-uniform distribution of J(0)1 , a set of substitutive filaments with
suitable currents can be used. For example, they could be arranged in a polar grid. However, this is not
necessary in the case of cylindrical wires, because a standalone straight cylindrical wire with current
flowing along it generates the same field outside as if the current was focused in a filament on the axis
of the wire, and the skin effect does not matter. This is a well-known result and can be easily found
from the Ampère law or by direct integration. Mathematically, it results from cylindrical symmetry,
which makes the equations independent on the angular coordinate. Therefore, although the skin effect
in the source wire may seem neglected, the eddy currents induced in the neighboring conductor and
given by Equations (1a) and (2a) take into account the skin effect in the source conductor. Hence, up to
the first reaction, the current density distribution in wire 2 is as follows:

J[1]2 (r,θ) = J(0)2 (r,θ) + J(1)2,1 (r,θ). (5)

A similar equation can be written for wire 1. Typically, two cases are often considered: Same
currents (I2 = I1 = I) and opposing currents (I2 = −I1 = −I). This leads to the following equations,
taking into account the skin effect and the first approximation of the proximity effect:

J[1]1 (ρ,ϕ) =
I

πR2
1

Γ1R1

2

I0
(
Γ1ρ

)
I1
(
Γ1R1

) ∓ Γ1R1

∞∑
n=1

(−1)n
(R1

d

)n In
(
Γ1ρ

)
In−1

(
Γ1R1

) cos nϕ

, (6a)
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J[1]2 (r,θ) = ±
I

πR2
2

Γ2R2

2

I0
(
Γ2ρ

)
I1
(
Γ2R2

) ∓ Γ2R2

∞∑
n=1

(R2

d

)n In
(
Γ2r

)
In−1

(
Γ2R2

) cos nθ

, (6b)

where the upper and lower signs are for the same and opposing currents, respectively.

2.4. The Second Approximation

As mentioned in Section 2, eddy current of density J(1)2,1 (r,θ) generates its own magnetic field

which induces additional eddy currents in wire 1, denoted as J(2)1,2 (ρ,ϕ). Let us consider an elementary
fragment of cross section of wire 2. The current associated with it, due to the first approximation of
the proximity effect, equals J(1)2,1 (r,θ)rdrdθ and generates magnetic vector potential at point Y(ρ,ϕ) as
follows:

dA(1)
2,1 (Y; X) =

µ0 J(1)2,1 (r,θ)rdrdθ

2π
ln

1
|X −Y|

+ const, (7a)

where X(r,θ) is arbitrary point in wire 2. Thus the total magnetic potential due to J(1)2,1 (r,θ) equals

A(1)
1,2 (Y; X) =

x

(r,θ)

dA(1)
2,1 (Y(r,ϕ); X(ρ,θ)) =

∫ R2

r=0

∫ 2π

θ=0

µ0 J(1)2,1 (r,θ)

2π
ln

1
|X −Y|

rdrdθ+ const. (7b)

To evaluate the integral, it is proposed to divide the cross section of wire 2 into circular sectors and
represent the integral as a sum of integrals over the sectors. At this moment, the details of the sectors
are not important—they are described in Section 2.5. If the sectors are small enough, the integrand
may be assumed constant so that

A(1)
1,2 ≈

S∑
s=1

µ0 J(1)2,1 (r,θ)

2π
ln

1
|X −Y|

∆Ss + const, (7c)

where S is the number of sectors and ∆Ss is the area of sector s. If 2∆rs and 2∆θs are the radial and
angular dimensions of the sector, respectively, then

∆Ss = rs∆rs∆θs. (8a)

In this way, current density J(1)2,1 (r,θ) in wire 2 is represented as a set of filaments with currents

I(1)2,1,s = J(1)2,1 (rs,θs)∆Ss, (8b)

where (rs,θs) are polar coordinates of the sector center. Thus, Equation (7c) can be rewritten as follows:

A(1)
1,2 (ρ,ϕ) ≈

µ0

2π

S∑
s=1

I(1)2,1,s ln
1∣∣∣X(ρ,ϕ) −Y(rs,θs)

∣∣∣ + const. (9)

Using Equation (A18) from Appendix A for each filament leads to the following expression for eddy
currents induced in wire 1 due to potential A(1)

1,2 (ρ,ϕ):

J(2)1,2 (ρ,ϕ) = −
1
πR2

1

Γ1R1

S∑
s=1

I(1)2,1,s

∞∑
s=1

(R1

ξs

)n In(Γ1ρ)

In−1(Γ1R1)
cos n(π−ϕ−ψs), (10)



Energies 2019, 12, 3584 6 of 19

where by the cosine theorem (see Figure 2), it follows that

ξs =

√
r2

s + d2 − 2rsd cosθs (11a)

and
ψs = arcsin

rs sinθs

ξs
. (11b)

Figure 2. Relationships between polar coordinates (rs,θs) related to current filament located in the
center of sector s in wire 2 and polar coordinates (ρ,ϕ) related to wire 1.

In a similar way, the second approximation for the eddy currents in wire 2 due to the proximity
effect can be found. Based on Equation (10), and interchanging the roles of the wires, it is easy to write
the following equation:

J(2)2,1 (r,θ) = −
1
πR2

2

Γ2R2

V∑
v=1

I(1)1,2,v

∞∑
n=1

(R2

ξv

)n In
(
Γ2r

)
In−1

(
Γ2R2

) cos n(θ−ψv), (12)

where V is the number of sectors in wire 1, subscript v = 1, 2, . . . , V refers to sector v in that wire, and
(see Figure 3):

I(1)1,2,v = J(1)1,2 (ρv,ϕv)∆Sv, (13a)

ξv =

√
ρ2

v + d2 + 2ρvd cosϕv, (13b)

ψv = arcsin
ρv sinϕv

ξv
. (13c)

Figure 3. Relationships between polar coordinates (ρv,ϕv) related to current filament located in wire 1
and polar coordinates (r, θ) related to wire 2.
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2.5. Discretization of Wires

At this moment, it is worth saying something more on the division of wires into sectors. It can
be done in an arbitrary way, but the sectors should cover the entire wire cross section and their size
should be significantly smaller than the skin depth. Two choices based on polar grid are shown in
Figure 4. The first possibility uses sectors arranged in a regular polar grid (Figure 4a). If the radius is
divided into P sections, and the full angle is divided into T sections, then the total number of sectors
will be S = PT. The sector sizes are ∆rs = R2/P and ∆θs = 2π/T, and the sector centers have polar
coordinates (rp,θt) =

( 2p−1
2 ∆rs, (t− 1)∆θs

)
, where p = 1, 2, . . . , P and t = 1, 2 . . . , T. This division is

simple, but the sectors near the surface of the wire are much larger than those near the center. To keep
accuracy, it is necessary to take a large enough T so that the most outer sectors are not too large. Hence,
the filaments near the center will be distributed very densely, which will require much unnecessary
computational effort in further calculations.

One way to avoid the above-mentioned inconvenience is using a polar grid with the number of
angular sections, Tp, proportional to the radius (Figure 4b). It is reasonable to use square-like sectors.
Hence, from desired equity 2πrp/Tp = ∆rs, it follows that the number of angular segments on circle
r = rp should be equal to (2p− 1)π (or rather, an integer closest to this value). In practice, it could be
more desirable to use Tp = 4(2P− 1), because then the sectors are distributed with nice symmetry. In
such a case, the total number of sectors will be S =

∑p
p=1 Tp = 4P2. When compared with the regular

grid with T = 4(2P− 1) sectors per ring, it follows that the number of sectors in the second case is about
two times smaller than in the first one ( 4P2

P4(2P−1) ≈ 0.5). This gives significantly less computational
effort, keeping the accuracy at the same level.

Figure 4. Divisions of wire 2 into sectors based on polar grids: (a) Regular division into P rings and T
sectors within each ring; (b) division into P rings and variable number of sectors within each ring.

2.6. Higher Order Reactions

In a similar way, the next reactions can be determined. Given J(m)
1,2 (ρ,ϕ), reaction m + 1 can be

found. Based on Equations (12) and (13), one can write

J(m+1)
2,1 (r,θ) = −

1
πR2

2

Γ2R2

V∑
v=1

I(m)
1,2,v

∞∑
n=1

(R2

ξv

)n In
(
Γ2r

)
In−1

(
Γ2R2

) cos n(θ−ψv), (14a)

where
I(m)
1,2,v = J(m)

1,2 (ρv,ϕv)∆Sv. (14b)
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By analogy, given J(m)
2,1 (r,θ) one obtains

J(m+1)
1,2 (ρ,ϕ) = −

1
πR2

1

Γ1R1

S∑
s=1

I(m)
2,1,s

∞∑
n=1

(R1

ξs

)n In
(
Γ1ρ

)
In−1

(
Γ1R1

) cos n(π−ϕ−ψs), (15a)

where
I(m)
2,1,s = J(m)

2,1 (rs,θs)∆Ss. (15b)

To simplify and shorten the notation of the above Equations for successive reactions, it is worth
introducing the following auxiliary function:

Λ
( r

R
,θ,

R
d

,ΓR
)
= −ΓR

∞∑
n=1

(R
d

)n In
(
ΓR r

R

)
In−1(ΓR)

cos nθ. (16)

It represents the eddy current density in units of I/πR2 induced in a cylindrical wire of radius R and the
skin effect parameter Γ = (1 + j)/δ (where δ is the skin depth) due to parallel current filament I located
at a distance of d > R from the wire axis (see geometry shown in Figure A1). Then Equations (1a), (2a),
(14a) and (15a) can be rewritten as follows:

J(1)2,1 (r,θ) =
I1

πR2
2

Λ
( r

R2
,θ,

R2

d
,Γ2R2

)
, (17a)

J(1)1,2 (ρ,ϕ) =
I2

πR2
1

Λ

(
ρ

R1
,π−ϕ,

R1

d
,Γ1R1

)
, (17b)

J(m+1)
2,1 (r,θ) =

1
πR2

2

V∑
v=1

I(m)
1,2,vΛ

( r
R2

,θ−ψv,
R2

ξv
,Γ2R2

)
, (17c)

J(m+1)
1,2 (ρ,ϕ) =

1
πR2

1

S∑
s=1

I(m)
2,1,sΛ

(
ρ

R1
,π−ϕ−ψs,

R1

ξs
,Γ1R1

)
. (17d)

2.7. Algorithm of Calculations

The algorithm of calculations is as follows:

1. Given R1, R2, d, σ1, σ2, ω, I1, I2, calculate necessary values like Γ1R1 and Γ2R2.
2. Divide wires into sectors.
3. For m = 1, 2, . . . , M− 1 (where M is the number of reactions to be taken into account), calculate

I(m)
2,1,s and I(m)

2,1,v using Equations (8b) + (17a), (13a) + (17b), (15b) + (17c), and (14b) + (17d).

This will produce currents in the sectors necessary to calculate all the corrections to the eddy
current density due to proximity effect up to J(M)

1,2 and J(M)
2,1 . It is worth noting that the procedure does

not require solving any equation system. The successive reactions are calculated based on the previous
one. It can be expected that the reactions of higher order can usually be neglected, unless the gap
between the wires is very small.

To speed up numerical calculations, values of function Λ(. . .) can be calculated after generating
the sectors and before the main loop of calculating the successive reactions (step 2). This will produce
two matrices, Λ1,2:V×S and Λ2,1:S×V of the following elements:

Λ1,2;v,s =
∆Sv

πR2
1

Λ

(
ρv

R1
,π−ϕv −ψs,

R1

ξs
,Γ1R1

)
, (18a)
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Λ2,1;s,v =
∆Ss

πR2
2

Λ
( rs

R2
,θs −ψv,

R2

ξv
,Γ2R2

)
. (18b)

It is also worth introducing two vectors, Λ1:V×1 and Λ2:S×1 the elements of which are

Λ1;v =
∆Sv

πR2
1

Λ

(
ρv

R1
,ϕv,

R1

d
,Γ1R1

)
, (18c)

Λ2;s =
∆Ss

πR2
2

Λ
( rs

R2
,θs,

R2

d
,Γ2R2

)
. (18d)

The filament currents in wires 1 and 2, I(m)
1,2;v and I(m)

2,1;s, can be arranged in two column vectors, I(m)
1,2:V×1

and I(m)
2,1:S×1, respectively. Thus, Equations (8b) + (17a), (13a) + (17b), (15b) + (17c), and (14b) + (17d)

can be gathered and rewritten in matrix form as follows:

I(m)
2,1 =

 I1Λ2 for m = 1,

Λ2,1I(m−1)
1,2 for m > 1,

(19a)

I(m)
1,2 =

 I2Λ1 for m = 1,

Λ1,2I(m−1)
2,1 for m > 1,

(19b)

In this way, evaluating the successive reactions consists of multiplying the currents from the previous
reaction by once generated matrices, which greatly speeds up the calculations.

3. Results and Discussion

3.1. Numerical Example

To illustrate the method, let us first consider two identical wires. To be more specific, let
R1 = R2 = 1 mm, d = 2.5 mm (gap between the wires equal to 0.5 mm). The wires are from copper
(σ1 = σ2 = 55 MS/m), and the frequency equals f = 40 kHz. Three cases are considered:

• Case 1: The current in wire 1 is non-zero and in wire 2 is zero;
• Case 2: The currents in both wires are the same; and
• Case 3: The currents in both wires are opposing.

The calculations are performed within the following values of operational parameters:

• Each wire is divided into S = V = 100 filaments (P = 5 with variable number of sections);
• The relative accuracy of Λ evaluation is ε = 10−3 (three meaningful digits—see Appendix B); and
• Six reactions were determined.

The discretization of the wires is shown in Figure 5. Figures 6 and 7 show the absolute value and
argument of current density reactions on the surface of wire 1 and 2 in case 1. Reactions 0 to 6, as well
as the total current density, are shown.

Figure 5. The view of the configuration under considerations (dots represent filaments).
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Figure 6. The successive reactions of eddy current density on the surfaces of the wires in case
1 (magnitudes of current density in units of I1/πR2

1, arguments φ of current density in degrees;
legend: Red—total, green—skin effect, blue—m = 1, magenta—m = 2, yellow—m = 3, cyan—m = 4,
violet—m = 5, orange—m = 6): (a) Current density magnitude in wire 2; (b) current density magnitude
in wire 1; (c) current density argument in wire 2; (d) current density magnitude in wire 1.

Figure 7. Polar plots of the successive reactions of eddy current density on the surfaces of the wires in
case 1 (legend as in Figure 6): (a) Current density magnitude in wire 2; (b) current density in wire 1.

Line m = 0 (green) in Figure 6b corresponds to J(0)1 —the skin effect in wire 1. The first reaction to

this current, J(1)2,1 , is present in wire 2 (blue line m = 1 in Figure 6a). This reaction is quite large—the

values are of the same order as J(0)1 . It causes reaction J(2)1,2 in wire 1 (magenta line m = 2 in Figure 6b).

Its value is several times smaller than J(0)1 . Figure 6d shows that the values add in the vicinity of wire 2,
whereas they subtract on the remaining surface of wire 1. It noticeably affects the current density in
wire 1, which is best visible in Figure 7b, where the green line corresponds to J(0)1 , the small magenta
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shape in the center represents J(2)1,2 , and the red line is the total current density in wire 1. The next

reaction, J(3)2,1 , generated in wire 2 is marked with yellow lines in Figure 6a,c (line m = 3). Its values
are about 1% of the excitation in wire 1, therefore it marginally affects the current density in wire 2.
This is visible in Figures 6a and 7a, where the total current density (red line) is practically the same as
reaction 1. The next reactions are very small and can be completely neglected in this case.

It is noticeable that the first reaction in wire 2 due to current in wire 1 generates current density
(J(1)2,1 ) of similar amplitude to the source current density in wire 1 (J(0)1 ), but the higher order reactions
are much smaller. At first sight, this could seem a bit strange. However, it can be easily explained as
follows: The first reaction eddy currents are generated by a non-zero total current in wire 1, whereas
the total current in wire 2 remains zero. Mathematically speaking, the surface integral of current
density J(0)1 in the first wire over its cross section is equal to current I1, whereas this kind of integral of

current density J(1)2,1 over the cross section of the second wire equals zero. Therefore, the reaction due to
the eddy currents is much smaller, because the eddy currents induced in wire 1 cancel partially due to
opposing phases of J(1)2,1 in wire 2. In very large simplification, this is illustrated in Figure 8.

Figure 8. Symbolic illustration of reactions 1 and 2: (a) Reaction 1; (b) reaction 2.

Figure 9 shows the results for cases 2 and 3. Only results for wire 1 are shown, because the results
for wire 2 are symmetrical. Reactions 0, 1, and 2 are shown (reactions 3 and higher are too small to
be drawn together with reactions of lower order), as well as the total current density as the sum of
the first six reactions. The results stay in agreement with the fact that the current density is shifted
outwards in of same currents, whereas inwards in the case of opposing currents.

Figure 9. Polar plots of the relative current density magnitude on the surface of wire 1 (values in
units of direct current density; legend: Red—total, green—skin effect, blue—m = 1, magenta—m = 2):
(a) Case 2 (same currents); (b) case 3 (opposing currents).
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The results can be compared with those obtained by means of finite elements. FEMM software
(version 4.2, 64-bit 21Apr2019 by David Meeker, MA, USA, http://www.femm.info/wiki/HomePage)
was used to perform the calculations with very dense mesh to ensure suitable accuracy, and Table 1
shows the results—the total current density at some specific points. The results agree very well—the
differences in the magnitudes usually appear in the third meaningful digit, and the phase angles agree
up to a degree.

Table 1. Comparison of the relative current density at specific points for the three cases solved by
means of the proposed method and with use of FEMM software (magnitudes in units of uniform DC
density, phases in degrees).

Point Quantity Case 1 Case 2 Case 3

Proposed FEMM Proposed FEMM Proposed FEMM

(R1, 0◦) Magnitude 2.164 2.158 3.317 3.310 1.033 1.031
Phase 38.3 37.9 41.5 41.3 27.6 27.0

(R1, 90◦) Magnitude 2.178 2.175 2.622 2.617 1.755 1.754
Phase 37.5 37.1 42.0 41.7 30.8 30.3

(R1, 180◦) Magnitude 2.578 2.566 0.517 0.502 4.869 4.850
Phase 46.7 47.1 –7.1 –6.2 51.7 51.8

(R2, 0◦) Magnitude 2.311 2.302 0.517 0.502 4.869 4.850
Phase –122.9 –122.8 –7.1 –6.3 –128.3 –128.2

(R2, 90◦) Magnitude 0.482 0.481 2.622 2.617 1.755 1.755
Phase 62.7 62.8 42.0 41.7 –149.2 –149.7

(R2, 180◦) Magnitude 1.164 1.162 3.317 3.309 1.033 1.032
Phase 47.7 47.6 41.5 41.3 –152.4 –153.0

3.2. Analysis of Function Λ

Function Λ, given by Equation (16), is crucial in the above considerations; therefore, it is worth
investigating its behavior for various values of parameters. Figure 10 shows the values of Λ versus
r/R at R/d = 0.5 for various θ and R/δ, where δ is the skin depth. It follows that the modulus is largest
for r = R, which means the strongest reaction occurs on the wire surface. This is due to the fact that
In(Γr) analyzed in interval 0 ≤ r ≤ R has the largest modulus for r = R. Figure 11 shows Λ versus θ
at for various R/d and R/δ. The largest modulus is for θ = 0, because then cos nθ = 1 and all the
terms in series (16) add together. This confirms that the strongest reaction occurs at the point closest
to the source filament, as expected. The dependence of |Λ| versus R/d and R/δ is shown in Figure 12.
It follows that |Λ| increases with an increase of both R/d and R/δ. Hence, the reactions are stronger the
closer is the filament and the smaller is the skin depth.

Figure 10. Values of Λ versus r
R for θ = 0, π

2 , π and R
δ = 1, 2: (a) Modulus; (b) argument.

http://www.femm.info/wiki/HomePage
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Figure 11. Values of Λ versus θ for R
d = 0.25, 0.5, 0.75 and R

δ = 1, 2: (a) Modulus; (b) argument
(legend as in (a)).

Figure 12. The dependence of |Λ| versus the geometrical parameters and skin depth: (a) |Λ| versus R/d;
(b) |Λ| versus R/δ.

3.3. Analysis of the Successive Reactions

Let us consider an even reaction of current density in wire 1, i.e., m = 2l. By recursive applying
Equation (19), it follows that

I(2l)
1,2 = Λ1,2I(2l−1)

2,1 = Λ1,2Λ2,1I(2l−2)
1,2 = I1(Λ1,2Λ2,1)

l−1Λ1,2Λ2. (20a)

As for odd reactions, when m = 2l− 1, one obtains

I(2l−1)
1,2 = Λ1,2I(2l−1)

2,1 = Λ1,2Λ2,1I(2l−3)
1,2 = I2(Λ1,2Λ2,1)

l−1Λ1. (20b)

Similar equations can be obtained for wire 2. Hence, the even reactions in a wire only depend on
the current in that wire, whereas the odd reactions depend on the current in the neighboring wire.
Moreover, the modulus of each reaction only depends on current magnitudes and not their phases.

There are five parameters in Equation (17): Three geometrical sizes R1, R2, d, and two skin depths
δ1, δ2, which are related to material properties and frequency of currents. However, analysis of the
Equations reveals that current density only depends on four ratios, R1/d, R2/d, R1/δ1, R2/δ2, which
reduce to two parameters, R/d and R/δ, in case of two identical wires. Figure 13 shows the modulus
of particular reactions of relative current density on the surface of wire 1 when the wires carry currents
of the same r.m.s. value (of no matter what phases). It follows that the successive corrections are
smaller and smaller—usually mth correction is several times smaller than the previous one. For a
given reaction number, the reaction is the smaller the larger the gap between the wires, and the larger
the smaller the skin depth. The influence of skin depth is significant—to obtain accuracy of three
meaningful digits, it is enough to take three reactions for δ = R, whereas four reactions may not be
enough for δ = 0.5R.
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Figure 13. Modulus of several lower corrections to the relative current density in case of two identical
wires of radius R for three gaps between them (gap = d = − 2R = 0.2R, 0.5R, R) and two skin depths
(R and 0.5R): (a) Reaction 1; (b) reaction 2; (c) reaction 3; (d) reaction 4.

3.4. The Proximity Effect

Let us consider the proximity effect for two identical wires in two cases: (1) With the same
currents in the wires (magnitude and phase), and (2) with opposing currents of equal magnitudes.
As mentioned in Section 3.3, the corresponding even reactions are identical in both cases, whereas
the corresponding odd reactions have opposing phases with the same modules. Therefore, the total
current density differs in both cases. Figure 14 shows the total relative current density in wire 2 in the
two cases for various gaps between the wires and for two skin depths. Six reactions were taken into
account. In accordance with classical results, in case 1, the current density is shifted outwards, whereas
in case 2, inwards. The effect is stronger the smaller the gap between the wires and the smaller the
skin depth. It is worth noting that the effect is stronger for the case of opposing currents. This is best
visible by comparing curves 1 and 4, 2 and 5, and 3 and 6 in Figure 14c,d, where the corresponding
maximum values are larger for the case of opposing currents. It is also visible the current density at
the wire center is not affected by the successive reactions—it remains the same as for the skin effect.
Indeed, by analyzing Equations (16) and (17), it follows that all the successive corrections take a value
of zero at the wire center.
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Figure 14. Polar plots of the modulus of the total relative current density in wire 2 for identical wires,
various gaps between them and two skin depths (red, green, and blue lines correspond to different
gaps between the wires; solid lines—same currents, dashed lines—opposing currents; black dashed
line is for purely skin effect): (a) Values on surface at skin depth δ = R; (b) values on surface at skin
depth δ = 0.5R; (c) values across the wire for skin depth δ = R (legend as in (a)); (d) values across the
wire for skin depth δ = 0.5R (legend as in (b)).

4. Conclusions

The presented method of calculation of current density distribution is based on the method
of successive reactions. It can be regarded as a semi-analytical one—while it allows obtaining
analytical results for each current density reaction based on the previous one, it requires some kind of
discretization. The following conclusions can be formulated:

• The results obtained show that there are four parameters directly affecting the current density:
R1/d, R2/d, R1/δ1, R2/δ2, which facilitate further analysis.

• The corrections are artificial quantities that can be interpreted as reactions to currents due to
previous corrections. They are just auxiliary quantities and cannot be measured—only their total
is a real physical quantity.

• In the case of large enough skin depths, reactions 2 and higher can often be neglected without
significant loss of accuracy. Therefore, the results with the first correction only are often
accurate enough.

• The current density in the wire center is not affected by the corrections—it originates only from
the skin effect.
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• The current density of an even reaction in a wire is directly proportional to the current in that
wire, whereas odd reactions are directly proportional to the current in the neighboring wire.

• The method is not without drawbacks—it cannot be used for non-circular wires and it requires
discretization into segments, which introduces uncertainty.

• Further directions of the research can be generalization for a group of more than two wires, for
tubular wires, or for wires in conductive environments.

Author Contributions: Conceptualization, Z.P. and P.J.; Methodology, Z.P. and P.J.; Software, P.J.; Validation,
Z.P., D.K., and T.S.; Formal analysis, Z.P.; Writing—original draft preparation, Z.P. and P.J.; Writing—review and
editing, D.K. and T.S.; Visualization, P.J. and Z.P.; Supervision, P.J.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Consider an infinitely long cylindrical conductor Ω of radius R, electric conductivity σ, and
magnetic permeability µ placed in free space (µ0). If a parallel infinitely long filament with time
harmonic current of complex r.m.s. I and angular frequency ω is placed at a distance of d > R, then
eddy currents will be induced in the cylinder. Let us introduce a cylindrical coordinate system with
-axis located on the axis of the cylinder and -axis crossing the filament (Figure A1).

Figure A1. A long cylindrical conductor and a parallel current filament (cross section).

Due to geometrical conditions, currents flow along the z-axis; thus current density and vector
magnetic potential only have z-components, which are independent on z-coordinate: A = A(r,θ)ẑ and
J = J(r,θ)ẑ. If Y(d, 0) are coordinates of the filament, then the Maxwell equations lead to the following
equations for the vector magnetic potential at point X:

∇
2Ain(X) − jωµσAin(X) = 0 for X ∈ Ω, (A1)

∇
2Aout(X) − µ0Iδ(X −Y) for X < Ω. (A2)

where δ(X −Y) is the Dirac delta here. The potential outside the cylinder can be expressed as
Aout = Areact + Aexc, where Areact satisfies the Laplace equation, and

Aexc(X) =
µ0I
2π

ln
1

|X −Y|
+ A0, (A3)

where A0 is freely assumed constant, and |X −Y| represents the distance between points X and Y. The
equations for Ain and Areact can be rewritten as follows:

1
r
∂
∂r

(
r
∂Ain

∂r

)
+

1
r2

∂2Ain

∂θ2 − Γ
2Ain = 0, (A4)

1
r
∂
∂r

(
r
∂Areact

∂r

)
+

1
r2

∂2Areact

∂θ2 = 0, (A5)
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where Γ2 = jωµσ. They can be easily solved via the method of separation of variables. Due to symmetry
(A(r,−θ) = A(r,θ)) and finite field for r = 0, the solutions take the following forms:

Ain =
∞∑

n=0

CnIn(Γr) cos nθ, (A6)

Areact = D01 + D02 ln
1
r
+
∞∑

n=1

Dn

(R
r

)n
cos nθ. (A7)

Areact should vanish for r→∞, because far from the cylinder, the field should remain unaffected; thus,
D01 = D02 = 0. On boundary r = R, the equations of field continuity yield:

Ain = Areact + Aexc,
1
µ

∂Ain

∂r
=

1
µ0

∂(Areact + Aexc)

∂r
. (A8)

To fulfill them, it is necessary to represent Aexc in terms of coordinates r and θ. By the cosine theorem
it follows that (see Figure A1)

|X −Y|2 = r2 + d2
− 2rd cosθ. (A9)

Hence

ln
1

|X −Y|
= −

1
2

ln(r2 + d2
− 2rd cosθ) = − ln d−

1
2

ln
(
1 +

( r
d

)2
− 2

r
d

cosθ
)
. (A10)

Then, by using Equation 1.514 from [28], which is

ln(1 + x2
− 2x cosθ) = −2

∞∑
n=1

1
n

xn cosθ, |x| < 1, (A11)

one obtains

ln
1

|X −Y|
=
∞∑

n=1

1
n
(

r
d
)

n
cosθ− ln d (A12)

so that

Aexc(r,θ) =
µ0I
2π

∞∑
n=1

1
n

( r
d

)n
cosθ+ A0 −

µ0I
2π

ln d (A13)

provided that r < d. It is convenient to set A0 =
µ0I
2π ln d to simplify the solution. Then Equation (A8)

yields

C0 = 0, Cn =
µ0I
2π

(R
d

)n 2

nIn(ΓR) + 1
µr
ΓRI′n(ΓR)

, Dn = CnIn(ΓR) −
µ0I
2π

1
n

(R
d

)n
(A14)

For a non-magnetic cylinder (µr = 1), Cn can be simplified by using the following recurrence
relation for the modified Bessel functions (see Equation 8.486, postition 3 in [28]):

nIn(z) + zI′n(z) = zIn−1(z). (A15)

This leads to

Cn =
µ0I
2π

(R
d

)n 2
ΓRIn−1(ΓR)

, (A16)

so that

Ain(r,θ) =
µ0I
πΓR

∞∑
n=1

(R
d

)n In(Γr)
In−1(ΓR)

cos nθ. (A17)

Finally, the eddy currents density inside the non-magnetic cylinder can be found as follows:
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J
in
(r,θ) = −jωσAin(r,θ) = −

I
πR2 ΓR

∞∑
n=1

(R
d

)n In(Γr)
In−1(ΓR)

cos nθ. (A18)

Appendix B

Function Λ, given by Equation (16), is essential in the whole procedure. In numerical calculations,
the infinite series must by truncated to finite number of terms. To assure an accuracy of a meaningful

digits in Λ, the series was cut at term n = nmax, for which the magnitude of
(

R
d

)n In(Γr)
In−1(ΓR) is not larger

than the magnitude of the sum of lower order terms multiplied by a “small” number ε = 10−a.
Figure A2 shows the number of required terms to obtain an accuracy of a digits for various values of
the remaining parameters. It follows that:

• To obtain an accuracy of three significant digits, the number of terms, nmax, is up to several tens;
• nmax depends on angle and reaches the highest value for θ < 90◦;
• nmax grows with increasing r and reaches maximum at r = 1;
• nmax grows with decreasing d; and
• nmax usually grows with decreasing δ, but surprisingly not for all angles.

Figure A2. Number of terms in Equation (16) to obtain required accuracy versus angle θ: (a) For
various r

d ; (b) for various R
d ; (c) for various R

δ ; (d) for various ε.
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