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Abstract: Due to its variability, solar power generation poses challenges to grid energy management.
In order to ensure an economic operation of a national grid, including its stability, it is important
to have accurate forecasts of solar power. The current paper discusses probabilistic forecasting of
twenty-four hours ahead of global horizontal irradiance (GHI) using data from the Tellerie radiometric
station in South Africa for the period August 2009 to April 2010. Variables are selected using a least
absolute shrinkage and selection operator (Lasso) via hierarchical interactions and the parameters
of the developed models are estimated using the Barrodale and Roberts’s algorithm. Two forecast
combination methods are used in this study. The first is a convex forecast combination algorithm
where the average loss suffered by the models is based on the pinball loss function. A second forecast
combination method, which is quantile regression averaging (QRA), is also used. The best set of
forecasts is selected based on the prediction interval coverage probability (PICP), prediction interval
normalised average width (PINAW) and prediction interval normalised average deviation (PINAD).
The results demonstrate that QRA gives more robust prediction intervals than the other models.
A comparative analysis is done with two machine learning methods—stochastic gradient boosting
and support vector regression—which are used as benchmark models. Empirical results show that
the QRA model yields the most accurate forecasts compared to the machine learning methods based
on the probabilistic error measures. Results on combining prediction interval limits show that the
PMis the best prediction limits combination method as it gives a hit rate of 0.955 which is very close
to the target of 0.95. This modelling approach is expected to help in optimising the integration of
solar power in the national grid.

Keywords: forecast combination; lasso via hierarchical interaction; partially linear additive models;
probabilistic solar irradiance forecasting

1. Introduction

1.1. Background

In this paper, the focus is on probabilistic solar irradiance modelling and forecasting.
Probabilistic forecasts take probability distributions of future events into account. They are preferred
over deterministic forecasting because they take into account the uncertainties in the predicted values
which help in taking effective decisions. Therefore, it is believed that probabilistic forecasting can
become a power trend in solar irradiance forecasting [1]. Providing the full predictive density or
providing prediction intervals of the forecasts help decision makers in power utility companies in
assessing future uncertainty of the power supply [2,3].
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Renewable energy sources are preferable over fossil fuels since the latter produce climate-changing
carbon emissions. Renewable energies, such as solar, are getting cheaper over the long term because
the sun’s energy is free. This appeals to every profit-making business, more especially as the cost of
electricity in South Africa (SA) continues to rise [4]. It is therefore important to develop modelling
frameworks which can be used in any prediction conditions as proposed by Reference [5].

Antonanzas et al. [6] argue that solar irradiance forecasting is important for the integration of
photovoltaic (PV) plants in an electrical grid. Accurate solar irradiance forecasting helps the grid
operators to optimize their electricity production and to reduce additional costs by preparing an
appropriate strategy [6]. Utility companies and transmission system operators have to deal with the
fluctuating input from PV system energy sources. Efficient use of the fluctuating energy output of PV
system requires reliable forecast information [6].

Solar irradiance forecasts are typically derived from numerical weather prediction (NWP) models
but statistical and machine learning techniques are increasingly being used together with the NWP
models to produce more accurate forecasts since NWP forecasts are available at a few distinct spatial
points only [7]. SA currently benefits from clean electricity produced by renewable energy technologies
such as solar and wind. Such technologies have their own advantages and can be implemented
depending on local conditions. For instance, the coastal areas are windy, implying suitability for wind
energy. In urban areas solar is a better option than wind because the turbines are noisy. Also compared
to wind farms, solar does not require much space [4]. The data used in this study is from Tellerie
radiometric station, which is one of Eskom’s radiometric stations. Eskom is SA’s electricity public
utility established by the government of SA as the Electricity Supply Commission (ESC) in 1923.

1.2. An Overview of the Literature on Solar Irradiance Forecasting

The integration of solar energy generation requires accurate forecasting. Cloud movement,
cloud formation and cloud dissipation are the main causes of solar irradiance variations. The effect of
clouds on solar irradiance depends on the cloud’s height and thickness. Thick clouds absorb radiation
but they can also scatter radiation from their sides so that some extra radiation gets to the radiometers.
Thin clouds scatter the radiation so that much of it becomes diffuse rather than direct radiation.

Researchers have developed different methods for solar irradiance forecasting, such as statistical
approaches using historical data, use of numerical weather prediction (NWP) models, tracking cloud
movements from satellite images and tracking cloud movements from direct ground observations using
sky cameras [8]. Some reviews on renewable energy forecasting models are given in References [6–11]
among others. Some notable methods are discussed in the following paragraphs.

Huang and Perry [12] use a non-parametric approach to develop a probabilistic solar irradiance
forecasting model. The authors use the proposed approach to calculate the prediction intervals
using a k-nearest neighbour’s regression model. They use the historical data from the ECMWF
numerical weather prediction model containing the actual solar irradiance and twelve independent
variables. The developed model proves to be successful in producing accurate forecasts of solar
irradiance output together with realistic prediction intervals. Grantham et al., 2016 [13] propose a
new method for constructing a full predictive density of solar irradiance based on a non-parametric
bootstrap. The bootstrap method is a general tool to assess statistical accuracy. The authors demonstrate
probabilistic forecasting of solar irradiance on an hourly basis. The results indicate that the new
approach is computationally inexpensive and easily tractable and also delivers sharp and calibrated
ensembles of one-hour ahead forecasts. The authors further suggest that for future improvements
the non-parametric bootstrap approach should be extended to a case of autoregressive conditionally,
heteroscedastic models for tracking non-linear dynamics in solar irradiance using sieve and other
types of approximations as well as to a more general case of joint multivariate wind and solar
probabilistic forecasting.

Using the application of an analogue ensemble (AnEn) method, Reference [14] generate
probabilistic solar irradiance forecasts (PSIF). The authors based the method on a historical set of
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deterministic NWP model forecasts and observations of the solar irradiance. They compare the AnEn
performance for PSIF with the quantile regression (QR) technique and a persistence ensemble (PeEn)
over three solar farms in Italy. One of the advantages of these methods (the AnEn, QR and PeEn) is
that they do not require an irradiance-to-power conversion function. The results indicate that AnEn
gives the best level of statistical consistency compared to QR and PeEn. The authors suggest that the
tests they carried out could be expanded to other locations spanning a wider range of climatological
conditions in future.

Juban et al. [15] propose a generic framework for probabilistic energy forecasting based on
multiple quantile regression and also discuss the application of the method to several tracks in the 2014
Global Energy Forecasting Competition (GEFCom2014). The authors use the approach to predict a full
distribution over possible future energy outcomes. As a result, the method is ranked on the top five for
the three of the four tasks (solar, wind and price) and is ranked the seventh in the load forecasting task.

Yang et al. [16] propose the use of Lasso to perform a sub-5-minute irradiance forecasting. This is
used to automatically shrink and select the most appropriate covariates. It is found that the proposed
model outperforms univariate time series models and ordinary ridge regression significantly and that
it has a good performance when the training data are few and predictors are many. In the present paper
Lasso via hierarchical interactions will be used to select the appropriate variables. Lasso via hierarchical
interactions is based on a strong hierarchy constraint [17,18]. The strong hierarchy constraint is one in
which if variables are included in the interactions, then the cross-effects will also be included in the
main effects [17,18].

Hu et al. [19] propose a Bayesian quantile regression method for partially linear additive models.
The authors use the simulation studies to illustrate the algorithm. They further illustrate the proposed
approach using two real data sets. The simulation results show that the methods perform well even
though the errors are not generated based on their assumed generating mechanism.

Using the K-nearest neighbour (KNN) and support vector machines (SVM), the authors of
Reference [20] discuss the impact of weather classification on solar irradiance data. Results from this
study reveal that SVM produce good results for small samples, while KNN produces more accurate
results for sufficiently large samples. In another study, the authors of Reference [21] propose the use of
machine and deep learning algorithms for day-ahead forecasting of solar irradiance. The proposed
methods are convolutional neural network, deep learning model based on wavelet decomposition
and long short-term memory model. The proposed methodology produce more accurate forecasts
compared to the traditional and single deep learning benchmark models.

1.3. Highlights of The Study

The following is a summary of the highlights of this study. This study has established that the use
of a non-linear trend variable improves forecast accuracy. Partially linear additive quantile regression
(PLAQR) model with pair-wise hierarchical interactions has been found to be an appropriate model
for forecasting hourly solar irradiance and use of quantile regression averaging (QRA) significantly
improves forecast accuracy. The results demonstrate that QRA gives more robust prediction intervals
than the other models. Results on combining prediction interval limits show that the Probability
averaging of endpoints and simple averaging of Midpoints (PM) is the best prediction limits
combination method as it gives a hit rate which is very close to the target of 0.95.

The rest of the paper is organized as follows: Section 2 presents the models. The empirical results
are presented in Section 3. Section 4 concludes.

2. Models

This section discusses the general theory of the partially linear additive quantile regression models.
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2.1. Additive Quantile Regression Models

2.1.1. Partially Linear Additive Models

One of the strategies for dimension reduction in multivariate non-parametric models involves
additive models of the form ([22]):

Y = β0 +
p

∑
j=1

gj(XT β j) + εt, (1)

where Y is the response variable (global horizontal irradiance (GHI)), X are the independent variables,
β0 is the intercept, β j are parameters, gj is an unknown function and εt denotes the error term.
A partially linear additive model (PLAM) with a non-parametric component and an additive linear
parametric component are regarded as the most important special examples of the additive models [22].

A generalised additive model (GAM) which was first introduced by Reference [23] follows
from the additive models. It additionally has the relation to a generalised linear model (GLM)
where the linear predictors include a sum of smooth functions of the independent variables and a
consistent parametric component of the linear prediction. Hence GAM incorporates both parametric
and non-parametric model components and the model indicates the dependence of the response on
the independent variable in a flexible way, not relying upon the assumption that all relations can be
modelled as linear.

On the other hand quantile regression (QR) is a statistical technique that allows the estimation
of the conditional quantile function. It is also used to obtain statistical inference about the quantiles
in the same way as classical regression methods based on minimizing sum of squares of residuals
that facilitate estimation of conditional mean functions [24]. The QR model was first introduced by
Reference [25] as an extension of median regression (the `1 estimator). The `1 estimator is analogous to
ordinary least squares regression (OLSR) which is mostly used to establish a relationship between a
response (dependent) variable and one or more independent variables [26].

2.1.2. Partially Linear Additive Quantile Regression Models

A partially linear additive quantile regression model (PLAQR) is a combination of GAM and
QR models. The PLAQR model is more flexible than stringent linear models since they have both
linear and non-linear additive components and they are also more parsimonious than the general
non-parametric regression models [27]. A PLAQR model can be written as [27].

yt,τ = β0,τ +
s

∑
j=1

β j,τxj +
r

∑
j=1

sj,τ(zj) + εt,τ , t = 1, ..., n, τε(0, 1), (2)

where yt,τ is the response variable (GHI) at time t at the τth quantile, xj denotes the linear variables,
β0,τ is the intercept, sj,τ are smooth functions, zj are non-linear variables, β j,τ are parameters and εt,τ

are random errors. The total number of parameters will be k = s + r + 1. Equation (2) can be written
in a vector form as given in Equation (3).

Y = sτ(X) + ZT βτ + ε. (3)

This results in the minimisation of the function Q(βτ , sτ(x)) given in Equation (4) ([27]).

Q(βτ , sτ(x)) =
n

∑
j=1

ρτ(Yj − ZT
j β− s(X)) +

n

∑
j=1

λj

∫
(s′′(t))2dt (4)

where ρτ(.) is the quantile (pinball) loss function and λj denotes the non-negative Lasso smoothing
parameter. The minimisation results in the estimators of Equation (3). The non-linear relationships in
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the PLAQR models are modelled through the use of B-splines. B-splines are known to be very stable
and flexible basis for large scale spline interpolation [28].

2.2. Variable and Model Selection

Variable selection is necessary because most models do not deal well with a large number
of irrelevant variables. With such large number of variables, there might exist problems among
explanatory variables, in particular there could be a problem with multicollinearity. Also with a large
number of variables there is often a desire to select a smaller subset that not only fits as well as the
full set of variables but also contains the more important variables. This helps to reduce both the
dimension of the problem and over-fitting.

2.2.1. Lasso via Hierarchical Pairwise Interactions

In this study variables will be selected using shrinkage methods. A shrinkage method is a general
procedure that is used in improving a least squares estimator which comprises in reducing the variance
by adding constraints on the value of the coefficients [17]. There are three types of shrinkage methods,
namely: ridge regression, Lasso and elastic net. In this study the focus is on the use of Lasso in variable
selection. Lasso is a useful variable selection method, especially when dealing with highly correlated
predictors and it allows for automatic variable selection [17].

Interactions are an important part of the regression model in such a way that adding them to a
regression model can greatly expand the understanding of the relationship among the variables.
Since there are (p

k) interactions of order k, fitting regression models with interactions is quite
challenging. This study focuses on pairwise (k = 2) interaction models [17]. Considering a regression
model with pairwise interactions between the predictors x1, ..., xP (i.e., total column liquid water of
cloud, surface pressure, etc.) for an outcome variable Y (i.e., hourly global horizontal irradiance (GHI)).
In particular the pairwise interaction model will have the form [17]:

yt,τ = β0,τ + ∑
j

β j,τxj +
1
2 ∑

j 6=k
Θjk,τxjxk + εt,τ , (5)

where yt,τ is the response variable at time t at the τth quantile, xj and xk are predictor variables, β0,τ is
the intercept and εt,τ is the error term, β0,τ is the intercept, β j,τ , Θjk,τ , are the parameters, respectively.
The second term after the intercept β0,τ is referred to as the main effects and the third as the interaction
terms. The factor of half before the interaction summation is a consequence of notational decision
to deal with a symmetric matrix Θ of interactions rather than a vector of length p(p − 1)/2 [17].
When fitting model Equation (5) the interactions are allowed into the model only if at least one of the
corresponding main effects is in the model. There are two types of hierarchical restrictions, namely:
strong hierarchy (In strong hierarchy, an interaction model is said to obey a strong hierarchy if and
only if both its main effects are present) and weak hierarchy (A weak hierarchy is said to be obeyed
only if one of its main effects is present) [17]. In this study we will use the strong hierarchy constraint.
Therefore the PLAQR model with hierarchical pairwise interactions can be written as:

yt,τ = β0 +
p

∑
j=1

β j,τxj +
q

∑
j=1

sj,τ(zj) + ∑
j 6=i

1
2
(γji,τxjxi) + ∑

j 6=i

1
2
(σji,τxjzi) + ∑

j 6=r

1
2
(φjr,τzjzr) + εt,τ (6)

and the error terms, εt,τ may be autocorrelated, that is, they follow a SARIMA(p,d,q) × (P,D,Q)s model
given in Equation (7).

φ(L)Φ(Ls)∇d∇D
s εt,τ = θ(L)Θ(Ls)at, (7)

where s is the seasonal length, L is a lag operator, φ(L) is the non-seasonal autoregressive (AR) operator,
Φ(Ls) is the seasonal AR operator, θ(L) is the non-seasonal moving average (MA) operator, Θ(Ls) is
the seasonal MA operator. The operators ∇d and ∇D

s are the non-seasonal and seasonal difference
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operators of order d and D, respectively, with at denoting a white noise process. This modelling
approach is used to reduce the autocorrelation in the residuals. Similar studies are discussed in
literature, see for example, References [29] and [30], among others. Now let

g(x, z) =
p

∑
j=1

β j,τxj +
q

∑
j=1

sj,τ(zj) + ∑
j 6=i

1
2
(γji,τxjxi) + ∑

j 6=i

1
2
(σji,τxjzi) + ∑

j 6=r

1
2
(φjr,τzjzr), (8)

then
yt,τ = β0 + g(x, z) + εt,τ (9)

implies
εt,τ = yt,τ − β0 − g(x, z). (10)

Now substituting in Equation (7) results in Equation (11)

φ(L)Φ(Ls)∇d∇D
s [yt,τ − β0 − g(x, z)] = θ(L)Θ(Ls)at. (11)

The best model is selected based on the Akaike information criterion (AIC), corrected AIC (AICc),
Bayesian information criterion (BIC), cross validation (CV) and adjusted R squared (AdjR2).

2.2.2. Residual Analysis

After fitting a model, it is important to determine whether all the necessary assumptions of the
residuals are valid before performing inference because if there are any violations, the subsequent
inferential procedures may be invalid resulting in faulty conclusions. One of the tests will be to check
whether or not the residuals are autocorrelated. The residuals, εt,τ are defined as the difference between
the actual and the fitted values and are expressed as shown in Equation (12).

εt,τ = yt,τ − ŷt,τ , t = 1, ..., n, (12)

where yt,τ are the actual values of a response variable and ŷt,τ are the estimated values of a response
variable [17].

When fitting a model the autocorrelation of the residuals also has to be considered and accounted
for. When the original data is highly autocorrelated, the residuals have a high risk of being
autocorrelated. Thus, autocorrelation has to be dealt with, however this can be done by adding
more parameters in the fit. Reducing all autocorrelation by adding more parameters is quite hard.
Therefore a SARIMA model can be added to the model. A formal test for autocorrelation can be
summarized as follows [29,30]:

• Estimate the parameters;
• Check if the response variables and predictors are stationary using the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) unit root test;
• If not apply differencing until all variables become stationary;
• Extract residuals and use the Ljung Box-test to test for autocorrelation and if still autocorrelated,

identify an appropriate SARIMA model by repeating the process until the desired results are
achieved. The residuals are also tested for normality using the Shapiro-Wilk test.

2.3. Forecast Combination

Combining forecasts was first introduced by Reference [31]. It is particularly useful when one is
uncertain about a situation, uncertain about which method is most accurate and when one wants to
avoid large errors. It improves the forecast accuracy to the extent that the component contains useful
and independent information.
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2.3.1. Convex Combination

The loss functions play important roles in forecast combination in two ways. The first one is that
they may serve as a key ingredient in combination formulas and the second one is that they are used
to define performance evaluation criteria. In the first direction the use of loss functions is found in
many popular combination schemes such as regression based combination and many adaptive forecast
combination methods. Let yt,τ be hourly GHI and let there be K methods used to predict the next m
observations of yt,τ , that is, m is the total number of forecasts. The combined forecasts, zt,τ are then
given by Equation (13) [32,33]:

zt,τ =
K

∑
k=1

wt,k,τ ŷt,k,τ + εt,τ , τ ∈ (0, 1), t = 1, ..., m, (13)

where wt,k,τ is the weight assigned to the forecast ŷt,k,τ and εt,τ denotes the error term.

2.3.2. Quantile Regression Averaging

Quantile regression averaging (QRA) was first introduced by Reference [34] as a new approach to
compute the prediction intervals. It can be viewed as an extension of combining forecasts. It involves
applying QR to the forecasts of a small number of individual forecasting models. This approach
treats the individual forecasts as the independent variables and the corresponding observation as the
dependent variable (GHI). Let yt,τ be hourly GHI as discussed in Section 2.1, then combined forecasts
will be given by Equation (14).

ŷQRA
t,τ = ω0,τ +

K

∑
k=1

ωk,τ ŷt,k,τ + εt,τ , τ ∈ (0, 1), t = 1, ..., m, (14)

where ŷt,k,τ represents forecasts from method k, ŷQRA
t,τ is the combined forecasts and εt,τ is the error term.

2.4. Error Measures for Probabilistic Forecasting and Evaluation of Methods

In order to compare the probabilistic forecasts from the different models, scoring rules will be
used. A penalty score denoted by S(y, F) is assigned by a scoring rule to the probabilistic forecast,
where y is the observation used in evaluating the forecast and F denotes the forecast distribution [35].
In this paper we use three error measures, that is the continuous rank probability score (CRPS),
Dawid-Sebastiani score (DSS) and the pinball loss function (PLF).

2.4.1. Continuous Rank Probability Score

The CRPS measures the distance between the predicted and the observed cumulative density
functions (CDFs) of scalar variables [35]. The CRPS is given as:

CRPS(y, F) =
∫ 1

0
QSτ

(
F−1(τ), y

)
dτ, (15)

where F is the forecast distribution and QSτ is the quantile score given as:

QSτ

(
F−1(τ), y

)
= 2

(
I
[
y ≤ F−1(τ)

]
− τ

) (
F−1(τ)− y

)
, (16)

where I is an indicator function.
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2.4.2. Dawid-Sebastiani Score

For complex forecast distributions, the CRPS is normally difficult to compute [36]. An alternative
to the CRPS is the DSS which is relatively easier to compute. The DSS is given in Equation (17) [36].

DSS(y, F) =
(y− µF)

2

(σ2
F)

+ 2log(σF), (17)

where F is the forecast distribution, with µF and σF representing the mean and standard
deviation, respectively.

2.4.3. Pinball Loss Function

The pinball loss function is relatively easy to use and is given as:

L(qτ , yt) =

{
τ(yt − qτ), if yt > qτ ,

(1− τ)(qτ − yt), if yt ≤ qτ ,
(18)

where qτ is the quantile forecast and yt is the observed value of GHI.

2.5. Prediction Intervals

Providing prediction intervals of the future forecasts helps decision makers in power utility
companies in assessing future uncertainty of the power supply [2,3]. We discuss briefly in the following
sections, prediction interval widths and performance of estimated prediction intervals.

2.5.1. Prediction Intervals Widths

Prediction interval width (PIW) is the difference of the estimated upper and lower limit values.
Generally it is given by the following Equation (19) [37]:

PIWt = Ut − Lt t = 1, ..., h, (19)

where Ut and Lt is the upper and lower limit. The PI normalised Average Width (PINAW) and PI
Coverage Probability (PICP), respectively are used to evaluate the performance of prediction intervals
(PIs). The PINAW describes the width of the PIs and the PICP evaluate the reliability of the PIs and are
given by Equations (20) and (21), respectively [37]:

PINAW =
1
h

h

∑
t=1

PIWt

ymax − ymin
, (20)

PICP =
1
h

h

∑
t=1

It It =

{
1 if ytε(Lt, Ut)

0 otherwise
, (21)

where ymin and ymax represent the minimum and the maximum values of PIW respectively. For the
PIs to be valid, the PICP value has to be greater than or equal to the predetermined confidence level.
The deviation degree from the actual value to the PIs is described by the PI normalised Average
Deviation (PINAD). The PINAD is defined as [37]:

PINAD =
1
h

h

∑
t=1

dt

ymax − ymin
dt =


Lt − yt if yt < Lt

0 if Lt ≤ yt ≤ Ut

yt −Ut if yt > Ut

. (22)
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2.5.2. Performance of Estimated Prediction Intervals

Research has shown that combining point forecasts can improve the accuracy of the
forecasts ([31,32]). This is then extended to combining prediction limits of the combined forecasts.
In this section we present prediction interval combinations from the models M6, M7 and M8 and
compare the combined intervals from the intervals of the individual models.

Let [Lk, Uk], k = 1, ..., K be the 100(1− α)% prediction intervals given by K forecasting methods
(the K methods discussed in Section 2.3.1). Let [LC, UC] denote the 100(1− α)% combined prediction
intervals using the interval combining method C [3]. In this paper we are going to use the simple
average (Av), median (Md) and the probability averaging of endpoints and simple averaging midpoints
(PM) as discussed in Reference [3].

Simple Average

This method takes the simple arithmetic means of the prediction limits given as LAv = 1
K ∑K

k=1 Lk
and UAv = 1

K ∑K
k=1 Uk. This approach is fairly simple and is known to produce intervals which are

robust [3].

Median Method

The median method is also fairly easy to use and is not sensitive to outliers. It is given as [3]:
LMd = median(L1, ..., LK) and UMd = median(U1, ..., UK).

Probability Averaging of Endpoints and Simple Averaging of Midpoints

The probability averaging of endpoints and simple averaging of midpoints (PM) combines simple
averaging with probability averaging [3]. It is assumed that the prediction limit points are from
a symmetric distribution (normal distribution). This results in finding the centre of the combined
interval limits as C = 1

2K ∑K
k=1(Lk +Uk) =

1
2 (L̄+ Ū). The lower (LPM) and upper (UPM) limits are then

chosen such that 1
K ∑K

k=1 Fk(LPM) = α
2 and 1

K ∑K
k=1 Fk(UPM) = 1− α

2 with Fk denoting the distribution
function of a normal distribution [3].

2.6. Benchmark Models

2.6.1. Stochastic Gradient Boosting

Gradient boosting (GB) is a machine learning technique which fits an additive model in a
stage-wise way. The additive model can take the form given in Equation (23) [38].

f (x) =
M

∑
m=1

βmb(x; γm), (23)

where b(x; γm) ∈ R are functions of x which are characterised by the expansion parameters γm, βm.
The parameters βm and γm are fitted in a stage-wise way, a process which slows down over-fitting [38].
Stochastic gradient boosting (SGB) is a modification of GB in which a random sample of the training
data set is taken without replacement. A more detailed discussion of this is found in Reference [39].

2.6.2. Support Vector Regression

Support vector regression (SVR) is based on support vector machines (SVM) and uses different
kernel functions which map low dimensional data to high dimensional space. Introduced by
Reference [40], SVR seeks to estimate a regression function of the form given in Equation (24).

f (x) = xTw + b, (24)



Energies 2019, 12, 3569 10 of 28

where b is a scalar and ω is a vector of weights. Equation (24) can be reformulated as a
quadratic programming problem (QPP) by introducing an ε-insensitive loss function as given in
Equation (25) [40].

min
(ω,b,ξ1,ξ2)

1
2

ωTω + C(eTξ1 + eTξ2)

s.t. yi − xT
i ω− b ≤ ε + ξ1

xT
i ω + b− yi ≤ ε + ξ2

and ξ1i, ξ2i ≥ 0, i = 1, ..., m, (25)

where C > 0, ε > 0 are input parameters, ξ1 = (ξ11, ..., ξ1m)
T and ξ2 = (ξ21, ..., ξ2m) are slack variables.

The QPP in Equation (24) can be reformulated using Lagrange multipliers. Only the non-zero Lagrange
multipliers are important in the prediction of the regression function. A kernel function, k(., .) is used
in cases where there are non-linear regressors. When a non-linear regressor is used, the regression
function in Equation (24) is then written as:

f (x) =
m

∑
i=1

(λ1i − λ2i)k(x, xi) + b, (26)

where λ1i and λ2i are Lagrange multipliers. The Lagrange formulation of the non-linear case is
given as:

min
(λ1,λ2)

1
2

m

∑
i,j=1

(λ1i − λ2i)
Tk(xi, xj)(λ1i − λ2i) + ε

m

∑
i=1

(λ1i − λ2i)−
m

∑
i=1

yi(λ1i − λ2i)

s.t.
m

∑
i=1

(λ1i − λ2i) = 0

and λ1 ≥ 0, λ2 ≤ Ce. (27)

3. Empirical Results and Discussion

3.1. Data Source

The data used in this study is hourly averaged GHI (average W/m2) measured by Eskom
(www.eskom.co.za), at site Tellerie in Northern Cape, South Africa for the period August 2009 to
April 2010 giving a sample size of n = 5698 observations. The target variable is the GHI (average
W/m2). The covariates used in this study are (these were the only available covariates on the Eskom
website): Relative humidity (RH_Avg), Rain fall (RN), Wind speed (WS_ms_S_WVT), Air temperature
(AirTC_Avg), Barometric pressure (BP_mbar_Avg) and Wind direction (WindDir_D1_WVT).

In addition to the covariates given above, a factor variable (Hour (Hr)), Hour = 1, Hour = 2, ...,
Hour = 24; a non-linear trend (noltrend) and lagged GHI (Lag1 and Lag2) variables are added in order
to model the trend in the time series data and also to help in reducing the autocorrelation, respectively.
A non-linear trend is obtained by fitting a penalised cubic smoothing spline to the response variable
(GHI). The penalised cubic smoothing spline function is given by Equation (28):

Π(t) =
n

∑
t=1

(yt − f (t))2 + λ
∫

f ′′(t)2d(t), (28)

where λ is the smoothing parameter which is selected based on the generalised cross validation
(GCV) criterion. Lag1 and Lag2 represent the lagged GHI of the first and second previous hours,
therefore taking the lags reduced the sample size from 5700 to 5698.

The wind speed and wind direction are both measured at 9m levels. All the variables provided
have an impact on the solar irradiance generated. There are many predictors of solar irradiance that

www.eskom.co.za


Energies 2019, 12, 3569 11 of 28

are left out in this study such as surface pressure, total cloud cover, total precipitation and so forth.
These variables were not available on the Eskom website. The exact location of Tellerie radiometric
station is:

• Latitude: 27◦22.505′ S
• Longitude: 21◦17.799′ E

The map of South Africa showing the location of the Eskom solar measuring station Tellerie
located in Northern Cape is presented in Figure 1.

 

 

TELLERIE 

 

Figure 1. Map of South Africa showing the location of the Eskom solar measuring station Tellerie
located in Northern Cape [41].

The data for the period 28 August 2009 (00:00 hour) to 8 April 2010 (10:00 hour) is used for training
(n1 = 5362 observations), while the remaining data that is, 9 April 2010 (11:00 hrs) to 22 April 2010
(09:00 hrs) (n2 = 336 observations) are used for testing. The training and testing data sets are used for
all the models developed in this study.

3.2. Exploratory Data Analysis

It is considered important to first do an exploratory data analysis of the historical data before
setting up the forecasting models. The time series, density, box and normal Q-Q plots for the dependent
variable (GHI (average W/m2)) are given in Figure 2 in the panels (a), (b), (c), (d), respectively.
Plot (a) in Figure 2 displays GHI (average W/m2) in South Africa measured hourly from 2009–2010.
It indicates that there is an upward trend from observation 1–3000, followed by a downward trend
from observation 3000–5700. The density plot shown in panel (b) of Figure 2 the distribution of GHI
is skewed to the right suggesting that it is not normally distributed. Plot (c) shows a non-linear
relationship between the theoretical and sample quantiles of GHI suggesting that GHI data are not
normally distributed as is also confirmed by the boxplot in panel (d).
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(a) Plot of GHI
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Figure 2. Panel (a): Plot of global horizontal irradiance (GHI) (W/m2). Panel (b): Density plot of GHI.
Panel (c): Normal Q-Q plot of GHI. Panel (d): Box plot of GHI.

Summary statistics of GHI showing a minimum GHI of 0 (average W/m2) and maximum GHI
of 1235 (average W/m2) is given in Table 1. The skewness coefficient presented in Table 1 indicates
that the distribution of GHI is skewed to the right. The mean and the median are not equal and
the Jarque-Bera statistic is 854.21 with a p-value of 0.000 which confirms that the distribution is not
normally distributed.

Table 1. Summary statistics of the GHI (average W/m2).

Min 1st Qu Median Mean 3rd Qu Max Skewness Kurtosis Jarque-Bera

0.000 0.64 34.84 305.91 635.20 1235.00 0.86 −0.79 854.21 (0.000)

3.3. Forecasting Results

3.3.1. Variable Selection Using Lasso Via Hierarchical Interactions

Variable selection using Lasso via hierarchical interactions is carried out and a summary of the
results are presented in Table 2.

The first column indicates the main effect, next columns indicate the non-zero interactions of the
row predictor and the last column indicates whether hierarchy constraint is tight or not, 0 indicate
that there is no interactions between the variables. The variables with interactions are RN and Lag2,
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WS and BP, WindDir and BP, WindDir and HOUR,WindDir and noltrend, AirTC and BP, AirTC and
HOUR, AirTC and noltrend, RH and AirTC, RH and BP, RH and HOUR, BP and Lag2.

Table 2. Variables selected using Lasso via hierarchical interactions.

Main Effect RN WS WindDir AirTC RH BP HOUR noltrend Lag1 Lag2 Tight?

RN −6.29 −4.62 0 0 0 0 0 0 0 0 −1.67
WS 4.04 0 0 0 0 0 4.04 0 0 0 0
WindDir 8.87 0 0 −1.14 0 0 4.29 −3.007 0.43 0 0 *
AirTC 169.62 0 0 0 43.81 −15.83 0.61 −106.10 0 0 0
RH −49.30 0 0 0 −15.83 0.49 −4.21 28.77 0 0 0 *
BP 38.28 0 4.04 4.29 0.61 −4.21 0 0 0 0 8.26
HOUR −97.36 0 0 −3.00 −106.10 28.77 0 −196.79 0 0 0 *
noltrend 0.43 0 0 0.43 0 0 0 0 0 0 0
Lag1 2.845 0 0 0 0 0 0 0 0 −2.85 0 *
Lag2 14.19 −1.67 0 0 0 0 8.26 0 0 0 0

3.3.2. Variable Importance

Table 3 shows the relative contribution of the variables used in this study. It can be seen that the
variable “hour” has the highest relative importance, meaning that the hour of the day is very important
for GHI, followed by air temperature. The selected variables are then used in all the developed models
in this study including the benchmark models.

Table 3. Variable importance.

Variable Relative Influence

hour 40.458
AirTC 30.769
Lag2 11.019
RN*Lag2 10.884
noltrend 2.535
BP*Lag2 1.867
Lag1 0.594
AirTC*hour 0.430
WindDir*hour 0.359
RH 0.285
RH*AirTC 0.224
RN 0.164
WS*BP 0.146
WindDir*BP 0.127
WindDir*noltrend 0.071
WindDir 0.036
BP 0.021
WS 0.010

3.3.3. Partially Linear Additive Quantile Regression Models with and Without Interactions

PLAQR models are considered so as to relax the assumption that there is a linear relationship
between the covariates in QR. This is done for τ = 0.5 using R-package “plaqr” developed by
Reference [42]. The PLAQR models containing a set of predictors which have a linear relationship
with the response variable, solar irradiance and a set of predictors which have unknown non-linear
relationship with solar irradiance is given by the Equations (29) and (30), respectively:

yt1 = β0 + β1RH + β2BP + bs(RN) + bs(WS) + bs(WindDir) + bs(AirTC) + bs(Hr)

+bs(noltrend) + bs(lag1) + bs(lag2) + εt1 (29)
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and

yt2 = β0 + β1RN + β2RH + β3BP + β4noltrend + β5Lag1 + β6Lag2 + β6(WindDir,Hr)

+β7(WindDir,noltrend) + β8(RH,AirTC) + bs(WS) + bs(WindDir) + bs(AirTC)

+bs(Hr) + bs(RN,lag2) + bs(WS,BP) + bs(WindDir,BP)

+bs(AirTC,BP) + bs(AirTC,Hr) + bs(BP,lag2) + εt2 (30)

where “bs” is a B-spline. The models are split into two, one with interactions (presented by yt2) and the
other without the interactions (presented by yt1). The interactions presented in the above equations
were found after doing variable selection using the Lasso via hierarchical interactions and the variables
selected are RN and Lag2, WS and BP, WindDir and BP, WindDir and Hr, WindDir and noltrend,
AirTC and BP, AirTC and Hr, AirTC and noltrend, RH and AirTC, RH and BP, RH and HOUR, BP and
Lag2. After fitting the PLAQR models an autocorrelations test for the residuals was carried out.

The models considered in this study are: M1(GAM without interactions), M2 (GAM with
interactions), M3(PLAQR model without interactions), M4(PLAQR model with interactions),
M5(convex combination of models M1-M4), M6(GAM averaging), M7(convex averaging) and
M8(quantile regression averaging). We present in the next paragraph a discussion of the results
of the PLAQR models.

In order to reduce the autocorrelations for the PLAQR model without interactions,
the SARIMA(4,1,4)(2,0,5)s model is fitted to the residuals. This is followed by testing for
autocorrelations using Ljung Box-test and find the p-value to be 0.3974 (p > 0.05). For the PLAQR
model with the pairwise interactions the SARIMA(4,1,4)(2,0,3)s is then tested and a p-value of 0.2809
(p > 0.05) is obtained. The best model is selected using AIC, BIC and the AdjR2. The better fitting
model is the one with the minimum value of AIC, BIC and the maximum value of AdjR2 compared
to the other models. Table 4 suggests that the model with the pairwise interactions (model M4) is
considered to be the better model with the AdjR2 value of 0.957, AIC of 60,056.53 and BIC of 60,744.76.

Table 4. Model selection for partially linear additive quantile regression model (PLAQR) with and
without interactions.

Models AdjR2 AIC BIC

PLAQR (M3) 0.947 61,191.64 60,748.55
PLAQR (M4) 0.954 60,744.76 60,056.53

The “opera” R-package developed by Reference [9] Gaillard and Goude 2015 is used to combine
the forecasts. This is done in order to improve the accuracy measures obtained from these models.
The convex combination of the models is done using an algorithm based on the pinball loss.
The weights assigned to the forecasts for model M3 and model M4 are found to be 6.13 × 10−21

and 1 respectively. Based on the pinball loss, model M4 (FQGAMI) is considered to be a better model
since the weight assigned to it is 1. Therefore forecast combination is not necessary. Based on the
pinball loss function the average loss suffered by the PLAQR model with pairwise interactions (model
M4 (FQGAMI) in Figure 3) is smaller than that of the PLAQR without pairwise interactions (FQGAM
in Figure 3).
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Figure 3. Average loss based on pinball loss suffered by the developed models.

The combination of forecasts was then extended to QRA (Model M8) and is given by Equation (31):

yt,τ(QRA) = β0,τ + β1PLAQR + β2,τPLAQRI + εt,τ , (31)

where PLAQRI and PLAQR are the PLAQR with and without interactions. The Ljung BOX-test is
applied to the residuals from the fitted QRA giving a Ljung Box-test statistic of 2320.2, with the p-value
less than 2.2× 10−16. Since the p-value for the test statistic regarding the QRA is less than 0.05 it
is concluded that the solar irradiance data has significant autocorrelation. In order to reduce the
autocorrelation, SARIMA(3,0,2)(1,1,1)s is fitted to the residuals resulting in a p-value of 0.9847 which is
greater than 0.05. Therefore it is concluded that the data contain no autocorrelation up to lag 20 at the
5% level of significance as shown in Figure 4 bottom left panel. Visual inspection of the time series plot
of the residuals in the top panel of Figure 4 indicates that the residuals are randomly scattered around
mean zero.

Based on the boxplots of the prediction intervals shown in Figure 5, model M8 is the best fitting
model as it has the narrowest PI compared to the other models, M4, M6 and M7.
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Figure 4. Time series display of residuals from model M8 after correcting for autocorrelation.
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Figure 5. Box plots of the rediction interval widths (PIWs) for models M4, M6, M7 and M8. PIW of
model M8 appear to be the narrowest compared to the PIWs of the other models.



Energies 2019, 12, 3569 17 of 28

3.4. Quantile Regression Averaging and Comparative Analysis of the Models

3.4.1. Quantile Regression Averaging

QRA is an extension of combining probabilistic forecasts and is given by Equation (32):

yt,τ(QRA) = β0,τ + β1GAMQRA + β2,τPLAQRA + β3,τCONVEQRA + εt,τ , (32)

where GAMQRA, PLAQRA and CONVEXQRA are the regressed GAM, PLAQR and CONVEX
forecasts, in this case taken as predictors of solar irradiance.

3.4.2. Comparative Analysis of the Models

A summary statistics of the residuals of the models is presented in Table 5. The models were then
compared using using prediction intervals. A summary of PICP, PINAW and PINAD is presented in
Table 6. From Table 6 the PINAW of model M8 is the lowest compared to those of models M6 and
M7. The performance of the models against the best models which is model M8 is then calculated.
The percentage improvement of M8 over M6 and M7 are found to be 8.49% and 13.87% respectively.

Table 5. Summary statistics of the residuals of the models.

Summary Statistics of Residuals

Model M4 Model M6 Model M7 Model M8
Standard deviation 79.53 0.67 48.85 41.14

Mean −25.12 −0.56 −6.56 −4.50
Median 4.49 −0.13 −0.10 −0.11

1st Quartile −66.21 −1.04 −0.70 −0.94
3rd Quartile 26.23 −0.05 1.69 1.57

Skewness −2.34 −1.34 −4.04 −3.45
Kurtosis 7.89 1.61 24.46 21.25

Under and over Predictions

Mean under predicted 0.53 0.43 0.43 0.42
Mean Over predicted 0.47 0.57 0.57 0.58

Under prediction 179 144 145 141
Over prediction 158 193 192 196

Table 6. Comparison of the best models using the PI Coverage Probability (PICP), PI normalised
Average Width (PINAW) and PI normalised Average Deviation (PINAD) at 95% level of confidence.

Models PICP PINAW PINAD Mean PI

Model M6 98.52% 27.01% 0.08% 155.66
Model M7 98.81% 27.92% 0.09% 153.99
Model M8 98.82% 15.27% 0.05% 140.36

3.4.3. Comparative Analysis with the Benchmark Models

The median method discussed in Section 2.5.2 is also used in forecast combination as follows:
Median forecast = median(QRA, SVR, SGB). The median forecasts are then compared with the QRA
forecasts and the forecasts from benchmark (machine learning) models as shown in Table 7. All the
models in Table 7 have invalid PICPs, that is, they are less than 95% except for model M8 (QRA).
This therefore means that the PINAW and PINAD of the models with invalid PICPs would not have
any meaning. However the Median forecasts have the smallest mean PI.
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Table 7 also shows a summary of the accuracy measures for the models. Based on CRPS, DSS and
pinball loss, model M8 is found to be the best compared to the median forecasts and the two benchmark
models, SVR and SGB, respectively. M8 is then used for out of sample forecasting.

Table 7. Model comparisons.

Accuracy Measures M8 (QRA) SVR (Benchmark) SGB (Benchmark) MEdian Forecasts

CRPS 151.57 160.4182 167.55 158.83

Pinball loss 8.82 26.31 17.18 10.89

DSS 12.25 12.49 12.53 12.45

PICP 98.82% 84.57% 82.50% 89.91%

Mean PI 140.36 170.83 135.32 129.50

Figure 6 shows a plot of pinball losses (top panel) from the QRA and Median forecasts (8–22 April
2010, 337 forecasts) and box plots of pinball losses (bottom panel) from the QRA and Median forecasts.
The box plots on Figure 6 suggests that the distribution of the pinball losses from the QRA model has
the smallest variability and as such is the best fitting model compared to the benchmark models.
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Figure 6. Top panel: Plot of pinball losses from the quantile regression averaging (QRA) and Median
models in April 2010 (8–22 April 2010, 337 forecasts). Bottom panel: Box plots of pinball losses from
the QRA, SGB, SVR and Median models in April 2010.

3.4.4. Combining Prediction Intervals and Out of Sample Forecasts

Overall the individual models are producing overconfident prediction intervals as shown by their
hit rates which are well above the target of 0.95 (See Table 8, column 4). The prediction intervals from the
individual models are then compared with the three simple interval combination methods discussed in
Section 2.5.2. Results from Table 8 show that the PM is the best prediction limits combination method
as it gives a hit rate of 0.955 which is very close to the target of 0.95.

Table 8. Comparison of prediction intervals.

Individual Models Below Lower Limit Above Upper Limit Hit Rate

Model M6 4 3 0.979
Model M7 5 0 0.985
Model M8 3 1 0.988

Combinations

Simple average 3 0 0.991
Median 4 0 0.988
PM 7 8 0.955

The forecasts, dashed line from model M8 (QRA forecasts) follow the actual solar irradiance
remarkably well (Figure 7 top panel). The forecast distribution of GHI, dashed lines (Bottom panel
of Figure 7) follow very well the density of the actual GHI, solid line. Similar plots for the combined
median forecasts are given in the appendix, Figure A1.
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Figure 7. Top panel: Actual and predicted GHI in April 2010 (337 forecasts). Bottom panel: Actual and
predicted density plots of GHI.

Figure 8 shows actual GHI, solid lines superimposed with forecasts, dashed lines (QRA forecasts)
for some selected days of April 2010. For all the selected days, the forecasts follow the actual GHI
remarkably well.
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Time series plots of GHI with lower and upper 95% prediction intervals for 7 days (8-04-2010 to
18-04-2010) are presented in Figure 9 (M7 and M8 models) and Figure 10 (Averaged and PM prediction
intervals), respectively.
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Figure 8. Actual and predicted GHI for some selected days of April 2010.
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Figure 9. Top panel: Actual GHI with lower and upper 95% prediction intervals (M7 model).
Bottom panel: Actual GHI with lower and upper 95% prediction intervals (M8 model).
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Figure 10. Top panel: Actual GHI with lower and upper 95% prediction intervals (Averaged
prediction intervals). Bottom panel: Actual GHI with lower and upper 95% prediction intervals
(PM prediction intervals).



Energies 2019, 12, 3569 24 of 28

4. Discussion

Comparing solar irradiance forecasts with the observed values, the results indicate that the mean
forecast error for model M8 is the lowest compared to that of models M4, M6 and M7 when under
predicting the solar irradiance. For over predictions model M4 has a mean of 0.45 which is the lowest
compared to models M6 (0.57), M7 (0.57) and M8 (0.58). This is compared to the frequency of over
predictions and under predictions. Model M6 has the smallest standard deviation. A negative skewness
in the distribution reflects a large number of negative errors, which reflects the overestimation of
solar irradiance.

The results demonstrate that model M8 produces a narrower PINAW, therefore model M8 is the
best compared to models M6 and M7. The PICP for model M8 is 98.82%, which is valid since its greater
than 95% and is the greatest among the other two models M6 and M7 respectively. This indicates
that the prediction intervals constructed by model M8 are more informative with satisfactory PICP
(≥95%), The PICP is set to 95% level of confidence and is valid for all models. Model M8 also gives
smallest PINAD compared to the other models. PLAQR with interactions has been found to be an
appropriate model for forecasting hourly solar irradiance and use of QRA improves forecast accuracy
and produces robust prediction intervals [31,34].

A comparative analysis of the median forecasts with the QRA forecasts and the forecasts from
benchmark (machine learning, SVR and SGB) models show that model M8 is the best fitting model
based on CRPS, DSS and pinball loss. These results suggest that model M8 may be suitable for
probabilistic forecasting of solar irradiance. Results on combining prediction interval limits show that
the PM is the best prediction limits combination method as it gives a hit rate of 0.955 which is very
close to the target of 0.95.

5. Conclusions

This paper discussed an application of PLAQR models to probabilistic solar irradiance forecasting
using South African data. The models were developed based on hourly solar irradiance data from
Eskom. The models were split into two one with and the other without interactions. The interactions
were obtained using a variable selection method “Lasso via hierarchical pairwise interactions”.
The models were combined using an algorithm in which the average loss suffered was based on
the pinball loss function. The results demonstrated that this method of forecast combination was
not necessary since model M2 (the PLAQR model with interactions) was assigned all the weights.
The forecast combination was then extended to QRA in order to compute the prediction intervals and
to improve the forecasts. The results indicated a significant change in the forecasts of the PLAQR
models. The models were then compared using PINAW. Model M3 (QRA model), was found to be
the best fitting model compared to other since it produced a narrower PINAW with satisfactory PICP
(≥95%). The main contribution of this paper is the inclusion the of non-linear trend variable and the
extension of combining of forecasting models to the QRA. The results from this study are consistent
with other researches discussed in literature that quantile regression averaging of forecasts from
different models results in more accurate forecasts and that the prediction intervals are robust [31,34].
Our results also show that combining prediction limits from individual models gives hit rates very
close to the target prediction interval nominal confidence [3]. This was the case with the use of the PM
method in our study. This study could be useful to system operators, including decision-makers in
power utility companies such as Eskom in integrating in an optimal way the energy generated from
solar power plants with the national grid.
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The following abbreviations are used in this manuscript:

AIC Akakike Information Criterion
BIC Bayesian Information Criterion
CRPS Continuous Rank Probability Score
CV Cross Validation
DSS Dawid-Sebastini Score
GAM Generalised Additive Model
GHI Global Horizontal Irradiance
GLM Generalised Linear Model
LASSO Least Absolute Shrinkage and Selection Operator
OLSR Ordinary Least Squares Regression
PLAM Partial Linear Additive Model
PLAQR Partial Linear Additive Quantile Regression
PLF Pinball Loss Function
PICP Prediction Interval Coverage Probability
PINAD Prediction Interval Normalised Average Deviation
PINAW Prediction Interval Normalised Average Width
PM Probability averaging of endpoints and simple averaging of Midpoints
QR Quantile Regression
QRA Quantile Regression Averaging

Appendix A. Combined Median Forecasts

The forecasts from the combined median approach follow the actual solar irradiance remarkably
well (Figure A1 top panel). Bottom panel of Figure A1 presents the density plot of the forecasts.

https://www.nrf.ac.za/
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Figure A1. Top panel: Plot of actual solar irradiance superimposed with the combined median forecasts
in April 2010 (337 forecasts). Bottom panel: Density plot of actual solar irradiance superimposed with
the combined median forecasts.
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