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Abstract: Time-varying pricing is seen as an appropriate means for unlocking the potential flexibility
from electric vehicle users. This in turn facilitates the future integration of electric vehicles and
renewable energy resources into the power grid. The most complex form of time-varying pricing is
dynamic pricing. Its application to electric vehicle charging is receiving growing attention and an
increasing number of different approaches can be found in the literature. This work aims at providing
an overview and a categorization of the existing work in this growing field of research. Furthermore,
user studies and the modeling of user preferences via utility functions are discussed.
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1. Introduction

In recent years, the penetration of electric vehicles (EVs) significantly increased. In the year 2017,
the sales of new EVs surpassed 1 million units and the global stock of electric passenger cars reached
3.1 million (an increase of 57% compared to 2016) [1]. In 2018, nearly 2 million new EVs were sold and
the global stock increased to 5.1 million units (63% more than in 2017) [2]. The share of EVs is still
small. Only five countries had an EV share higher than 1% in 2018 [2]. However, it can be expected
that the considerable growth of the EV penetration will continue in the next years.

The integration of the increasing number of EVs into the power grid is an open issue [3,4].
The increasing and uncoordinated electrical load due to EV charging imposes significant challenges
for the stable operation of the power grid. However, at the same time, there is the opportunity to
make use of the EV’s batteries in order to provide grid services, which can make the power grid even
more stable and safe — especially if vehicle-to-grid (V2G) technology is employed [5-7]. V2G allows
to feed energy from EVs back to the grid. As a result, the EVs are not just a shiftable load but also
a distributed energy source. This can be used for the provisioning of services like frequency regulation
or peak shaving. Furthermore, V2G can support the integration of renewable energy resources into the
grid. The variability and uncertainty of wind and solar energy generation represents a challenge for
the balancing of supply and demand [8]. Using V2G technology, EVs can be employed as an energy
buffer in order to reduce peak loads as well as curtailment in wind- and solar-based systems [9].

Another important requirement for the electrification of transport, besides the successful
integration of the EVs into the power grid, is the availability of an adequate public EV charging
infrastructure. The AFI (Alternative Fuels Infrastructure) directive of the European Union recommends
a ratio of one publicly accessible charger per ten EVs [1]. If it is possible to operate public charging
stations in a profitable way, then such an infrastructure or part of it could be deployed and operated by
private sector stakeholders, like car manufacturers, oil companies or utility companies. The profitable
operation of charging stations can be supported by so called EV aggregators. An EV aggregator is an
agent, which aggregates a large number of charging points and acts as a middleman between charging
station operators or EV owners and the energy market. According to Reference [9], the viable trading
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of EV power on the wholesale market requires the aggregation of at least around 500 charging points
or EVs.

Smart charging [10], which allows the control of charging processes in a coordinated way, is often
seen as an important step towards a successful grid integration of EVs and a profitable operation of
public EV charging stations. Different approaches towards increasing the grid stability [11,12] and
the profit of EV charging station operators [13-15] are proposed in the literature. Smart charging
could be also applied by individual users in order to reduce their charging costs [16-18]. Furthermore,
it can be used for the purposes of minimizing distribution system losses [19], of reducing distribution
network investment costs [20], of minimizing loss of life of transformers [21] and of peak shaving and
valley filling [22].

Besides smart charging, dynamic pricing is a promising approach to overcome the challenges
related to an increasing penetration of EVs. Dynamic pricing means, that the charging provider—which
can be a distribution system operator or an operator/aggregator of charging stations—dynamically
adapts the price, which has to be payed by the end users (the EV drivers) for charging their EVs.
In this way, it is possible to react to changes in the operating conditions, for example, to increase the
charging prices during periods of high electricity prices or high energy production costs, respectively.
A second and even more important advantage of dynamic pricing for EV charging is that it allows
to increase the flexibility provided by the users or to make use of the users’ flexibility in order to
control their behavior to a certain degree (see Section 3.4 for more details). Hereby, it is possible
to achieve different benefits like reducing energy production costs, increasing the stability of the
power grid, increasing user satisfaction or reducing the operating costs of public charging stations.
The International Renewable Energy Agency considers smart charging and user incentives, like
dynamic pricing, to be two key factors for unlocking the flexibility potential from EVs, which is
required for a successful grid integration of EVs and renewable energy in the future [9]. Thus, dynamic
pricing for EV charging attracted a lot of researchers and a lot of different approaches to dynamic
pricing in the context of EV charging were proposed and published in recent years. The present work
aims at providing an overview of existing work in this field of research. Different approaches to
dynamic pricing for public and residential EV charging are reviewed and categorized according to
their properties.

Dynamic pricing for EV charging can be seen as a special form of demand response, which
refers to a procedure that motivates end users to change their electricity consumption, in response to
financial incentives. For an overview of demand response in general, the interested reader is referred
to References [23-25]. Furthermore, traditional time-of-use (TOU) rates are not covered in this work,
since these rates only depend on time and are not dynamically adapted to changes in the operating
conditions. More information on TOU rates can be found in References [26,27].

Dynamic pricing approaches are already discussed in existing literature reviews of EV charging
management [28-30]. In these works, different approaches to decentralized charging control based
on price signals are reviewed. However, decentralized control is not the only possible application of
dynamic pricing. Compared to existing works, the present literature review is not focused on charging
control but on dynamic pricing strategies and discusses their different applications. Furthermore,
the present work provides a review of utility functions, which are used in the literature on dynamic
charging pricing in order to model user preferences. Moreover, user studies, which can reveal insights
useful for a practical realization of dynamic pricing approaches, are discussed.

The rest of the paper is structured as follows: Section 2 provides a brief overview of the current
situation regarding EV charging tariffs, taking the example of the United States. Section 3 describes
and categorizes the different dynamic pricing approaches, which can be found in literature. Section 4
provides an overview of utility functions used in the context of dynamic charging prices. In Section 5,
user studies are discussed and finally, Section 6 summarizes and discusses the work and its findings.
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2. Tariffs for EV Charging in the United States

In order to provide an overview of the current practices regarding pricing for EV charging,
this section discusses the actual situation in the United States. The U.S. were chosen as an example
due to poor availability of information on other countries.

Home charging is billed according to the residential electricity tariff of the user. The majority of
households in the U.S. have a single rate or flat rate electricity tariff with a constant price per kWh,
independent of the time the energy is consumed [31]. In addition, there is often a fixed fee per billing
period, which is independent of the energy consumption [32]. Some tariffs contain peak demand
charges (in $/kW), which are based on the peak electricity demand in the billing period. However,
this is unusual for residential consumers [32]. Many utilities offer TOU tariffs. These tariffs commonly
differ in peak, intermediate and off-peak periods [32]. Until recently, TOU tariffs were rarely adopted
by residential consumers in the U.S. but they receive growing attention [33]. An increasing number of
utilities offer special tariffs for EVs [34]. This can be, for example, TOU tariffs, which apply only to the
EV charging, while the rest of the energy consumption is billed via a single rate tariff. This requires
a separate energy meter in order to measure the EV charging load. Today, there are also programs with
hourly real-time electricity prices [35]. Furthermore, there are pilot projects for V2G [34] and demand
response [36] programs.

Many public charging stations in the U.S. allow free charging [37]. For those, which do not,
various pricing models exist [37-39]. Most of them use a time-based fee (usually $/min), which might
also apply for the time the EV is no longer charging. There are even charging stations with an idle fee,
which is higher than the fee during charging. Besides time-based tariffs, there are also tariffs with a fee
per kWh. However, this is not permitted in all U.S. states. Session-based billing with a fixed price per
charging session is likewise common. At some charging stations, a session fee comes on top of the
usage-based fees. A further pricing model in use is a monthly or annual fee, which allows arbitrary EV
charging during the corresponding period or at least provides a discount on charging.

Electricity tariffs for operators of public charging stations in the U.S. have been analyzed by
Muratori et al. [40]. Most commercial and industrial tariffs applicable to public EV charging have
a TOU structure. About half of them include demand charges. Muratori et al. show that these demand
charges can result in high energy costs, especially for fast charging stations with a low utilization.

3. Approaches to Dynamic Pricing for EV Charging

The different approaches to dynamic pricing for EV charging, which can be found in the literature,
can be categorized regarding the following criteria:

Type of pricing scheme (How do the prices look like from the user’s point of view?)
Implementation of pricing scheme (How are the prices set?)
Addressed flexibility (What is the purpose of the dynamic pricing?)

Before the different types of dynamic pricing approaches and examples of them are discussed
more in detail in Sections 3.2-3.4, some fundamental concepts and terms, which are frequently used in
the literature on dynamic pricing for EV charging, are discussed in the following subsection.

3.1. Fundamentals

In many papers on dynamic pricing for EV charging, the preferences of users are modeled with the
help of utilities. It is assumed that a user n gets a certain satisfaction from consuming a good x, which
is expressed as utility U, (x) € R. In the context of EV charging, the “good” x can be, for example,
the amount of charged energy or the duration of the charging session. In works on dynamic pricing
for EV charging, it is frequently assumed that users make decisions that maximize their profit, which
is their utility minus their costs. That means, a user n chooses x so that U, (x) — P, (x) is maximized,
where P, (x) is the price, the user has to pay for x. Often, it is also assumed that users do not charge,
if charging results in a negative profit for all possible values of x. In that sense, the utility U, (x) can be
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seen as the price, the user n is willing to pay for the good x. Examples of utility functions used in the
literature on dynamic pricing for EV charging are discussed in Section 4.

The maximization of the social welfare is often considered as a goal of the dynamic pricing.
The social welfare can be defined in different ways. In a number of works, it is defined as the sum of
the users’ profits (utilities minus the prices payed) and the charging provider’s profit. In other works,
the social welfare is considered to be equivalent to the utilities gained by the users or to the users’
utilities minus the costs for energy production. Further on, some works assume that the social welfare
is maximized if the social costs are minimized, which are usually defined as the costs related to the
production of the energy required for charging.

Many works show that their proposed dynamic pricing strategies for EV charging are incentive
compatible. A pricing strategy is incentive compatible if a user cannot gain an advantage by providing
untrue information (e.g., regarding the preferred amount of energy or the preferred departure time).
One can distinguish two types of incentive-compatibility: A pricing strategy is Bayesian-Nash incentive
compatible if a user has no disadvantage from telling the truth if all other users reveal their true
preferences. The stronger concept of dominant-strategy incentive-compatibility means that the benefit
with truth-telling is guaranteed to be at least as high as the benefit with misreporting, regardless of the
actions of other users.

3.2. Pricing Type

The pricing type addresses how the prices are structured from the point of view of the users.
The pricing types described in the existing literature can be categorized according Figure 1.

Pricing Type
Price-profile-based Session-based
/
Coarse-grained Fine-grained Personalized Non-personalized
Personalized Non-personalized

Figure 1. Categorization regarding pricing type.

Price-profile-based pricing sets different charging prices (usually per energy unit) for different
time intervals. Most common in literature are fine-grained price profiles, which set an individual price
for each scheduling interval (typically of a length between five minutes and one hour). However, some
publications propose coarse-grained price profiles, which set a constant charging price for a longer
period of time. This type of pricing is used in the work of Guo et al. [41-43]. They investigate the
setting of dynamic charging prices per energy unit for charging at a parking deck, where customers
get a discount on the parking fee, if they charge their vehicle during parking. The charging price is
fixed for 24 h. The authors argue that such a flat price is an efficient way to build confidence between
customers and the parking deck operator.

The fine-grained price profiles can be either personalized or non-personalized. The latter means
that the charging price in a certain interval is the same for all users, while with a personalized price
profile, different users can get different charging prices for the same interval. Soltani et al. [44]
describe, for example, the setting of personalized price profiles for multiple households with EVs
(different price profiles are set for the different households) with the objectives of maximizing the
charging provider’s profit and keeping the electrical load under a certain limit. It is assumed that in
each time interval the households decide based on the prices, whether they charge their EVs or not
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and that different households react differently to prices. Soltani et al. propose the use of conditional
random fields [45] in order to predict for each household the probability that it charges for a given
price. The predictions are used as a basis for setting the price profiles for the individual households.
An example of non-personalized fine-grained price profiles can be found in Reference [46]. In this work,
an iterative process is described, which sets energy prices for individual scheduling intervals with the
objectives of maximizing the social welfare and of balancing demand and supply. It is assumed that an
energy supplier acts as charging provider. In each interval, the energy supplier computes a charging
capacity, which maximizes its profit and announces a charging price per energy unit to the users, who
decide on the amount of energy they want to charge in the interval based on the offered price. If the
total amount of energy the users want to charge does not equal the charging capacity, the prices are
updated (increased if the charging capacity is exceeded and otherwise decreased) and the procedure is
repeated until it converges.

In session-based pricing, a user is presented with a total price for a complete charging session.
So in contrast to price-profile-based pricing, the user gets no price information for individual
intervals or subsections of the charging session. Like for fine-grained price profiles, personalized and
non-personalized variants of session-based pricing can be found in literature. In the non-personalized
variant, users get the same price if they request the same amount of energy to be charged in the
same period of time. This type of pricing is, for example, used by Ban et al. [47]. Based on queuing
theory, they set different prices for different spatially distributed charging stations with the goals
of maximizing the throughput and minimizing the waiting time at the different charging stations.
Prices at different charging stations might differ but two users who arrive at the same time at the same
charging station, get the same price for the complete charging session. The price is independent of
the requested amount of energy. However, it is not stated whether it is considered that two users can
have different energy requirements or not. An example of personalized session-based pricing can
be found in Reference [48]. Based on an auction (see also Section 3.3), prices for complete charging
sessions are set with the objective of maximizing the social welfare. It is shown that (under certain
conditions), the pricing mechanism is nearly incentive compatible in the sense that users can gain only
small utility by untruthful declarations. Like for all auction-based pricing mechanisms, the prices are
personalized—two users can get different prices, although they start and end charging at the same
time and charge the same amount of energy.

3.3. Pricing Implementation

There are a lot of different approaches to setting the prices. However, all of them can be roughly
categorized according Figure 2. Prices can be set either offline or online.

Pricing Implementation

Online Offline

Auction-based Non-auction-based || Auction-based Non-auction-based

Figure 2. Categorization regarding pricing implementation.

Offline approaches set prices for a long planning horizon (e.g., 24 h). They rely on the knowledge
or at least a good prediction of the number of EVs that want to charge during the planning horizon and
how much and when they want to charge. Some offline approaches, like Reference [49] (see Section 3.4
for more details), require even an active contribution of all EVs or users in the setting of the prices.
A special case of pricing is auction-based pricing. Here, each user specifies a maximum amount of
energy to be charged, a departure time and utilities the user gains by different amounts of charged
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energy. The utilities can be interpreted as bids in an auction, since they reflect the amounts of money,
the user is willing to pay for different amounts of energy. Depending on the charging requirements
and the utilities specified by the users, it is decided how much energy each user receives and how
much he/she has to pay for it. An example of offline auction-based pricing can be found in the already
mentioned work of Bhattacharya et al. [48]. They propose extensions of the Vickrey-Clark-Groves (VCG)
auction mechanism. This mechanism requires the knowledge of charging demands over a planning
horizon consisting of multiple scheduling intervals, in order to determine the amount of charged
energy and the price (for the complete charging session) for each user with the objective of maximizing
the social welfare. With the VCG mechanism, the price for a certain user n contains so called opportunity
costs, which reflect the amount of utility, that the other users lose due to the participation of user n
in the market. The VCG mechanism is incentive compatible but it has the drawback that users have
to specify full utility functions in the amount of charged energy, which they are usually unable to
do. Bhattacharya et al. propose an extension of the VCG mechanism, which requires users to specify
utilities only for certain levels of charged energy and they show that their approach is nearly incentive
compatible. The majority of pricing approaches are non-auction-based. For example, Wang et al. [50]
set a fine-grained price profile for charging at a university campus charging site one day ahead.
The prices are set with the objective of load shaping. This is done with the help of a heuristic, which
uses a prediction of the load curve of the next day.

Online pricing mechanisms do not rely on the knowledge of all charging demands during a longer
planning horizon, either because they are myopic and plan only a short time period ahead or because
the planning does not rely on knowledge of future charging demands. They can handle unexpected
arrivals of new EVs, which makes them more suitable for a practical implementation than offline
approaches. In the case of fine-grained price profiles (coarse-grained price profiles are set offline
per se), an online approach sets in each interval the price for the next interval and does not plan
further ahead or it computes a new price profile for multiple intervals ahead, when a new user arrives.
Online approaches to session-based pricing compute a price for each EV, when it arrives. Like offline
approaches, online approaches can be auction-based. An online auction mechanism with the objective
of maximizing the social welfare is described by Gerding et al. [51]. Based on utilities specified by the
users, the approach determines in each interval, how a fixed amount of available energy is distributed
among the users in the next interval. It is shown that it is necessary to occasionally leave a part of
the available energy unallocated, even if there is demand, in order to make the approach incentive
compatible. An example of a non-auction-based online approach is described by Kim et al. [52].
They assume a charging station where a price for the complete charging session is offered to each
arriving user and a user can either accept the price and is placed in a waiting queue or he/she leaves
the station. Additionally, they assume that the charging station operator has to pay a penalty if
a waiting EV is not serviced within a certain time limit. For this scenario, they describe an approach to
set in each interval the prices for arriving EVs/users with the objective of maximizing the charging
station operator’s profit.

3.4. Addressed Flexibility

As already outlined, a benefit of dynamic pricing for EV charging is that it can help to increase
the flexibility provided by the users or to make use of the flexibility of users in order to guide them to
a certain degree. For example, users are often flexible in the charging duration. They do not always
require to charge their EVs as fast as possible, because they park over a longer period. This fact can
be used by an intelligent charging control, for example, to shift the charging load into off-peak hours.
However, it requires that users communicate their flexibility in the charging duration. With the help
of dynamic pricing approaches, users can be encouraged to reveal their full flexibility. Besides the
flexibility in the charging duration, other flexibilities can be addressed. The existing approaches to
dynamic pricing for EV charging address one or more flexibilities of those shown in Figure 3.
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Addressed Flexibility

| Schedule | | Energy | | Duration | | Location | | Battery Utilization

Figure 3. Categorization regarding addressed flexibility.

3.4.1. No Flexibility

Some approaches address no flexibility. They just adapt prices to changes in the operating
conditions without assuming reactions of users to changes in the prices. For example, Guo et al. [41]
compute a minimum value to which the price for charging on a parking deck has to be set in order to
compensate the operating costs arising from fulfilling the (known in advance) charging requirements
of customers under the assumption that these charging requirements are not affected by the charging
price. Another dynamic pricing approach, which does not consider user flexibilities is described by
Wang et al. [53]. They assume that the charging provider offers a charging price to an arriving user
and that the user makes a counter-offer. Then, the charging provider updates the initial offer and so on
until a price is found, which satisfies the charging provider as well as the user, or a maximum number
of iterations is reached and consequently the negotiation fails.

3.4.2. Flexibility in the Schedule

Other approaches address the flexibility of users in the charging schedule. It can be assumed that
users usually do not care much how their EVs are charged exactly as long as they get their required
energy when they need it. This is the basis of controlled charging. Through a central control it is
possible to coordinate charging schedules of multiple EVs. However, a central control is not always
applicable. An alternative to a central control is distributed control with coordination via price signals.
This is described by different authors for the use case of controlling EV charging with the objective of
filling the valley of a certain base load.

One of the first who described such an approach are Ma et al. [49]. They propose an iterative
approach to distributed control: The charging provider sends fine-grained price profiles to multiple
EVs, which optimize their own charging schedules with respect to their charging costs. The schedules
are sent back to the provider, who adapts the prices and sends them back to the EVs, which optimize
their charging schedules according to the new prices and so on. The charging price for an EV in
a certain interval is the sum of two terms: A price per energy unit, which depends on the total load
in the interval and a penalty term, which depends on the deviation of the EV’s charging power from
the average charging power. The penalty is required for the convergence of the approach. It is shown
that the approach is guaranteed to converge to an optimal valley filling charging schedule for the case
of EVs with homogeneous requirements (same start and end times of charging, energy requirements
and maximum charging powers). Because of the penalty term in the prices, an EV might have to pay
something for an interval, although it is not charged in that interval. However, for homogeneous EVs,
the penalty converges to zero. Gan et al. [54] propose a modification of the approach of Ma et al,,
which converges also for non-homogeneous EVs to an optimal solution. It also uses a penalty term in
the prices, which converges to zero. Ghavami et al. [55] propose another modification. They build
the penalty term into the price per energy unit, which results in non-linear energy prices. Analogous
to the penalty terms used in the other approaches, these non-linear prices can result in costs for
intervals in which an EV is not charged. In Reference [56], Ghavami and Kar extend the approach from
Reference [55] in order to deal with uncertainties in the charging demands of users. A further work,
which describes the usage of dynamic prices for EV charging scheduling with the purpose of valley
filling, is the work of Zhang and Chen [57]. They also propose the setting of a price profile, where the
charging price in a time interval depends on the total load in that interval. Based on these prices, the
charging of the EVs is scheduled in a centralized way. Hu et al. [58] and Xydas et al. [59] propose
online pricing schemes for valley filling. A price profile is computed analogously to the previously
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described works with the difference that only the charging load from currently plugged in EVs is
considered in the setting of the prices. When a new EV arrives, it computes a charging profile based on
the prices and submits it to the charging provider. Then the prices are updated.

O’Connell et al. [60] propose the use of so called locational marginal pricing (LMP) in order to avoid
power grid congestion. In this approach, different price profiles are set for different nodes/buses of
the distribution grid based on a day-ahead prediction of charging demands. The prices are set in
a way that cost-optimal charging schedules result in a minimum grid congestion and they can be
decomposed into two components: marginal generation costs and congestion costs. The marginal
generation costs are based on (predicted) day-ahead energy market prices. A very similar approach
based on LMP is proposed by Li et al. [61]. Dallinger and Wietschel [62] describe an analogous pricing
scheme, where charging prices consist of marginal costs and a grid fee, which is proportional to the
utilization of the transformers of the power grid. Tan and Wang [63] propose a pricing scheme denoted
as reliability-differentiated pricing. Here, the prices contain a component, which reflects potential costs
resulting from transformer overloads. This should encourage customers to schedule the charging of
their EVs in a way, which enhances system reliability. Yang et al. [64] describe the coordination of the
charging load of a fleet of electric taxis with the help of dynamic pricing. They assume that in each
time interval a taxi either charges or drives and that the probability of charging depends on the price.
Based on this assumption, an iterative online approach for setting the prices with the objective of load
shaping is described.

Xi and Sioshansi [65] assume a system with multiple distributed generators (DGs) and propose
the use of price signals in order to coordinate EV charging with the operation of the DGs. The work
of Clairand et al. [66] describes the use of dynamic pricing with the purpose of balancing energy
consumption and renewable energy production. At the beginning of each day a system operator
computes an EV charging price profile for the day based on a forecast of the energy demand and
renewable production during the day. The prices are low in time intervals for which the renewable
production is expected to exceed the demand and in other time intervals the prices are higher. Based on
the prices set by the system operator, an EV aggregator manages the charging of the EVs.

Subramanian and Das [67] propose the use of dynamic pricing in order to reduce the costs of
energy purchased in the energy market. They assume a system operator who provides energy to
multiple EV aggregators and who purchases this energy in the day-ahead and real-time energy market.
Furthermore, it is assumed that the system operator sets charging prices and that the EV aggregators
schedule the charging of their EVs based on these prices. The prices are set in an online approach in
a way that the costs arising to the EVs are minimized while the system operator’s revenue is kept
neutral (no loss and no profit).

3.4.3. Flexibility in the Energy Amount

The flexibility in the amount of charged energy is a further flexibility, which can be addressed
by dynamic pricing approaches. Users might have a certain preferred amount of energy they want
to charge—probably mostly a full charge of the battery is preferred. However, it can be assumed,
that users are also satisfied if the amount of charged energy slightly deviates from the preferred
amount. Hence, it might be possible to influence the amount of energy charged by the users, with the
help of dynamic pricing.

For example, Han et al. [68] propose a dynamic pricing approach, which addresses the flexibility
of customers of a public charging station in the amount of charged energy. They assume that there
are two types of customers: cooperative ones and selfish ones. The cooperative customers allow the
central control of the charging of their EVs, while selfish customers do not. The charging price per
energy unit is fixed for cooperative customers but selfish customers pay according to a fine-grained
price profile. It is assumed that selfish customers have concave utility functions in the amount of
charged energy and that they optimize their own charging schedules with respect to maximizing their
utilities minus their charging costs. Thus, with increasing prices in the price profile, the total amount
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of energy charged by the selfish customers decreases. Han et al. propose an offline approach based on
bi-level optimization to set the price profiles for the selfish customers in order to maximize the profit of
the charging station operator under the assumption that the charging station buys energy for real-time
electricity prices.

Tushar et al. [69] propose an alternative offline approach to the setting of the price profiles for
a scenario very similar to that assumed by Han et al. They formulate the problem of setting optimal
price profiles as a Stackelberg game in which the charging provider acts as the leader, who sets in each
iteration prices with the goal to maximize his/her profit and the users act as followers, who adapt
their charging schedules according to the prices and their utility functions.

Anshelevich et al. [70] also assume users, who optimize their charging schedules and their amount
of charged energy with respect to their utilities minus the charging costs. However, in contrast to
Han et al. and Tushar et al., they do not focus solely on the charging provider’s profit but investigate
the setting of price profiles with the goal to achieve a reasonable tradeoff between social welfare and
the charging provider’s profit. They propose an offline approach to the setting of the prices, which
yields under certain assumptions, like concave utility functions of users, a nearly optimal profit for the
charging provider and simultaneously a nearly optimal social welfare. The proposed algorithm for the
setting of prices makes use of a parameter «, which can be seen as a measure for the concavity of the
users’ utility functions. In References [71-74], further approaches to dynamic pricing, which address
the amount of charged energy, are described.

3.4.4. Flexibility in the Charging Duration

It is reasonable to assume that users often have a certain flexibility in the charging duration. Thus,
with the help of dynamic pricing schemes, it might be possible to stimulate users to allow a longer
charging duration.

This was proposed in 2012 by Bitar and Low [75] under the term deadline differentiated pricing.
The deadline referes to the point in time, the requested amount of energy should be charged—the later
the deadline, the longer the charging duration. Users are offered a menu of different prices (per energy
unit) for charging by different deadlines from which they can select. It is assumed that each user has
a utility function in the charging deadline and that he/she selects a deadline based on her/his utility
function and the offered prices. Furthermore, it is assumed that the charging provider can obtain a part
of the energy required for charging for free from renewable energy resources and that the rest of the
required energy has to be purchased for a fixed electricity price per energy unit. Bitar and Low propose
a policy for the offline scheduling of the charging of the users” EVs called earliest-deadline-first. They
show that under certain conditions, like certain forms of user utilities, this policy results in a competitive
equilibrium. That means that the deadlines, that are optimal for the users (in the sense of their utility
functions), are also optimal (with respect to the profit) for the charging provider. However, in this
work, Bitar and Low do not state a strategy for the setting of the prices offered to the users.

Such a strategy is proposed by Salah and Flath [76]. They propose an offline approach to the
setting of price offers for different deadlines based on stochastic optimization, which accounts for
uncertainties in the charging requirements of users during the planning horizon. However, they do not
evaluate the approach regarding the charging providers profit. In Reference [77], Salah et al. evaluate
a deterministic version of the optimization without consideration of uncertainties (it is assumed that
all charging requirements during the planning horizon are known in advance).

Based on a preliminary version [78], Bitar and Xu [79] extend the work from Reference [75] and
propose an offline approach to setting the prices offered for the different deadlines. They show
that the approach, in combination with the earliest-deadline-first charging scheduling strategy
is (dominant-strategy) incentive compatible. However, the approach requires that users specify
their charging deadlines before the corresponding prices are computed and submitted to the users.
Consequently, with this approach users can not really make their decisions based on a menu of
price-deadline-pairs.
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Limmer and Rodemann [80] propose an online approach to the setting of the price offers (per
charging session), which employs robust evolutionary optimization in order to deal with uncertainties
in the users’ utility functions. Furthermore, they do not only consider the profit of the charging provider
but also the user satisfaction. They propose the use of a multi-objective evolutionary algorithm for the
optimization of the price offers with respect to the objectives of maximizing the profit of the charging
provider, minimizing the number of users, who decline charging because the prices are higher than
their utilities and minimizing the number of users, who have to be rejected because all charging points
are occupied. In Reference [81], Limmer and Dietrich use an analogous approach to optimize the price
offers with consideration of the charging provider’s profit and the fairness of the offered prices.

Ghosh and Aggarwal [82,83] extend the idea of deadline differentiated pricing and propose to
offer a menu of different prices (per charging session) for different pairs of deadlines and amounts
of energy to be charged. Thus, they propose to address both, flexibility in the charged energy and
flexibility in the deadline. They describe an online strategy for the setting of the price offers in the menu
with the objective of maximizing the profit of the charging station operator and with consideration of
uncertainties in the user utilities. The strategy is based on a heuristic.

Bayram et al. [84] describe the setting of a discount offered to users to defer their (uncontrolled)
charging sessions by one time interval. The discount is set in an online approach based on queueing
theory with the objectives of maximizing the charging providers profit and of keeping the probability
that users have to be blocked due to a shortage of charging points under an acceptable level.

Fan [85,86] proposes the setting of price profiles based on congestion pricing. The price per energy
unit in an interval increases with an increasing total charging load in that interval. It is assumed
that all users want to fully charge their EVs and that they adapt their charging rates based on the
charging prices and a willingness to pay parameter. Users with a higher willingness to pay parameter
choose a higher charging rate and thus have a shorter charging duration than users with a lower
willingness to pay parameter. Liu et al. [87] describe a pricing scheme with different charging price
profiles for different buses of a power distribution system. They assume that based on the prices,
users choose between different alternatives for the charging power (and consequently for the charging
duration). They propose a strategy for the setting of the prices with the target to minimize power
distribution losses. In Reference [88], Limmer and Rodemann investigate the setting of prices for
different charging deadlines with the objectives of maximizing the charging provider’s profit and
minimizing the peak load.

3.4.5. Flexibility in the Location

The users’ flexibility in the charging location is another flexibility, which might be addressed by
dynamic pricing approaches. This is commonly done with the purpose of balancing the usage or the
electrical load over multiple charging sites.

An example is the work of Flath et al. [89], which deals with the setting of charging prices for
multiple locations (e.g., charging at home and charging at work) with the goal to reduce the peak

loads arising at these locations. The basic idea is to shift the load not only temporally but also spatially.

loc
t,x

t at location x. This local component of the price increases, the closer the (currently known) load
at location x in interval ¢ is to a prespecified load limit. In this way, price profiles for the different
locations are constructed, which are offered to an arriving user, who plans the charging of his/her EV
at the different locations ahead with the goal to fulfill his/her charging demands and to minimize the
charging costs. After a user submitted his/her charging profile to the charging provider, the prices
are updated according to the new loads at the charging locations. Thus, a decision of a user might
increase the prices offered to later arriving users. The approach is evaluated in simulation experiments
on the basis of real driving patterns. In the simulations, it is assumed that users plan their charging
a complete week ahead.

They propose to add a local component p;° to the price (per energy unit) for charging in interval
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Luo et al. [90] also describe the setting of charging prices for a number of spatially separated
charging sites. They assume that the charging provider purchases energy for real-time electricity
prices, that a part of the required energy can be served by renewable resources and that a stationary
battery can be used to buffer energy. Furthermore, they assume that users respond to prices at the
different charging sites by not only shifting their charging demands temporally and spatially, but
also by adapting their charging demands to the prices. Hence, they assume not only flexibility in
the charging location but also in the amount of charged energy. They describe an approach to the
optimization of price profiles for the different locations based on dynamic programming with the
objective of maximizing a weighted sum of (i) the charging provider’s profit, (ii) the users” profit
(which is the utility of users in the amount of charged energy) and (iii) a (negated) penalty for the
variance in the amount of purchased energy over the intervals of the planning horizon. The latter is
taken into account, because high load fluctuations are considered to have a negative impact on the
power grid stability. Luo et al. do not model the response of users to prices directly. Instead, they
propose to estimate the amounts of energy charged in each interval and at each location with the
help of linear regression. In Reference [91], the work is extended and the use of stochastic dynamic
programming is proposed in order to deal with uncertainties in the renewable energy production,
in the real-time electricity prices and in the charging demands.

In the already mentioned work of Ban et al. [47], different charging prices are set for different
charging sites in order to maximize the throughput and to minimize the waiting times of users at the
different charging sites. Wong and Alizadeh [92] describe the setting of dynamic charging prices at
different locations with the goal to minimize not only the waiting times at the charging stations but
also the travel times of the users. However, they do not consider that the travel time depends on the
traffic flow and that the setting of the prices might have an influence on the traffic. Further approaches
on dynamic pricing with the purpose of controlling the location where users charge can be found in
References [93-95].

3.4.6. Flexibility in the Battery Utilization

Bidirectional charging, which allows charging as well as discharging of batteries, can be employed
for different applications, like peak load reduction or the provisioning of regulation market services.
However, frequent charging and discharging of the battery of a user’s EV damages the battery. Thus,
the user should be compensated for using her/his EV’s battery for bidirectional charging applications.
This is the idea behind dynamic pricing schemes, which address the flexibility in the battery utilization.

You et al. [96] describe such a pricing scheme for charging stations with bidirectional charging
capability. They assume that the charging provider purchases energy at real-time electricity prices
and that there is an upper bound for the power that can be drawn from the grid. Energy stored in
the battery of one EV can be discharged and can be used to charge another EV. However, discharging
a battery results in a certain battery loss—the financial costs resulting from the battery degradation
due to discharging. It is assumed that the goal of the charging provider is to minimize the sum of
the costs for purchasing energy and of the battery loss. You et al. describe an iterative approach to
optimizing a price profile, where the prices are not only for charging but also for discharging (if an EV’s
battery is discharged in an interval, the user is compensated according to the charging price in that
interval). The approach to the setting of the price profile works as follows: First, the charging provider
sets the charging prices equivalent to the real-time electricity prices and submits them to the users.
The users/EVs optimize their own charging (and discharging) schedule with respect to their costs,
taking into account the battery losses arising from discharging and send the charging/discharging
profiles to the charging provider. If these profiles result in a violation of the load limit or if in an
interval more energy is discharged than charged, the prices are adapted via a gradient method and the
procedure repeats until convergence.

In Reference [97], Ghosh and Aggarwal describe the integration of the battery usage in the price
menus from Reference [82] (see also Section 3.4.4). Thus, users get different price offers for different
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deadlines, different amounts of charged energy and different battery utilization. Wu et al. [98]
investigate from a game theoretical point of view the control of the charging and discharging behavior
of a fleet of EVs by an aggregator via dynamic prices in order to provide frequency regulation services
to the grid. In the investigated scenario, the charging requirements and battery levels of the EVs are
not taken into account. Gharesifard et al. [99] assume a more realistic scenario, where the users prefer
fully charged batteries, if they are not incentivized for discharging.

4. Utility Functions for EV Charging

As outlined in Section 3.1, the modeling of user preferences is often done with the help of utility
functions. The right choice of a utility function is especially important for simulation experiments.
The more realistic the used utility function is, the more meaningful are the experimental results.
However, there is not the one generally accepted utility function. Instead, different utility functions
can be found in literature. The present section provides an overview of utility functions used in works
on dynamic pricing for EV charging.

Before the utility functions used in the literature are discussed, some discrepancies in terminology
have to be addressed. It is common to assume that users act in a way that the following optimization
problem is solved:

max f(x, p) = g(x) —h(x, p), ©)

where x is the good, which can be consumed (e.g., the amount of charged energy), p is the charging price
(or a price vector) set by the charging provider, g(x) is the satisfaction the user gains by consuming
x and h(x, p) is the amount of money the user has to pay for consuming x (e.g. h(x,p) = x - p).
That means, it is assumed that a user chooses a good so that the satisfaction gained from the good
minus the price that has to be paid for the good is maximized. Some authors term f(x, p) utility. This is,
for example, the case in Reference [48], where g(x) is termed valuation. In Reference [76], g(x) is called
gross utility and f(x, p) is termed net utility. Other works term g(x) utility and f(x, p) profit or surplus.
This is the terminology followed in the present work. Thus, in the following discussion to utility
functions, we are interested in the function g(x), which models the user satisfaction independently of
the charging prices.

The setting of charging prices is commonly done by solving an optimization problem of the
following form:

m;ax $(x,p) 2)

s.t.X = argmax f(x, p), (©)]
X

where the function ¢ models the objective of the pricing approach, like for example, the charging
provider’s profit or the peak load reduction. Constraint (3) models the user response to prices according
to Equation (1). The complete problem is a bi-level optimization. In the outer optimization the prices
are optimized. In the inner optimization the user’s decision based on the utility function and the
prices is optimized.

4.1. Utility Function in Energy

Many works employ utility functions in the amount of charged energy. It is usually assumed that
the utility function is increasing and concave (Some works assume that the utility function is strictly
increasing and/or strictly concave) [70,78,86,90,97,99]. The concavity of the function reflects the law of
diminishing marginal utility. The marginal utility refers to the increase of the utility by consuming one
more unit of a good after a certain number of units are already consumed. It is typically assumed that
the marginal utility decreases with an increasing number of already consumed units. In the context of
charged energy that means that, for example, a user gains more satisfaction from increasing the state
of charge (SoC) of the battery from 50% to 60% than from 90% to 100%. This is reflected by a concave
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utility function, as illustrated in Figure 4. The increase of energy from E; to E; results in a much higher
gain in utility than the increase from E3 to Ej4.

Ugfmmmmmmmmmmmm e e e e e e e o
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Figure 4. Illustration of diminishing marginal utility with concave utility function.

Often a quadratic function of the following form is used as utility function of a user 7 in the

amount x of charged energy:
U, (x) = —a,x% + byx, (4)

with (usually) user-specific parameters a, and b,,. The function is exemplary shown as f; in Figure
5. In Reference [90], such type of function is used to model the utility of a complete population of
users. In Reference [69], the parameter b, is assumed to be equivalent to the capacity of the EV battery
and the parameter a, is set to %, where s, is called satisfaction parameter. Other works assume slight
modifications of (4). For example, in Reference [82], it is assumed that a user n expects or desires
a certain amount £, of energy and the following utility function is used:

2 , 5
4% , otherwise ©)

—aux? +byx Lifx <%
u, (x) _ { n n > Xn
where £, = b,/ (2a,). In Reference [68], the expected amount of energy is included in the utility
function in the following way:
Un(x) = —an - (x — fn)Z (6)

with positive a,. Thus, the utility is zero for x = £, and otherwise negative. That means that
there is a negative effect on the utility not only by charging less energy than expected but also by
charging more than expected. In Reference [46], a utility function in the charging power p; (which is
of course proportional to the charged energy) for a user # in an interval ¢ is assumed, which is of the
following form:

Unt(pr) = —

ZQ;; pE+ anipr, @)
where p, ¢ is the maximum charging power. The parameter a,; is called willingness-to-charge parameter.

Not all works use a quadratic utility function in the energy (or power). Bhattacharya et al. [48]
assume an exponential utility of user n in the amount x of charged energy:
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Uy (x) =1, - (1 — e %), (8)

with parameters «, and a,. In simulation experiments, they set a, = 0.1 for all users and consider
two types of users with x, = 15 and x, = 12, respectively. The function is illustrated as f, in Figure 5.
The exponential utility function models a stronger diminishing of the marginal utility compared to the
quadratic utility function.

16 T T T T
7] A S i — 7.
12 i S ]

wob A ]

—0.006z2 + 0. 6z

4 ..................... ......... — (x
3 3 ( e—().LL)

)=
— fla)=

— f;<x)=0 32
—  fa(z)=log(1+z)+0.221z

1 1

0 10 20 30 40 50

Figure 5. Examples of a quadratic (f1), an exponential (f2), a linear (f3) and a logarithmic (f4) function.

Li et al. [74] use a linear utility function,

Uy (x) =ay - x+ by, )

with positive parameters a4, and b,. The marginal utility is not diminishing with this type of
utility function.
In Reference [78], piecewise linear utilities of the form

U, (x) = Ry - min{x, g, } (10)

are assumed, where R, is a user-specific parameter (which is equivalent to the marginal utility for
x < gy) and g, is the maximum energy demand of user #.
Gharesifard et al. [99] assume a logarithmic utility function in the SoC I € [0, 1]:

Un (1) = uy log(1+1) +uzl, (11)

with user-specific parameters u},u2 € (0,1]. As can be seen from f; in Figure 5, the effect of
diminishing marginal utility is comparatively small with this type of function.

Gerding et al. [51] assume in their experiments plug-in hybrid EVs and set the utility for a certain
amount x of charged energy to the amount/cost of fuel that is saved compared to not charging x.

In Reference [76], it is assumed that the utility U, (x) of user n is equal to the amount of money,
the user would have to pay for the amount x of energy at an outside option (e.g., charging at home).
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4.2. Further Utility Functions

There are also utility functions in parameters other than the amount of charged energy in the
literature on dynamic pricing for EV charging. An example are utility functions in the charging
deadline or charging duration. Ghosh and Aggarwal [82] assume that a user n allows a certain
maximum duration f, for charging and that the user’s utility for a duration  is

max{0, e(fn—1) — 1}

Un(t) = o 1

(12)

Thus, the utility is zero for t > £, and otherwise it is greater zero. Limmer and Rodemann [80]
assume that users can choose between charging as fast as possible or extending the charging duration
by a number k of intervals. They use a linear function of the following form for the utility of a user
nin k:

Un(k) = 6n — Bu -k, (13)

with user specific parameters J,, and ;.

In Reference [97], a utility function in the battery utilization B (in terms of the amount of energy,
which is discharged and charged in addition to the requested amount of energy) is used. It is assumed
that the utility (actually, it can be seen as disutility) of a user n in the battery utilization is linear:

U,(B) = —aB (14)

with a positive parameter «.

Kim et al. [52] assume different charging prices for different types of users and that users decide
based on the price if they charge or if they leave the charging station. They do not consider utilities for
individual users. Instead, they assume that for each user type m a representative user decides in each
interval t how many of the arriving users of type m start charging. They use the following logarithmic
utility function in the number n,, ; of users of type m, who start charging in interval #:

Um,t(nm,t) = Bt log(l + nm,t), (15)

with a parameter S, :, which depends on the user type and the interval.
Bayram et al. [93] propose the setting of different prices for a number S of locally distributed
charging sites. They assume the following utility of a user 7 in a charging site s:

Un(s) = —h(Ps) - (ps + c(dsn) + f(dsn)), (16)

where P is the blocking rate (the probability of being rejected because of congestion) of site s, / is
a function, modeling the disutility related to a high blocking rate, p; is the charging price (per session)
at site s, d, , is the distance to site s, c(ds ) is the cost for driving to the site s and f(d; ) is the
dissatisfaction due to the time that has to be spent for driving to site s.

5. User Studies

As outlined in the previous section, user preferences are usually modeled through utility functions.
A question is, how realistic such functions are. How do EV drivers respond to dynamic prices in reality
and is this adequately reflected by the utility functions used in the literature? Another question is how
external factors influence the user preferences. Such factors can be, for example, the time of day or
the location of the charging facility. Furthermore, it is not clear if a dynamic pricing scheme would be
accepted by the users at all. Unfortunately, there is a lack of user studies, which fully answer these
questions. However, there exists literature, providing helpful starting points.
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There are several studies to charging behavior without consideration of the impact of pricing.
Such studies can provide insights into the users’ flexibility that can be theoretically exploited through
dynamic pricing schemes. For example, based on data from public charging stations in the Netherlands,
Wolbertus et al. [100] investigate the impact of factors, like the start time, the day of the week or the
parking pressure, on the connection times of EVs. From the observed factors, they identify the start
time as the factor with the highest influence on the connection time. Another example is the work
of Sadeghianpourhamami et al. [101], who also analyze charging data collected in the Netherlands.
They investigate the flexibility of users in terms of charging duration and charged energy and how
much of this flexibility can be exploited for the two applications load flattening and load balancing.

There are also some studies of charging behavior, which take pricing into account. Motoaki and
Shirk [102] investigate how a flat-rate tariff ($5 per charging session) influences the charging behavior
at public fast charging stations compared to free charging. The study is based on data collected in the
U.S. in 2013. The study comes to the result that the flat-rate prices cause users to charge longer (lower
start SoC and higher end SoC) compared to free charging and that this decreases the usage efficiency
of the charging stations, since the charging power diminishes with a SoC near to the maximum.
Francfort [103] describes the effect of the introduction of a fee based on connect time at public charging
stations in the context of a field study in the U.S. It was observed that the introduction of the fee did
not reduce the number of charging sessions but did reduce the connection times. Sun et al. [104] study
the effect of dynamic electricity prices on the recharging behavior of plug-in hybrid EV drivers at
home based on data recorded in Japan. They conclude that the dynamic prices are an efficient measure
to encourage users to shift their charging times.

Most studies, which consider variable prices for charging are based on user surveys (also referred
as stated choice studies). Wen et al. [105] investigate based on a user survey, which factors, including
the charging price, influence whether users charge or not when they have the possibility to charge.
They identify three classes: Users of the first class (about 20% of the respondents) charge for higher
prices only if necessary. Users of the second class (about 60% of the respondents) are also price
sensitive, but consider additional factors like the charging speed in their decisions. The third class is
not price sensitive and charges in nearly all situations. Parsons et al. [106] investigate user preferences
regarding V2G contracts and the willingness to purchase EVs with V2G functionality. They assume
contracts, which incentivize users of EVs for providing V2G services. The contracts require users
to keep their EVs plugged in for a certain minimum number of hours per day. Furthermore, the
contracts guarantee that the charging state of the EVs always allows a certain minimum driving range.
With the help of a user survey, it is investigated, which monetary incentives are required in order
to make such contracts attractive for users. The authors conclude that high incentives are required,
because users perceive high inconvenience related to V2G contract requirements. They suggest to allow
provisioning of V2G services on a pay-as-you-go basis in order to reduce inconvenience. Wolbertus
and Gerzon [107] investigate via a user survey whether public charging stations can be operated
more efficiently if drivers have to pay a fee for occupying the charging stations after the EV is fully
charged. They conclude that most respondents of the survey would react to such a fee and would
move their vehicle after charging but that respondents who experience a high parking pressure at
home are less likely to react. A further study based on a user survey is described by Jabeen et al. [108].
They investigate user preferences regarding charging at home, at work and in public with consideration
of prices. They conclude that users are in general very sensitive to the charging price. Daina et al. [109]
investigate in a stated choice experiment charging behavior with considering not only flexibility in
the charging patterns, but also in the driving patterns. Respondents are presented with a planned
tour (consisting of trips and activities) and are asked to choose from different alternatives for charging
(different energy amounts, charging durations and prices) before the tour and from alternatives for
adapting the schedule of the tour. An interesting result is that many users prefer longer charging
durations as long as the planned tour has not to be delayed. Furthermore, they conclude that there is
a large heterogeneity in user preferences. They state that this can be exploited by charging providers,
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who can “extract flexibility from those [drivers] more inclined to longer effective charging times without
incentives” .

Besides the actual pricing scheme, the interface to the user can be expected to have a critical
impact on the efficiency of dynamic pricing. Stein et al. [110] investigate the influence of the complexity
of a user interface for auction-based dynamic pricing for EV charging on the behavior of users. For this
purpose, they developed an online game where users make virtual bids for charged energy. They come
to the conclusion that compared to a complex interface, which allows users to select all possible options,
a simpler interface with a restricted set of options, enables users to not only make decisions faster but
also to make better decisions.

6. Summary and Discussion

Dynamic pricing for EV charging is of increasing interest, since it can help to solve issues related
to grid integration of EVs and to the profitable operation of public EV charging stations. There are
a growing number of publications, proposing different approaches to dynamic pricing for EV charging,
which address different flexibilities of users.

One of these flexibilities is the flexibility in the charging schedule. This can be utilized for
distributed scheduling/control with the help of dynamic pricing. A drawback of many of the proposed
approaches to distributed scheduling via dynamic pricing is that they require non-trivial optimizations
on the user side. Some of the approaches require even multiple iterations of optimization. Hence,
an additional logic is required on the user side in order to realize these approaches. For charging
at home, distributed control via dynamic price signals can be a next step beyond time-of-use tariffs.
For public charging and charging at work, distributed control might be of less interest, since here the
control can be usually realized in a centralized (or hierarchical) way.

The flexibility in the battery utilization is another flexibility, which can be addressed by dynamic
pricing schemes. Animating users to allow the use of their EV batteries for the provisioning of V2G
services can be very beneficial for grid operators as well as for charging station operators or aggregators.
This especially applies for charging at home, where EVs are usually plugged in longer than at public
charging stations, which makes the reliable provisioning of grid services easier. However, an issue is
that it is generally hard to determine or to estimate how much the battery is damaged with a certain
dis-/charging pattern. This makes it hard for the user to decide whether the provisioning of battery
capacity for V2G services is profitable or not.

The flexibility in the charging location can be exploited via dynamic pricing in order to balance
the number of users or the electrical load over multiple charging sites. This especially applies for
public charging, where in contrast to home charging, users potentially have a wide choice of charging
locations. Operators or aggregators of multiple charging sites might be interested in regulating the
customer demand over their different sites. However, grid operators might be even more interested in
balancing charging loads over multiple areas, for example, to avoid transformer overloads. Influencing
where users charge their EVs can be also useful for applications like traffic regulation.

Further flexibilities, which can be addressed by dynamic pricing schemes are the flexibilities in the
amount of charged energy and in the charging duration. In the literature, price-profile-based as well as
session-based pricing schemes can be found, which address these flexibilities. Session-based pricing
schemes, where users get price offers for the complete charging session, have the advantage that they
require only little planning effort from the users. It can be expected that users generally have a certain
flexibility in the amount of energy. However, especially for public charging, the users’ flexibility in the
charging duration can be assumed to be very limited. In this case, a high incentive might be required
to encourage users to change their departure times. However, even if it is not possible to get users to
change their departure times, it may be worthwhile to encourage them to indicate their true departure
times. The EVs are often plugged in longer than required for the charging [101]. A dynamic pricing
scheme can help to unlock this flexibility. In the author’s opinion, the flexibilities in the energy amount
and in the charging duration are the most promising ones for increasing the profit of operators of public
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charging stations. However, distribution system operators can take advantage of these flexibilities as
well and the corresponding pricing approaches can be also applied for home charging.

Many of the dynamic pricing approaches discussed in the present paper are offline approaches,
which assume perfect knowledge of charging demands during the planning horizon. This makes
them of questionable practical use. There is only little work on evaluating such approaches in a more
practical setting based on forecasts of charging demands. Analogously, several approaches assume that
the preferences or utilities of users are known. For a practical realization, dynamic pricing approaches
have to be robust regarding uncertainties in future charging patterns and the users’ preferences or
have to be able to explicitly deal with such uncertainties.

An open issue is the lack of user studies—especially of studies based on real-world data. Although
existing studies to charging behavior can gain certain insights, it is not fully clear, how EV drivers
would respond to dynamic prices. For example, how much discount does a user expect for charging
10 kWh less or for allowing 15 min more time for charging, than initially intended. Furthermore, it is
not clear if a dynamic pricing scheme would be accepted by the users at all. A dynamic pricing scheme,
especially with personalized prices, might be perceived as unfair. Additionally, users might be not
willing or able to make decisions based on the charging price.

Another aspect, which requires more research is the question, how dynamic pricing for EV
charging can be technologically realized. An adequate infrastructure for monitoring and metering,
for data storage and processing and for the communication between stakeholders like EV drivers,
charging providers and distribution system operators, is required. Cloud-based EV charging
management systems as proposed by Mierau et al. [111] and Saqib et al. [112] can represent a scalable
solution. Data privacy is playing an increasingly important role. Techniques like secure multi-party
computation [113,114] can help to protect the data of EV drivers. Another topic of current research
is the application of blockchain technology for the billing of EV charging [115,116]. Furthermore,
the development of adequate user interfaces might be crucial for the user acceptance.

Besides technical issues and the uncertainty of how users react to dynamic pricing, the adoption
of dynamic pricing for EV charging might be hindered by legal issues. For example, in several U.S.
states, billing per energy unit is not allowed for public EV charging [117], which makes a number of
the described dynamic pricing approaches impracticable. The elimination of legal barriers and the
introduction of adequate policies could promote the application of dynamic pricing techniques for EV
charging [9,118].
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