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Abstract: High bandwidths and accurate current controls are essential in high-performance permanent
magnet synchronous (PMSM) servo drives. Compared with conventional proportional–integral
control, deadbeat current control can considerably enhance the current control loop bandwidth.
However, because the deadbeat current control performance is strongly affected by the variations
in the electrical parameters, tuning the controller gains to achieve a satisfactory current response
is crucial. Because of the prompt current response provided by the deadbeat controller, the gains
must be tuned within a few control periods. Therefore, a fast online current loop tuning scheme is
proposed in this paper. This scheme can accurately identify the controller gain in one current control
period because the scheme is directly derived from the discrete-time motor model. Subsequently,
the current loop is tuned by updating the deadbeat controller with the identified gains within eight
current control periods or a speed control period. The experimental results prove that in the proposed
scheme, the motor current can simultaneously have a critical-damped response equal to its reference
in two current control periods. Furthermore, satisfactory current response is persistently guaranteed
because of an accurate and short time delay required for the current loop tuning.

Keywords: deadbeat current control; PMSM servo motor drives; auto tuning; parameter identification

1. Introduction

A modern servo motor drive usually includes current, speed, and position control loops. In general,
the current loop bandwidth is considerably higher than the bandwidth of the speed and position loops.
Therefore, a current loop with a high bandwidth can fundamentally enhance the performance of the
servo motor drive.

When the current loop is implemented with a digital signal processor (DSP), because of the limited
computation capability, the calculated voltage command requires one control period delay for the
pulse width modulation (PWM) module to output voltage to the motor. This time delay causes an
underdamped or unstable current response when a proportional–integral (PI) controller is used for
motor current regulation [1–4]. The discretized PI controller directly designed in the z-domain has
been proposed in [3,4]; however, limited improvement in the current loop bandwidth was achieved
and current overshoots were persistent. To eliminate the influences of the time delay, schemes based
on the predictive current control [5–11] and deadbeat current control [12–17] have been proposed. The
predictive current controller generates the optimal voltage vector by minimizing a specific cost function.
This voltage vector allows the motor current to reach its reference value as fast as possible with
minimum overshoot. Deadbeat current control is well-known for its zero overshoot, zero steady-state
error, and minimum rise time characteristics. Consequently, the motor current can reach its reference
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value with minimum control periods without overshoot. Compared with predictive current control,
deadbeat control is simple to implement and requires less computation. However, its performance is
parameter-dependent, as reported in [15–17]. In particular, inductance is sensitive to the current level.
Online controller gain tuning is an effective method to mitigate the effects of parameter variations.

Numerous online electrical parameter identification strategies have been proposed. The
observer-based methods in [18–21] identify the parameters by converging the error between the
sampled and estimated current to zero. In [18], the identified inductance was used for the predictive
current controller to improve the robustness of the current loop. Observer-based methods often require
long execution times because of the delay of the observer and may encounter stability problems.
The authors in [22–24] performed the recursive least-square (RLS) algorithm to identify electrical
parameters. The motor model was used to develop the RLS algorithm. Then, the parameters were
identified by minimizing the discrepancy between the sampled and calculated current. Although
the latency caused by the observer does not exist in RLS-based methods, accurately identifying the
parameters in a few control periods is still difficult. In addition, the electrical parameters are generally
identified instead of the controller gains in these methods. However, the effect caused by the parameter
mismatch can be treated as a disturbance to the current controller. To compensate for this disturbance,
the compensation voltage, which was obtained through the disturbance observer in [12,17] and through
adaptive control in [25], is added to the current loop. Despite their effectiveness, the schemes in [17,25]
involve a complex design procedure to achieve satisfactory performance.

In this study, a deadbeat current controller was designed to enhance the current loop bandwidth
for its simple implementation. A novel online current loop tuning strategy is proposed to reduce
the effect of parameter variations. The proposed method is simple and effective because the method
is directly derived from the discrete-time motor model. In addition, the proposed method directly
identifies the gains of the deadbeat controller instead of the electrical parameters. After the controller
gains are identified, the gains are averaged to further improve accuracy. Then, the current loop is
tuned by updating the deadbeat controller with the average gains.

2. Discrete-Time Motor Model

The stator voltage of a PMSM in the rotor reference frame can be expressed as follows:[
vr

qs
vr

ds

]
=

[
rs + sLqs ωrLds
−ωrLqs rs + sLds

][
irqs
irds

]
+

[
ωrλm

0

]
(1)

where vr
qs, vr

ds, irqs, and irds are the q- and d-axis voltages and currents, respectively; Lqs and Lds are
the q- and d-axis inductance, respectively; rs, ωr, and λm are the phase resistance, rotor electrical
speed, and magnet flux, respectively; and s denotes the Laplace operator. When the current loop
and PWM function of the PMSM are implemented digitally, a time delay is inevitably introduced.
Figure 1 displays the time sequence of the current sampling, voltage command calculation, and voltage
command output, where Ts is the sampling period of the motor currents and the control period of the
current loop. As depicted in Figure 1, the voltage command is calculated at t0 and outputs to the PWM
module at t0 + Ts. Then, the voltage command is activated by the PWM module and held for one
sampling period during t0 + Ts to t0 + 2Ts. The motor current induced by the corresponding voltage
command is then sampled at t0 + 2Ts. Therefore, a time delay of two sampling periods is generated
in the current loop. The PWM function and calculation delay can be modeled together by using a
zero-order hold involving one sampling period delay. Accordingly, the stator voltage in Equation (1)
can be discretized as follows:

Gq(z) =
irqs(z)

vr
qs(z)

= Z
{

e−sTs ·ZOH
(

1
Lqss + rs

)}
=

Bmqz−2

1−Amqz−1
(2)
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Gd(z) =
irds(z)

vr
ds(z)

= Z
{

e−sTs ·ZOH
(

1
Ldss + rs

)}
=

Bmdz−2

1−Amdz−1
(3)

where Z{} is the Z-transform; the model gains Amq and Bmq are e−Tsrs/Lqs and (1 − Amq)/rs, respectively;
and the model gains Amd and Bmd are e−Tsrs/Lds and (1 − Amd)/rs, respectively. Because the back-EMF
and cross-coupling voltages are approximately constant within one control period, these voltages are
assumed to be decoupled from the current controller and are not represented in Equations (2) and (3).
The q- and d-axis decoupling voltages, namely vqff and vdff, respectively, are derived from Equation (1)
by using the estimated electrical parameters and rotor speed in the following expression:

vq f f = ωrL̂dsirds +ωrλm

vd f f = −ωrL̂qsirqs
(4)

where “ˆ” denotes the estimated quantity.
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Figure 2 illustrates the overall servo control system, where van, vbn, and vcn are the phase 
voltages; θm, θr, and ωm denote the mechanical position, electrical angle, and speed, respectively; 
and “*” denotes the command value. The motor current is regulated using a deadbeat current 
controller. The classical proportional position with proportional-plus-integral velocity (P-PI) control 
is implemented to regulate the motor speed and position [26]. The bandwidths of the speed loop 
and position loop are set as 100 and 10 Hz, respectively. The proposed online current loop tuning 
algorithm continuously tunes the gains in the current loop to achieve a satisfactory current response. 
The variables associated with the online tuning are defined in the following text. 

 

Figure 1. Time sequence for current sampling, voltage command calculation, and output, where PWM
is pulse-width modulation.

3. Overall Control System

3.1. Servo Control System

Figure 2 illustrates the overall servo control system, where van, vbn, and vcn are the phase voltages;
θm, θr, and ωm denote the mechanical position, electrical angle, and speed, respectively; and “*”
denotes the command value. The motor current is regulated using a deadbeat current controller. The
classical proportional position with proportional-plus-integral velocity (P-PI) control is implemented
to regulate the motor speed and position [26]. The bandwidths of the speed loop and position loop are
set as 100 and 10 Hz, respectively. The proposed online current loop tuning algorithm continuously
tunes the gains in the current loop to achieve a satisfactory current response. The variables associated
with the online tuning are defined in the following text.
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Figure 2. Block diagram of servo control system with the proposed online current loop tuning strategy.

3.2. Dead-Time Compensation

High-performance servo motor drives generally include dead-time compensation. The voltage
error caused by the dead time can be measured through the steady-state voltage command and current
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feedback [27]. The voltage error at different phase currents for the inverter used in this study is depicted
in Figure 3. The configuration of the motor drive is listed in Table A1. The voltage error saturates
when the magnitude of the phase current is higher than 1 A. After the voltage error is calculated with
the phase current feedback, dead-time compensation is performed by adding the voltage error to the
current loop, as depicted in Figure 2.
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The time delay in the current loop can degrade the effectiveness of dead-time compensation. To
mitigate the influence of this time delay, the estimated phase current is used to calculate the voltage
error. Figure 4 illustrates the proposed current estimator. A PI controller is used to reduce the error
between the sampled and estimated current. By ignoring the PI controller, the estimated current can be
expressed as follows:

îrqs(k) = B̂mq · vr
qs
∗(k) + Âmq · îrqs(k− 1) (5)

îrds(k) = B̂md · vr
ds
∗(k) + Âmd · îrds(k− 1) (6)

When the parameters are correct, the estimated current approximates the current sampled at the
(k + 2)th sampling instant, which is induced by vr∗

qs(k) and vr∗
ds(k). An operator z−2 is added in the

feedback path of the estimator because the estimated current is from two sampling periods before the
present sampled current. Then, the estimated phase current can be calculated as follows:

îan

îbn
îcn

 =


1 0
−1/2 −

√
3/2

−1/2
√

3/2


[

cosθr sinθr

− sinθr cosθr

][
îrqs
îrds

]
(7)

Energies 2019, 12, x FOR PEER REVIEW 4 of 20 

 

Figure 2. Block diagram of servo control system with the proposed online current loop tuning 
strategy. 

3.2. Dead-Time Compensation 

High-performance servo motor drives generally include dead-time compensation. The voltage 
error caused by the dead time can be measured through the steady-state voltage command and 
current feedback [27]. The voltage error at different phase currents for the inverter used in this 
study is depicted in Figure 3. The configuration of the motor drive is listed in Table A1. The voltage 
error saturates when the magnitude of the phase current is higher than 1 A. After the voltage error 
is calculated with the phase current feedback, dead-time compensation is performed by adding the 
voltage error to the current loop, as depicted in Figure 2. 

 
Figure 3. The voltage error caused by the dead-time at different phase current. 

The time delay in the current loop can degrade the effectiveness of dead-time compensation. 
To mitigate the influence of this time delay, the estimated phase current is used to calculate the 
voltage error. Figure 4 illustrates the proposed current estimator. A PI controller is used to reduce 
the error between the sampled and estimated current. By ignoring the PI controller, the estimated 
current can be expressed as follows: 

( ) ( ) ( )*ˆ ˆˆ ˆk= ⋅ + ⋅r r r
qs mq qs mq qsi k B v A i k - 1  (5) 

( ) ( ) ( )*ˆ ˆˆ ˆk= ⋅ + ⋅r r r
ds md ds md dsi k B v A i k - 1  (6) 

When the parameters are correct, the estimated current approximates the current sampled at 
the (k + 2)th sampling instant, which is induced by ( )r*

qsv k  and ( )r*
dsv k . An operator z−2 is added in 

the feedback path of the estimator because the estimated current is from two sampling periods 
before the present sampled current. Then, the estimated phase current can be calculated as follows: 




















−

















−
−−=

















r
ds

r
qs

rr

rr

cn

bn

an

i
i

θθ
θθ

i
i
i

ˆ
ˆ

ˆ
ˆ
ˆ

cossin
sincos

2321
2321

01
 (7) 

 

Figure 4. The proposed (a) q-axis and (b) d-axis current estimator. 
Figure 4. The proposed (a) q-axis and (b) d-axis current estimator.

The pole-zero cancelation technique is used to design the PI controller of the current estimators.
By canceling the plant pole with the controller zero, the proportional gain kpqc and kpdc are calculated
as follows:

kpqc = kiqc · Âmq · Ts/
(
1− Âmq

)
(8)

kpdc = kidc · Âmd · Ts/
(
1− Âmd

)
(9)

where kiqc and kidc are the integral gains. Figure 5 shows the damping ratio and bandwidth of the
current estimator for various kiqc values. The bandwidth of the current estimator is determined from
the integral gain, and the proportional gains are then calculated using Equations (8) and (9).
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In this study, the bandwidth of the current estimator was set to 900 Hz because this can
simultaneously ensure that the estimated current strictly follows the sampled feedback current and
the estimator predicts the sampled current accurately. In addition, the current estimator has a
critical-damped response.
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4. Deadbeat Current Controller

When a conventional PI controller is used to regulate the motor current, the time delay in the
control loop can cause stability problems because of the degraded phase margin. Consequently,
the current loop bandwidth is limited to maintaining an acceptable overshoot on the motor current.
To enhance the bandwidth of the current loop to its theoretical maximum, a deadbeat current controller
was developed in this study.

Deadbeat Controller Design

Figure 6 depicts the schematics of the q- and d-axis current control loops with the deadbeat
controller, where Cq(z) and Cd(z) are the deadbeat controllers for the q- and d-axes, respectively.
Deadbeat controller design is conducted entirely in the z-domain. All the closed-loop poles are placed
at the origin in the z-domain. The q-axis transfer function is expressed as follows:

irqs

irqs
∗
=

Cq(z) ·Gq(z)

1 + Cq(z) ·Gq(z)
=

h(z)
zn (10)

where the numerator h(z) provides an additional degree of freedom for the controller design and n is the
number of poles. The q-axis current should strictly follow the command value without a steady-state
error. By applying the finite-value theorem to Equation (10), the following result is obtained:

lim
z=1

(z− 1) ·

 irqs

irqs
∗
·

z
z− 1

 = lim
z=1

h(z)
zn = 1 (11)

For convenience, h(z) is set as 1. The difference form of Equation (10) can be derived as follows:

irqs(k) = irqs
∗(k− n) (12)

The results indicate that the q-axis current lags the command value by n control periods when
h(z) = 1. Except for the zero steady-state error, the q-axis current can also reach the command value
without an overshoot.
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where mqB1 ˆˆ
1 =qK , and mqmq BA ˆˆˆ

2 =qK . Similarly, the deadbeat controller Cd(z) can be derived as 
follows: 
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Figure 6. (a) q-axis and (b) d-axis current loop with the deadbeat controller when the motor is
at standstill.

According to Equation (10) and the relation h(z) = 1, the deadbeat controller Cq(z) can be derived
using the estimated electrical parameters. The deadbeat controller Cq(z) is expressed as follows:

Cq(z) =
z2
− Âmq · z

B̂mq · (zn − 1)
(13)

The transfer function of the q-axis voltage command is given as follows:

vr
qs
∗

irqs
∗
=

z2
− Âmqz

B̂mqzn
(14)

To satisfy the causality, the following inequality must be satisfied:

n ≥ deg
{
z2
− Âmqz

}
= 2 (15)

where deg{} denotes the highest order of the polynomial. When n is selected to be 2 and the parameters
are perfectly matched, the q-axis current can attain the steady-state and equal the command value
in two control periods. In addition, the voltage command can attain the steady state in two control
periods after the current command changes. Therefore, Cq(z) is modified as follows:

Cq(z) =
z2
− Âmq · z

B̂mq · (z2 − 1)
(16)

The q-axis voltage command at the kth control instant can be derived from (16) as follows:

vr
qs
∗(k) = vr

qs
∗(k− 2) + K̂1q ·

(
irqs
∗(k) − irqs(k)

)
− K̂2q ·

(
irqs
∗(k− 1) − irqs(k− 1)

)
(17)

where K̂1q = 1/B̂mq, and K̂2q = Âmq/B̂mq. Similarly, the deadbeat controller Cd(z) can be derived
as follows:

Cd(z) =
z2
− Âmd · z

B̂md · (z2 − 1)
(18)

The d-axis voltage command at the kth sampling instant is expressed as follows:

vr
ds
∗(k) = vr

ds
∗(k− 2) + K̂1d ·

(
irds
∗(k) − irds(k)

)
− K̂2d ·

(
irds
∗(k− 1) − irds(k− 1)

)
(19)

where K̂1d = 1/B̂md, and K̂2d = Âmd/B̂md. Figure 7 depicts the detailed schematics of Cq(z) and Cd(z)
with the decoupling voltage and voltage limitation.
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Figure 7. Block diagram of the deadbeat controller with the decoupling voltage and voltage limitation
block, (a) Cq(z) and (b) Cd(z).

5. Simulation Results

A 400-W servo motor was used in the simulation. The motor parameters are listed in Table A2.
The drive losses were ignored in the simulation. The voltage command was limited to half of the
DC voltage because sinusoidal PWM was implemented, as illustrated in Figure 7. Because the d-axis
current is expected to have a similar response as the q-axis current, only the q-axis current simulation
results are presented.

5.1. Results with Correct Motor Parameters

Figures 8 and 9 illustrate the q-axis current, current command, and voltage command when
the current steps from 0 to 1 A and from 0 to 4 A, respectively, when the motor is at standstill. As
depicted in Figure 8, the q-axis current does not exhibit overshoot and is exactly equal to the command
value in two control periods after the current command changes. The voltage command is generated
immediately after the current command changes. The voltage commands at the kTs and (k + 1)Ts

control periods can be calculated as follows:

vr
qs
∗(kTs) ≈ Lqs

irqs((k + 2)Ts) − irqs((k + 1)Ts)

Ts
= 84.14 V (20)

vr
qs
∗((k + 1)Ts) ≈ rs · irqs

∗((k + 2)Ts) = 2.1 V (21)

Note that these command values are less than half of the DC supply.
Conversely, as depicted in Figure 9, the q-axis current increases slowly and requires approximately

six control periods to attain the command value because the voltage required for the current to increase
from 0 to 4 A in one control period exceeds the command limit. The voltage command saturates several
times before the q-axis current reaches its command value, which is in agreement with the control law
presented in Equation (17). The actual rise time is dependent on the motor inductance.
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the phase resistance varies 50% and 150% from its nominal value, respectively. The figures indicate 
that the poles remain near the origin regardless of the variations in the phase resistance. The q-axis 
current can still reach its command value in two control periods; however, marginal overshoot is 
observed. This implies that the influence of the resistance mismatch to the deadbeat controller is 
trivial. However, the q-axis current depicted in Figure 11 is marginally lower than its command 
value at the steady state because the resistance is smaller than its nominal value. Conversely, the 
q-axis current illustrated in Figure 12 is marginally higher than its command value at the steady state 
because the resistance is larger than its nominal value. 

Figure 9. The simulated q-axis current, current command, and voltage command when the current
command steps from 0 A to 4 A.

Figure 10 illustrates the frequency response of the deadbeat controller without voltage limitations.
The current loop gain is 0 dB at low frequencies and is flat until the Nyquist frequency. This indicates
that the current can follow its command without overshoot and steady-state error. However, the phase
lag increases with frequency. The phase margin decreases to 0 at 4.575 kHz. Therefore, the maximum
theoretical bandwidth of the proposed deadbeat controller is one-fourth of the control frequency.
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5.2. Results with Parameter Mismatch

The phase resistance and q- and d-axis inductances are required to design a deadbeat controller. The
deadbeat controller performance is dependent on the accuracy of the estimated electrical parameters.
Figures 11 and 12 display the dominant poles of the q-axis current loop in the z-domain and the
corresponding q-axis current response when the current command steps from 0 to 1 A and the phase
resistance varies 50% and 150% from its nominal value, respectively. The figures indicate that the
poles remain near the origin regardless of the variations in the phase resistance. The q-axis current can
still reach its command value in two control periods; however, marginal overshoot is observed. This
implies that the influence of the resistance mismatch to the deadbeat controller is trivial. However, the
q-axis current depicted in Figure 11 is marginally lower than its command value at the steady state
because the resistance is smaller than its nominal value. Conversely, the q-axis current illustrated in
Figure 12 is marginally higher than its command value at the steady state because the resistance is
larger than its nominal value.
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nominal value because the poles mitigate toward the unit circle along the imaginary axis. Although 
no steady-state error is observed, the transient response of the q-axis current is considerably affected. 
In addition, the current loop can become unstable if the poles mitigate outside the unit circle because 
of the mismatched inductance. 

 

Figure 13. (a) The dominant poles and (b) simulated q-axis current and voltage command response 
with qsqs LL 0.5=ˆ  when the current command steps from 0 A to 1 A, the motor is at standstill. 

Figure 11. (a) The dominant poles and (b) simulated q-axis current and voltage command with
r̂s = 0.5rs when the current command steps from 0 A to 1 A. The motor is at standstill.
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Figure 12. (a) The dominant poles and (b) simulated q-axis current and voltage command with
r̂s = 1.5rs when the current command steps from 0 A to 1 A. The motor is at standstill.

Figures 13 and 14 illustrate the dominant poles of the q-axis current loop and the corresponding
q-axis current response when the current command steps from 0 to 1 A and the q-axis inductance
varies 50% and 120% from its nominal value, respectively. In contrast to the results depicted in
Figures 11 and 12, the variations in the inductance considerably deteriorate the system performance.
As depicted in Figure 13, the current response becomes overdamped when the inductance is smaller
than its nominal value because the poles mitigate toward the unit circle along the real axis. However,
in Figure 14, the current response becomes underdamped when the inductance is larger than its
nominal value because the poles mitigate toward the unit circle along the imaginary axis. Although no
steady-state error is observed, the transient response of the q-axis current is considerably affected. In
addition, the current loop can become unstable if the poles mitigate outside the unit circle because of
the mismatched inductance.
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Equation (22) can be rearranged as follows: 
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where K1q and K2q are defined as 1qK = mq1 B  and 2qK = mq mqA B , respectively. Because the voltage 
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To solve Equation (24), the determinant of the inverse matrix must be a nonzero value. This 
condition is expressed as follows: 
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Figure 14. (a) The dominant poles and (b) simulated q-axis current and voltage command response
with L̂qs = 1.2Lqs when the current command steps from 0 A to 1 A, the motor is at standstill.

6. Online Current Loop Tuning

The deadbeat controller performance is considerably affected by parameter mismatch because
the voltage command is directly related to the voltage drop on the inductance and resistance. In this
study, a novel online current loop tuning strategy was developed to preserve the deadbeat controller
performance. Only the q-axis current loop is discussed because similar results can be obtained for the
d-axis current loop.

6.1. Controller Gain Identification

From Equation (2), the q-axis current sampled at the kth and (k − 1)th control instants can be
expressed as follows: [

irqs(k)
irqs(k− 1)

]
=

[
Bmq · vr

qs(k− 2) + Amq · irqs(k− 1)
Bmq · vr

qs(k− 3) + Amq · irqs(k− 2)

]
(22)

Equation (22) can be rearranged as follows:[
irqs(k) −irqs(k− 1)

irqs(k− 1) −irqs(k− 2)

][
K1q
K2q

]
=

[
vr

qs(k− 2)
vr

qs(k− 3)

]
(23)

where K1q and K2q are defined as K1q = 1/Bmq and K2q = Amq/Bmq, respectively. Because the voltage
error caused by the dead-time is satisfactorily compensated, the controller gains K1q and K2q can be
reasonably estimated using the command values, which are expressed as follows:[

K̂1q
K̂2q

]
=

[
irqs(k) −irqs(k− 1)

irqs(k− 1) −irqs(k− 2)

]−1[
vr

qs
∗(k− 2)

vr
qs
∗(k− 3)

]
(24)

To solve Equation (24), the determinant of the inverse matrix must be a nonzero value. This
condition is expressed as follows:

det
(
irqs

)
= irqs(k− 1)2

− irqs(k) · i
r
qs(k− 2) , 0 (25)

As presented in Equation (24), the controller gains can be estimated using the sampled currents
and voltage commands.

6.2. Estimation Accuracy Improvement

The controller gains cannot be identified in the steady state because det
(
irqs

)
is 0. In addition,

although the current ripples caused by the speed and position controller or current sensor noise yield
nonzero det

(
irqs

)
, these currents cannot be used to identify controller gains because they have a low

correlation with the motor parameters and consequently a low signal-to-noise-ratio (SNR). Figure 15a
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depicts a steady-state q-axis current with a current ripple. Although the current ripple is unpredictable
in practice, the ripple is modeled as a square wave with an amplitude of ∆i for convenience of analysis.
Then, det

(
irqs

)
with the current ripple is calculated as follows:

det
(
irqs

)∣∣∣∣
SS

=
(
irqs
∗ + ∆i

)2
− irqs

∗
·

(
irqs
∗
− ∆i

)
= 3irqs

∗
· ∆i + ∆i2 (26)

Figure 15b depicts a plot of det
(
irqs

)∣∣∣∣
SS

versus the q-axis current command when ∆i is set as 10%

of the command value. It can be seen that det
(
irqs

)∣∣∣∣
SS

increases with the current level. Therefore, a

threshold for det
(
irqs

)
must be set to avoid identification error in the steady state. Accordingly, controller

gain identification is performed only when the following condition is satisfied:∣∣∣∣det
(
irqs

)∣∣∣∣ > detthres
(
irqs

)
(27)

where detthres
(
irqs

)
is the threshold value. In general, the threshold value can be tuned

through experiments.
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The identification accuracy can be further improved by averaging the controller gains calculated in
the last m control periods. In addition, each identified gain is weighted using its det

(
irqs

)
. The averaged

controller gains are calculated as follows:

K1q =
m∑

y=1

K̂1q,y ·

∣∣∣∣dety
(
irqs

)∣∣∣∣/ m∑
y=1

∣∣∣∣dety
(
irqs

)∣∣∣∣ (28)

K2q =
m∑

y=1

K̂2q,y ·

∣∣∣∣dety
(
irqs

)∣∣∣∣/ m∑
y=1

∣∣∣∣dety
(
irqs

)∣∣∣∣ (29)

Because the average controller gain is dominated by the identified gain with higher det
(
irqs

)
, the

identification accuracy improves.
After the average controller gains are calculated, the model gains can be determined as follows:

Âmq = K2q/K1q (30)

B̂mq = 1/K2q (31)

Because the effect of resistance variation on the current response is trivial, the estimated q-axis
inductance can be approximated as follows:

L̂qs ≈ −Tsrs/ln
(
Âmq

)
(32)
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The model gains Âmd and B̂md as well as the estimated d-axis inductance can be obtained similarly.
As depicted in Figure 1, the estimated inductances and model gains are used for the decoupling voltage
calculation and dead-time compensation, respectively.

6.3. Identification When Voltage Command Is Limited

As illustrated in Figure 7, the stator voltage saturates to a maximum voltage Vmax as follows:√
vr

qs
2 + vr

ds
2 ≤ Vmax (33)

Vmax depends on the DC voltage and the dead-time of the inverter. The motor used in this study
has almost identical q- and d-axis inductances. Thus, the d-axes current is controlled to 0 to generate
the required torque with a minimum stator current. Consequently, the d-axis voltage approximates to
the decoupling voltage and the steady-state q-axis voltage can be calculated using Equation (34) when
the stator voltage saturates to Vmax.

vr
qs = ±

√
Vmax2 − vr

ds
2 = ±

√
Vmax2 − vd f f

2 (34)

Subsequently, the voltage command used to identify the controller gains when the voltage is
limited is obtained as follows:

vr
qs
∗ = vr

qs − vq f f (35)

6.4. Gain Update Method

Figure 16 illustrates the timing for identifying and updating the gains in a deadbeat controller
and current estimator, where the green bar denotes the execution of the current control and the blue
bar denotes the execution of the speed and position control. Because the d-axis current is controlled to
0, only the gains in the q-axis current loop are identified. However, because Lqs ≈ Lds, the gains in Cd(z)
and the d-axis current estimator are set equal to the corresponding q-axis values. The controller gains
are identified when the current control loop is executed. Because the current control executes eight
times faster than the speed and position control, at most eight controller gains are identified before the
next speed control is executed. Then, K1q, K2q, Âmq, B̂mq, L̂qs, and kpqc are calculated using Equations (8)
and (28)–(32) when the speed control is executed. Subsequently, the gains in the deadbeat controller
and the parameters in the current estimator are updated in the next execution of the current control
because the motor current generally reaches steady state at this instant. The PI controller in the current
estimator is updated two control periods after the model gain is updated because the sampled current
is two control periods behind the estimated current.
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7. Experimental Results

A 400-W servo motor was used for experimental verifications. The parameters of the motor are
provided in Table A1. Figure 17 illustrates the experimental system. The proposed online current
loop tuning scheme is implemented using a Texas Instruments TMS320F28335 DSP. The detailed
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configuration of the drive is detailed in Table A2. In this study, Vmax was set to 139 V to account for the
losses caused by the dead time. The motor position and speed were measured using an encoder with a
resolution of 2500 pulse/rev.
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Figure 17. Experimental system.

The experimental results shown in Figures 18–21 were obtained without the online current loop
tuning algorithm. Figure 18 illustrates the q-axis current and voltage command response when the
current increased from 0 to 1 A and from 0 to 4 A, respectively, when the motor was at standstill. The
voltage command was less than the limit for the 1 A step but exceeded the limit for the 4 A step. As
depicted in Figure 18a, the q-axis current was exactly two current control periods behind the command
value. Furthermore, overshoot and steady state error were not observed for the current. However,
the q-axis current presented in Figure 18b required approximately seven control periods to reach
the command value because the voltage was limited to 139 V. These results highly concur with the
simulation results described in Section 5. Thus, the effectiveness of the deadbeat current controller
was verified.

Figure 19a demonstrates the q-axis current, voltage, and speed response when the motor had
rotation speeds between −3000 and 3000 rpm. The q-axis current followed the command value closely
regardless of the motor speed. Figure 19b,c depicts the amplified views of the situation when the
current increased from −4 to 4 A and decreased from 4 to −4 A, respectively. The deadbeat controller
produced pulse-wise voltage because the stator voltage was limited. Although the voltage command
had an opposite polarity to that of the decoupling voltage, the q-axis current required seven control
periods to reach the command value. According to the aforementioned results, the performance of the
deadbeat controller was independent of the motor speed. However, a marginal current overshoot is
observed in Figures 18b and 19b,c because of the magnetic saturation.
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Figures 20a and 21a illustrate the q-axis current and voltage response when the current increased
from 0 to 1 A as the estimated inductance was set as 50% and 120% of its nominal value, respectively.
The experiments were performed when the motor was at standstill. As depicted in Figure 20a, when
L̂qs = 0.5Lqs, the q-axis current became overdamped and required seven control periods to reach the
command value. However, as depicted in Figure 21a, when L̂qs = 1.2Lqs, the q-axis current became
underdamped and had an observable overshoot. The experimental results are similar to the simulation
results presented in Section 5.

Figure 20b,c displays the calculated det
(
irqs

)
and controller gains for the transient response depicted

in Figure 20a, respectively. Similarly, Figure 21b,c displays the calculated det
(
irqs

)
and controller gains

for the transient response presented in Figure 21a, respectively. For convenience of observation, the
controller gains were normalized by their nominal values. Moreover, only the gains within ±200% of
their nominal value are displayed. As depicted in the aforementioned figures, a large current difference
resulted in a high det

(
irqs

)
magnitude. Consequently, highly accurate gains were obtained because of

a superior SNR. In general, the controller gain could be accurately identified for
∣∣∣∣det

(
irqs

)∣∣∣∣ ≥ 0.1. The
maximum error between the identified controller gains and their nominal values were within 16%.
Moreover, the proposed identification method could identify the controller gains in one current control

period provided
∣∣∣∣det

(
irqs

)∣∣∣∣ was sufficiently large.
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the motor was accelerating and decelerating. In the following experiments, the waveforms in the 
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Figure 20. Current command steps from 0 A to 1 A when the motor is at standstill and L̂qs = 0.5Lqs,
(a) q-axis current and voltage command, (b) det

(
irqs

)
, (c) normalized identified controller gains.
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Figure 22 displays the speed, position, and current responses when the motor was controlled in
the positioning mode. The motor moved forward to 11π and then back to 0. The maximum speed
was 3000 rpm, which is the rated speed of the motor. Furthermore, the motor was accelerating and
decelerating with its rated current. An observable position error θ∗m − θm was obtained only when
the motor was accelerating and decelerating. In the following experiments, the waveforms in the
acceleration region were amplified to examine the effectiveness of the online current loop tuning
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scheme. In addition, the lowest bound of detmin

(
irqs

)
for the controller gain calculation was set as 0.2 to

ensure sufficient identification accuracy.
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Figure 23a, Figure 24a, and Figure 25a depict the current response with L̂qs = Lqs, L̂qs = 0.5Lqs, and
L̂qs = 1.2Lqs respectively, when online current loop tuning was deactivated. Conversely, Figure 23b,
Figure 24b, and Figure 25b display the same waveforms but with online current loop tuning activated.
The average controller gains were normalized by their nominal value for a clear observation. Figure 23a
indicates that even with the correct inductance, overshoot and undershoot were observed for the
q-axis current at high current levels because of the magnetic saturation. By contrast, as indicated in
Figure 23b, no apparent overshoot was observed after online current loop tuning was activated.

As depicted in Figure 24a, because the estimated inductance was set to half of the nominal
value, the q-axis current response became overdamped. In addition, the d-axis current had a marginal
steady-state error. By contrast, as illustrated in Figure 24b, the q-axis current was tuned to reach
its reference without overshoot within a speed control period and the d-axis current had no steady
state error after online current loop tuning was activated. The q-axis current in Figure 25a exhibits
considerable overshoot despite the current level because the q-axis inductance is 20% higher than its
nominal value. This caused additional ripples to appear on the d-axis current. However, as depicted
in Figure 25b, the overshoot was eliminated within a speed control period after online current loop
tuning was activated. It can be observed in Figures 24b and 25b that after the deadbeat controller is
tuned by the proposed method, the required sampling period for current to reach its command value is
reduced from nine to two sampling periods, and the overshoot on the current is reduced from 0.4 A to
0.09 A. These experimental results verify that the proposed method is effective and can greatly reduce
the sensitivity of the deadbeat controller to the variations in inductance.
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Figure 25. The amplified current response in the acceleration region of Figure 23 with L̂qs = 1.2Lqs

when the online current loop tuning is (a) de-activated and (b) activated.

Figure 26 displays the measured and calculated frequency response of the q-axis deadbeat current
controller. In the measurements, voltage was within the limit and the motor was at standstill. It can
be seen that the current amplitude did not vary with frequency. However, the phase delay gradually
increased with frequency. This is because the deadbeat controller was designed to reach its reference in
two control periods, and the phase delay for two time periods was small at low frequencies but large
at high frequencies.
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8. Conclusions

In this study, we present an online controller gain tuning scheme for deadbeat current control. The
experimental results verify that the motor current can reach its reference value without overshoot in
two current control periods with the deadbeat controller and correct parameters. However, the current
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response can easily become overdamped or underdamped when the controller gains are calculated
using incorrectly estimated inductances. The proposed online controller gain tuning scheme is derived
on the basis of the discrete-time motor model. The experimental results indicate that the correct
controller gains can be identified in one current control period, and the control loop is tuned in a speed
control period. Consequently, the deadbeat controller can persistently control the motor current to its
reference value in two sampling periods without overshoot irrespective of the inductance variations.
Furthermore, the proposed scheme is easy to implement and requires limited computations.
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Appendix A

Table A1. Main drive parameters.

Value Unit

DC voltage 300 V
Sampling period for current loop (Ts) 55 µs

Sampling period for speed and
position loop 440 µs

Dead-time 2 µs

Table A2. Main motor parameters.

Value Unit

Rated speed/pole pairs 3000/5 rpm
Rated current 4 A

Magnet flux (λm) 0.042 Wb-turns
Stator resistance (rs) 1.4 Ω

d-axis inductance (Lds) 4.46 mH
q-axis inductance (Lqs) 4.54 mH
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