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Abstract: Multiple small-scale low-voltage distribution networks with distributed generators can be
connected in a radial pattern to form a multi-bus medium voltage microgrid. Additionally, each bus
has an independent operator that can manage its power supply and demand. Since the microgrid
operates in the market-oriented mode, the bus operators aim to maximize their own benefits and
expect to protect their privacy. Accordingly, in this paper, a distributed hour-ahead energy trading
management is proposed. First, the benefit optimization problem of the microgrid is solved, which is
decomposed into the local benefit optimization sub problems of buses. Then, the local sub problems
can be solved by the negotiation of operators with their neighbors. Additionally, the reference demand
before negotiation is forecasted by the neural network rather than given in advance. Furthermore,
the power flow constraints are considered to guarantee the operational stability. Meanwhile, the power
loss minimization is considered in the objective function. Finally, the demonstration and simulation
cases are given to validate the effectiveness of the proposed hour-ahead energy trading management.

Keywords: microgrid; smart grid; energy trading management; demand forecasting; distributed
optimization; power flow constraints

1. Introduction

With resource exhaustion and environment deterioration, more and more renewable energy
generation is being incorporated into the power grid [1–3]. However, renewable energy generation,
such as wind and solar energy, has the inherent characteristics of randomness and intermittence [4–6].
The direct integration of distributed renewable energy into the grid will cause the mismatch of
power and finally result in instability. This motivates the development of the microgrid. Actually,
the microgrid [7–10] is a small-scale power distribution system, which is composed of distributed
power sources and neighbor loads. When compared with the traditional power grid, the microgrid
has several advantages. First, the microgrid can be virtually self-sufficient, which will reduce the
long-distance transmission loss. Second, these distributed renewable energy generations can be well
used and managed in microgrid. However, in the traditional centralized scheduling of power grid,
the renewable energies cannot be fully utilized. Thus, the study of microgrid operation is necessary.

In the microgrid, there are operations for different time periods, namely, the real-time,
short-term, mid-term, and long-term [11]. Especially, the hour-ahead operation, which belongs
to the short-term operation, may affect the unit commitment [12,13], economic dispatch [14], demand
side management [15], spinning reserve scheduling [16], and so on. In the microgrid hour-ahead
operation, the demand forecasting plays an important role. Actually, there are various demand
forecasting approaches [17], including the multiple regression, fuzzy logic, expert systems, artificial
neural networks (ANNs), and so on. Among these demand forecasting methods, the ANN [18–20] is
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preferred because of its higher prediction accuracy, shorter processing time, and stronger adaptation.
The development of ANN has entailed three stages until now. The ANN now possesses a larger set of
data, a more powerful computer, and a more deeply trained network. When compared to some newly
artificial intelligent algorithms, the ANN is fundamental, mature, and easy to perform.

The demand forecasted by ANN [18] can be used as the desired demand in hour-ahead scheduling
of microgrid. However, on the one hand, with the increasing application of controllable loads,
the demand side has the flexibility to adjust the electricity consumption. On the other hand,
the microgrid tends to operate in a market-oriented mode. Thus, an energy trading can happen
among electricity suppliers and retailers. The final trading electricity will be decided by the suppliers
and retailers rather than the supplier monopoly. To design a new energy trading management
framework for the microgrid, two challenges need to be tackled: the utility optimization and the
market participants’ privacy protection.

The utility optimization of the microgrid has been discussed in lists of publications [21–23].
Reference [21] has studied the electricity cost minimization problem for the residential microgrid with
distributed energy resources. References [22,23] both have formulated the operation cost minimization
schemes in the droop-controlled microgrid. However, the papers mentioned above only consider the
supplier cost. In this paper, the operators of buses take the responsibility of purchasing electricity from
the upstream supplier and selling electricity to the local users or downstream buses. These operators
can be called retailers in microgrid. The profit earned by these retailers is also considered in the
microgrid utility optimization.

In the microgrid utility optimization, most papers only consider the active power, and other
power flow parameters, such as reactive power, voltage, and current and so on, are ignored; therefore,
the schedule results may violate the stable operation conditions of the microgrid. Therefore, power
flow constraints play an important role in the scheduling of the microgrid. Meanwhile, if the power
flow equations are added as constraints, the power loss can be calculated. Then, besides the cost and
profit, the power loss of transmission is also considered in the objective function.

There exist different kinds of approaches to solve optimization problems. Evolutionary algorithms,
such as a hybrid evolutionary method combining particle swarm optimization (PSO) and genetic
algorithms (GAs) using fuzzy logic [24], Grey Wolf Optimizer-based algorithms [25], island-based
Cuckoo search [26], ideal gas optimization algorithm [27], and so on, can be applied to various
optimization systems and proved to be successful. Other than evolutionary algorithms, an exact
approach can also solve optimization problems. The radial power flow model in [28,29] can be
solved using the convex optimization method. Therefore, in this paper, the microgrid energy trading
problem with power flow constraints will be proved to be convex. Convex optimization problems are
relatively easy to solve. However, the centralized solution method needs a control center to acquire
global information of the microgrid, which causes an invasion of market participants’ privacy and
obstructs the process of marketization. Therefore, a distributed energy trading management needs to
be designed. References [30,31] introduce a distributed optimization method, the predictor corrector
proximal multiplier (PCPM) method. Lagrange multipliers are used to decouple the variables in the
objective function. Then, the supplier and retailers of the microgrid can solve their local optimization
by negotiating only with neighbors. After the optimization, the social utility of the microgrid is
maximized by considering the minimization of power loss.

The main contributions of this paper are summarized as follows.

• The ANN method is used to forecast the demand of LV distribution networks. The hourly forecast
results participate in the energy trading as the desired reference demand. This ensures that the
final trading decision will not deviate too far from the forecasted demand;

• The power loss minimization is added to the objective function. Additionally, the power flow
constraints are also added to the optimization problem. Therefore, in the iteration of optimization,
the microgrid operation is guaranteed to be within the allowable range;
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• The energy trading optimization problem is solved by decomposing it into local benefit
optimization sub problems of the supplier and buses. The local sub problems can be solved by
negotiation of operators only with their neighbors. The privacy of market participants is protected.

The paper is organized as follows. In Section 2, the microgrid system framework is introduced.
Additionally, the power flow, demand forecasting, and optimization problems of the micro-grid
are formulated. Section 3 applies the PCPM algorithm to solving the distributed energy trading
management. Numerical examples to complement the theoretical analysis are provided in Section 4.
Finally, the conclusion is stated in Section 5.

2. Proposed Microgrid System

In an islanded electricity supply network, multiple small-scale low voltage (LV) distribution
networks can be connected in a radial pattern to form a multi-bus medium voltage microgrid, which
is shown in Figure 1. Each bus has an independent operator that can manage its power supply
and demand. The operators are equipped with an advanced metering infrastructure that enables
bidirectional communication among buses. In this radial microgrid, the fuel/gas generator is the main
supplier. The renewable generators, such as wind power generators and solar power generators, can
only supply local demand. The operators of buses take the responsibility of purchasing electricity from
upstream suppliers and selling electricity to local users or downstream buses. These operators can be
called retailers in microgrid.
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2.1. Power Flow Constraints

If only active power is considered in the scheduling of the microgrid, and other power flow
parameters, such as reactive power, voltage, current, and so on, are ignored, the schedule results may
violate the stable operation conditions of the microgrid. Therefore, power flow constraints play an
important role in scheduling of the microgrid.

The radial distribution network of the microgrid is modeled as a directed tree graph T := (N, E).
The buses in set N are indexed by i = 0, 1, . . . , n. Additionally, the distribution line, which connects
bus i and bus j, is denoted as (i, j) ∈ E. The main supplier, the fuel/gas generator, is indexed as bus
0. It is the slack bus, which means its voltage is fixed as V0 and it will supply active and reactive
power (p0, q0) to balance the electricity demand. For each bus i ∈ N\{0}, Vi is its complex voltage and
si = pi + qi is its complex power injection. If the bus has renewable generators, si is the demand minus
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generation. For each line, (i, j) ∈ E, Ii j is the complex current from bus i to bus j. zi j = ri j + ixi j is
the impedance, and Si j = Pi j + iQi j v is the complex power that flows on the distribution line (i, j).
These notations are illustrated in Figure 2.
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Given a radial distribution microgrid, the branch flow model [28,29] is as follows:

(Si j − zi j
∣∣∣Ii j

∣∣∣2) − ∑
k:( j,k)∈E

S jk = s j, j ∈ N\{0}, (i, j) ∈ E; (1)

Vi −V j = zi jIi j, (i, j) ∈ E; (2)

Si j = ViI∗i j, (i, j) ∈ E. (3)

In order to simplify the notations, li j =
∣∣∣Ii j

∣∣∣2, vi = |Vi|
2. V j = Vi − zi jS∗i j/V∗i can be derived from

Equations (2) and (3). If it is squared, then we can get the branch flow model without phase angle of
voltage and current

p j = Pi j − ri jli j −
∑

k:( j,k)∈E

P jk, j = 1, ..., n (4)

q j = Qi j − xi jli j −
∑

k:( j,k)∈E

Q jk, j = 1, ..., n (5)

v j = vi − 2(ri jPi j + xi jQi j) + (r2
i j + x2

i j)li j, (i, j) ∈ E (6)

li j =
P2

i j + Q2
i j

vi
, (i, j) ∈ E. (7)

Reference [28] verifies that if (P, Q, l, v) is given, the unique phase angle of the radial network
can be determined.

2.2. Demand Forecasting Using Artificial Neural Network Method

In the energy trading, the accurate forecast of the demand can decrease the waste and maintain
stable operation of the power grid. Compared with conventional methods, artificial neural network
(ANN) can forecast the demand with higher accuracy. In this paper, the ANN structure is shown in
Figure 3. It is a single hidden layer network. In the hidden layer, there are 20 neurons and the activation
function is a tansig function. In the output layer, the activation function is a linear function. The training
method is Levenberg–Marquardt algorithm. The ANN is trained and tested on a publicly available set
of real electricity demand data from the ISO-NE [32]. We extract historical hourly electricity demand
data of three zones from 1 January 2016 to 31 December 2018. The hourly weather data of these zones
can also be acquired from the ISO-NE. After the preparation of data, the inputs of the training include:

• The dry bulb and dew point temperature;
• The hour and the day;
• The label of holiday/weekend;
• The average demand of previous day;
• The demand from the same hour the previous day;
• The load from the same hour and same day from the previous week.
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The data set of years 2016 and 2017 is used to train the ANN. The training set is used for building
the model (estimating its parameters). Once the neural network model is built, we can use it to forecast
the next hour demand with the eight inputs. The forecasted output result can be compared with the
real data from 2018. Then, we can test the performance of the model on out-of-sample data. The
performance will be shown in the simulation part. The final hour-ahead forecast output is used as the
reference demand of bus i, p̂i.

2.3. Social Utility Maximization

The social utility of the MV microgrid is defined as the profit of LV distribution networks minus
the cost of generation. The objective of the microgrid is to maximize the social utility, which is shown
in Equation (8). In (8), the power flow constraints are also considered. Therefore, minimization of the
power loss of transmission lines can be added to the objective.

max
n∑

i=1
(λipi − α(pi − p̂i)

2) −C(p0) −
∑

j∈M
C jr − ρ

∑
(i, j)∈E

ri jli j

s.t. p0 =
∑

(0, j)∈E
P0 j, q0 =

∑
(0, j)∈E

Q0 j

p j = Pi j − ri jli j + Pwj −
∑

k:( j,k)∈E
P jk, j ∈ N

q j = Qi j − xi jli j −
∑

k:( j,k)∈E
Q jk, j ∈ N

v j = vi − 2(ri jPi j + xi jQi j) + (r2
i j + x2

i j)li j, (i, j) ∈ E

li j =
P2

i j+Q2
i j

vi
, (i, j) ∈ E,

pi ≤ pi ≤ pi, vi ≤ vi ≤ vi, i = 1, · · · , n.

(8)

In the Equation (8), λi is the retail electricity price of bus i. Even if consumers of buses own
controllable applications, α is penalty coefficient of the difference between reference demand p̂i and
final supply pi. The initial reference demand p̂i can be obtained by the ANN method. C(p0) is the cost
function of the fuel/gas generator. It is indicated by a quadratic function [33] C(p0) = b1p2

0 + b2p0 + b3,
where b1 > 0, b2, b3 ≥ 0 are varying fuel/gas coefficients. The parameter C jr is used to represent the
fixed hourly cost of renewable generators at bus j. The coefficient ρ can adjust the weight of the power
loss term.

The quadratic Equation (7) is a constraint in (8). Because it is non-affine, (8) is not convex.
Reference [28] relaxes it into an inequality constraint, which can convex the power flow constraints.

li j ≥
P2

i j + Q2
i j

vi
, (i, j) ∈ E. (9)
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(9) can be converted to a second-order cone constraint as follows:∥∥∥∥∥∥∥
(li j − vi)/2

Pi j
Qi j

∥∥∥∥∥∥∥
2

≤ (li j + vi)/2

Then, the convex optimization function of microgrid utility maximization is function (8) with
substitutional constraint (9).

The validity conditions for the relaxation is proposed in [28]. In the paper, it is easy to satisfy the
conditions considering the structure of the microgrid.

After the second-order cone relaxation, the objective function becomes convex, which can be
solved centrally. However, a control center is needed to take the responsibility of global control;
it requires detailed information of the microgrid, which causes privacy issues. With market-oriented
reform, operators of buses aim to maximize their own benefits and expect to protect their privacy
during trading. Therefore, the microgrid social utility maximization problem needs to be solved using
distributed mechanisms.

3. Distributed Energy Trading Management Scheme

3.1. Introduction of Predictor Corrector Proximal Multiplier Method

Predictor corrector proximal multiplier (PCPM) [30,31] is a method to solve convex minimization
problems in the decomposition approach. Considering a convex problem in the generic form

min
{
f (x) + g(z) : Ax = z

}
.

The Lagrangian of this problem is

L(x, z, y) = f (x) + g(z) + y(Ax− z).

where y is the Lagrangian multiplier.
The distributed algorithm can be written as

pk+1 = argmax
{
L(xk, zk, y) − (1/(2λk))‖y− yk

‖
2
}
,

xk+1 = argmin
{
L(x, zk, pk+1) + (1/(2λk))‖x− xk

‖
2
}
,

zk+1 = argmin
{
L(xk, z, pk+1) + (1/(2λk))‖z− zk

‖
2
}
,

yk+1 = argmax
{
L(xk+1, zk+1, y) − (1/(2λk))‖y− yk

‖
2
}
.

where λk is a positive scalar. In this algorithm, pk+1 is the predictor step, yk+1 is the corrector step,
and xk+1, zk+1 are separable proximal steps. After iterations, the PCPM method will converge to a
global optimal solution.

3.2. Distributed Solution Method

The variables in the function (8) with substitutional constraint (9) can be decoupled and computed
separately from each other using the PCPM method. Lagrange multipliers µi are associated with the
active power equation constraints. They can be used to decompose the objective function of microgrid
to sub problems that can be solved locally. Lagrange multiplier µi can be treated as a price guidance
signal. It is not the real electricity price, because of the power loss term in the objective function.
The sub problems solved by supplier and buses are defined in the following section.
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3.2.1. Solving Supplier Cost Minimization

As a supplier of the microgrid, the supplier sells electricity to its users. According to the cost of
generation and the demand of its users, the supplier will design an appropriate price to maximize its
own utility. The objective function of the supplier is presented as function (10). v̂i is the estimation
of children node voltages. The coefficient ωi is the Lagrange multiplier associated with the voltage
estimation. x∗ is the optimization of the last iteration.

max
∑

(0,i)∈E
µi(P0i − r0il0i) −C(p0) − ρ

∑
(0,i)∈E

r0il0i +
∑

(0,i)∈E
ωiv̂i −

1
2γ‖x− x∗‖22

over : x := (P0i, Q0i, l0i, v̂i, p0, q0)

s.t. p0 =
∑

(0,i)∈E
P0i, q0 =

∑
(0,i)∈E

Q0i,

Q0i = x0il0i +
∑

k:(i,k)∈E
Qik, i ∈ N\{0}

v̂i = v0 − 2(r0iP0i + x0iQ0i) + (r2
0i + x2

0i)l0i, (0, i) ∈ E

l0i ≥
P2

0i+Q2
0i

v0
, (0, i) ∈ E,

p0 ≤ p0 ≤ p0.

(10)

3.2.2. Solving Buses Utility Maximization

Buses except the slack bus will buy electricity from its upstream supplier. If it has child nodes,
it will sell electricity to downstream buses. Therefore, buses are separated into two kinds. One is
the leaf nodes, which have no child node. The other is the nodes that have child nodes. The utility
maximization problems of these two kinds of nodes are as follows:

• Bus i ∈ N\{0}, such that (i, j) ∈ E, j ∈ N\{0} solves the following problem:

maxλipi − αi(pi − p̂i)
2
−

∑
i∈M

Cir − µi(pi +
∑

(i, j)∈E
Pi j) +

∑
(i, j)∈E

µ j(Pi j − ri jli j)

− ρ
∑

(i, j)∈E
ri jli j −

∑
(k,i)∈E

ωivi +
∑

(i, j)∈E
ω jv̂ j −

1
2γ‖y− y∗‖22

over : y := (Pi j, Qi j, li j, vi, v̂ j, pi)

s.t. Qi j = xi jli j +
∑

k:( j,k)∈E
Q jk, j ∈ N

v̂ j = vi − 2(ri jPi j + xi jQi j) + (r2
i j + x2

i j)li j, (i, j) ∈ E

li j ≥
P2

i j+Q2
i j

vi
, (i, j) ∈ E,

pi ≤ pi ≤ pi, vi ≤ vi ≤ vi, i = 1, · · · , n.

(11)

• Bus i ∈ N\{0}, such that (i, j) < E, for all j ∈ N\{0}, solves the following problem:

maxλipi − αi(pi − p̂i)
2
−

∑
i∈M

Cir − µipi −
∑

(k,i)∈E
ωivi −

1
2γ‖z− z∗‖22

over : z := (vi, pi)

s.t. pi ≤ pi ≤ pi, vi ≤ vi ≤ vi, i = 1, · · · , n.

(12)

3.3. Algorithm Design and Implementation

According to the PCPM method, buses will solve their utility maximization locally. The distributed
energy trading algorithm is presented in Algorithm 1.
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Algorithm 1 Distributed Hour-Ahead Energy Trading

1. The slack bus 0 chooses initial values for variable set x and Lagrange multipliers λi for its child nodes
such that (0, i) ∈ E. Each bus i ∈ N\{0} such that (i, j) ∈ E, j ∈ N\{0}, chooses initial values for variable
set y and Lagrange multipliers λ j for its child nodes such that (i, j) ∈ E. Each bus i ∈ N\{0} such that
(i, j) < E, for all j ∈ N\{0}, chooses initial values for variable set z.

2. Then, while k ≥ 0: every node repeat steps 2–6 until convergence.
3. Each bus j ∈ N\{0} transmits its demand p j and voltage v j to its parent node i ∈ N, (i, j) ∈ E. The parent

node i will update the Lagrange multipliers as follows:

λ̂k
j := λk

j − γ

Pk
i j −

∑
(i, j),( j,h)∈E

(Pk
jh + ri jlki j + pk

j )

,

_
ω

k
j := ωk

j − γ
(
v̂k

j − vk
j

)
.

Each parent node sends the updated Lagrange multipliers to its child nodes.
4. Each node optimize local variables according to (11), (12) and (10) simultaneously.
5. Each bus j ∈ N\{0} transmits its demand p j and voltage v j to its parent node i ∈ N. The parent node i will

update the Lagrange multipliers as follows:

λ̂k+1
j := λk

j − γ

Pk+1
i j −

∑
(i, j),( j,h)∈E

(Pk+1
jh + ri jlk+1

i j + pk+1
j )

,

_
ω

k+1
j := ωk

j − γ
(
v̂k+1

j − vk+1
j

)
.

6. k← k + 1 , return to step 2.

4. Evaluation

Most of microgrids are carried out by simulation, which is difficult to perform in a real situation.
Considering the fact, in this section, numerical examples are provided to complement the analysis.
In order to make the demonstration and simulation more reliable, the work is verified by simulation
based on the real data. The simulation is implemented to a medium-voltage microgrid distribution
network, as shown in Figure 4. There are four buses. Bus 0 is the slack bus that connects to a
fuel/gas generator. The voltage of it is 4.16 kV, which refers to the IEEE 13 Node Test Feeder system.
The cost function of the generator is C(p0) = 0.8p2

0 + 10p0. Its generation limit is p0 ∈ [2MW, 7MW].
The other three buses provide electricity to LV distribution networks respectively. And a wind turbine
is connected to bus 2. The hourly wind power generation data is retrieved from independent electricity
system operator (IESO) [34]. The fixed cost is assumed to be $1 for one hour. The distribution line
parameters are listed in Table 1. In order to better explain the detailed process of evaluation, a block
diagram is presented in Figure 5.

Table 1. Microgrid distribution line parameters.

Distribution Line Type Parameters

0–1 1 km JKLYJ-50 0.62 + j 0.30 Ω
0–2 1.5 km JKLYJ-70 0.69 + j 0.47 Ω
2–3 1 km JKLYJ-35 0.85 + j 0.26 Ω
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4.1. Demand Forecasting Results

The demands of LV distribution networks announced by operators are forecasted by ANN method
using real historical electricity data and weather information. The ANN is trained in MATLAB using
the neural network toolbox. Figure 6a,b shows the comparison of the actual demand and the forecasted
demand. Figure 6a shows the results from a whole year while Figure 6b shows the results from 2 weeks.
The error distribution is presented in Figure 6c,d. The mean absolute error (MAE) is 30.67 kWh,
and mean absolute percent error (MAPE) is 2.3%. The hour-ahead forecasted demand p̂i of 3 LV
distribution networks is accurate enough to be used as the reference demand in trading.
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4.2. Energy Trading Results

Each LV distribution network uses ANN to forecast its demand p̂i for the next hour. The original
system data with p̂i is shown in Tables 2 and 3. The retail prices of LV distribution networks are 21, 22,
and 23, respectively. The power flow information is calculated by the MATPOWER [35].

Table 2. Original bus data.

Bus
Voltage Generation Demand

Mag (pu) P (MW) Q (MVAr) P (MW) Q (MVAr)

0 1.0000 3.9223 0.1909 - -
1 0.9374 - - 1.6285 0
2 0.9106 0.1890 0 1.4535 0
3 0.8712 - - 0.6983 0

Table 3. Original branch data.

Branch
Branch Power Loss

P (MW) Q (MVAr) P (MW) Q (MVAr)

0–1 1.7366 0.0522 0.1081 0.0522
0–2 2.1857 0.1387 0.1914 0.1291
2–3 0.7298 0.0096 0.0315 0.0096

Total: 0.3310 0.1909

Then, we tested the distributed algorithm mentioned above in MATLAB using the CVX toolbox.
The penalty coefficient of the difference between initial demand p̂i and final supply pi, αi, was 10, 20
and 50, respectively, for each bus. The Lagrange multipliers for the active power equality constraints
are depicted in Figure 7a. Because there is power loss term in the objective function, the Lagrange
multipliers are not the real electricity price. They are called the shadow prices, and can be used
as signals to coordinate the trade. Figure 7b is the real power demand and supply on each bus.
The iterations of reactive power on lines are shown in Figure 7c. Figure 7d is the convergence of
the social utility and power loss. The optimized system data are shown in Tables 4 and 5. Table 6
compares the cost and utility of the original system and the optimized system. It is clear that, after
the optimization, the social utility is more and the power loss is less. Additionally, the distributed
algorithm can achieve the optimization solution as the central algorithm.
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Figure 7. Operation results of the distributed energy trading algorithm. (a) Trajectories of the
Lagrange multipliers; (b) Trajectories of real power on buses; (c) Trajectories of reactive power on lines;
(d) Trajectories of social utility and power loss.

Table 4. Optimized bus data.

Bus
Voltage Generation Demand

Mag (pu) P (MW) Q (MVAr) P (MW) Q (MVAr)

0 1.0000 3.9455 0.1904 - -
1 0.9356 - - 1.6696 0
2 0.9117 0.1890 0 1.4546 0
3 0.8734 - - 0.6794 0

Table 5. Optimized branch data.

Branch
Branch Power Loss

P (MW) Q (MVAr) P (MW) Q (MVAr)

0–1 1.7837 0.0522 0.1141 0.0522
0–2 2.1617 0.1351 0.1871 0.1260
2–3 0.7091 0.0091 0.0297 0.0091

Total: 0.3309 0.1873

Table 6. Comparison of original and optimized case in 1 h.

Case Bus Total Utility ($) Cost ($) Social Utility ($) Power Loss
(MWh)

Original 82.2364 52.5305 29.7059 0.3310
Centralized optimized 82.6543 52.9082 29.7461 0.3309
Distributed optimized 82.6543 52.9082 29.7461 0.3309

The optimized energy trading is compared with the original trading in 24 h, as depicted in Figure 8.
We can see that the wind power generation has a great influence on the system utility. The more
that wind generation is injected to the grid, the greater the social utility that is achieved. Moreover,
the trading mechanism encourages trading during the low valley of electricity consumption and
represses trading during the peak period. The peak cutting and valley filling performance of the
proposed trading mechanism is beneficial for the microgrid.
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5. Conclusions

In this paper, a distributed energy trading management has been proposed to optimize the utility
of a microgrid. When compared with existing publications, the demand of each LV distribution network
is forecasted by the ANN method rather than given in advance. Additionally, in the optimization of
energy trading, the power flow constraints and power loss minimization are included, rather than
only the optimizing active power. The distributed PCPM algorithm guarantees that the operators
in microgrid only need to negotiate with neighbors instead of sharing information to all. Finally,
the simulation of a four-bus microgrid with practical data demonstrates the effectiveness of the
proposed scheme.

It should be noted that the reactive power compensation is not considered in the energy trading
management. Additionally, the trading in the LV distribution network of each bus is not included.
In the future, the study of hierarchically distributed energy trading management with reactive power
compensation can be continued.

Author Contributions: The work presented in this paper is the output of the research projects undertaken by
C.L. Specifically, K.F. and C.L. developed the topic. K.F. carried out the calculation and simulation, analyzed the
results, and wrote the paper. Z.S. gave some suggestions on the calculation process.

Funding: This work was funded in part by a grant (Project No. CityU21201216) from the Research Grants Council
of Hong Kong, China. Additionally, the work was funded in part by a Teaching Development Grant (Project No.
TDG 6000675) from City University of Hong Kong, Hong Kong, China.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Flores-Quiroz, A.; Palma-Behnke, R.; Zakeri, G.; Moreno, R. A column generation approach for solving
generation expansion planning problems with high renewable energy penetration. Electr. Power Syst. Res.
2016, 136, 232–241. [CrossRef]

2. Liu, C.; Chau, K.T.; Zhang, X. An Efficient Wind–Photovoltaic Hybrid Generation System Using Doubly
Excited Permanent-Magnet Brushless Machine. IEEE Trans. Ind. Electron. 2010, 57, 831–839. [CrossRef]

3. Gao, S.; Chau, K.T.; Liu, C.; Wu, D.; Chan, C.C. Integrated Energy Management of Plug-in Electric Vehicles in
Power Grid With Renewables. IEEE Trans. Veh. Technol. 2014, 63, 3019–3027. [CrossRef]

http://dx.doi.org/10.1016/j.epsr.2016.02.011
http://dx.doi.org/10.1109/TIE.2009.2022511
http://dx.doi.org/10.1109/TVT.2014.2316153


Energies 2019, 12, 3494 14 of 15

4. Li, Y.; Zhao, T.; Liu, C.; Zhao, Y.; Yu, Z.; Li, K.; Wu, L. Day-Ahead Coordinated Scheduling of Hydro and
Wind Power Generation System Considering Uncertainties. IEEE Trans. Ind. Appl. 2019, 55, 2368–2377.
[CrossRef]

5. Jiaqiang, E.; Liu, G.; Liu, T.; Zhang, Z.; Zuo, H.; Hu, W.; Wei, K. Harmonic response analysis of a large dish
solar thermal power generation system with wind-induced vibration. Sol. Energy 2019, 181, 116–129.

6. Li, J.; Chau, K.T.; Jiang, J.Z.; Liu, C.; Li, W. A New Efficient Permanent-Magnet Vernier Machine for Wind
Power Generation. IEEE Trans. Magn. 2010, 46, 1475–1478. [CrossRef]

7. Liu, G.; Ollis, T.B.; Xiao, B.; Zhang, X.; Tomsovic, K. Distributed energy management for community
microgrids considering phase balancing and peak shaving. IET Gener. Transm. Distrib. 2019, 13, 1612–1620.
[CrossRef]

8. Zou, Y.; Dong, Y.; Li, S.; Niu, Y. Multi-time hierarchical stochastic predictive control for energy management
of an island microgrid with plug-in electric vehicles. IET Gener. Transm. Distrib. 2019, 13, 1794–1801.
[CrossRef]

9. Liu, C.; Chau, K.T.; Diao, C.; Zhong, J.; Zhang, X.; Gao, S.; Wu, D. A new DC micro-grid system using
renewable energy and electric vehicles for smart energy delivery. In Proceedings of the 2010 IEEE Vehicle
Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–6.

10. Liu, C.; Zhong, J.; Chau, K. An intelligent DC micro-grid system for smart energy delivery with plug-in
BEVs and HEVs. In Proceedings of the International Electric Vehicle Symposium, EVS-25, Shenzhen, China,
5–9 November 2010.

11. Xia, Y.; Wei, W.; Yu, M.; Peng, Y.; Tang, J. Decentralized Multi-Time Scale Power Control for a Hybrid AC/DC
Microgrid With Multiple Subgrids. IEEE Trans. Power Electron. 2018, 33, 4061–4072. [CrossRef]

12. Meus, J.; Poncelet, K.; Delarue, E. Applicability of a Clustered Unit Commitment Model in Power System
Modeling. IEEE Trans. Power Syst. 2018, 33, 2195–2204. [CrossRef]

13. Wu, D.; Chau, K.T.; Liu, C.; Gao, S. Genetic Algorithm Based Cost-emission Optimization of Unit Commitment
Integrating with Gridable Vehicles. J. Asian Electr. Veh. 2012, 10, 1567–1573. [CrossRef]

14. Chen, G.; Li, C.; Dong, Z. Parallel and Distributed Computation for Dynamical Economic Dispatch. IEEE Trans.
Smart Grid 2017, 8, 1026–1027. [CrossRef]

15. Hayes, B.; Melatti, I.; Mancini, T.; Prodanovic, M.; Tronci, E. Residential Demand Management Using
Individualized Demand Aware Price Policies. IEEE Trans. Smart Grid 2017, 8, 1284–1294. [CrossRef]

16. Cobos, N.G.; Arroyo, J.M.; Street, A. Least-Cost Reserve Offer Deliverability in Day-Ahead Generation
Scheduling Under Wind Uncertainty and Generation and Network Outages. IEEE Trans. Smart Grid 2018, 9,
3430–3442. [CrossRef]

17. Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938.
[CrossRef]

18. Xu, F.Y.; Cun, X.; Yan, M.; Yuan, H.; Wang, Y.; Lai, L.L. Power market load forecasting on neural network
with beneficial correlated regularization. IEEE Trans. Ind. Inform. 2018, 14, 5050–5059. [CrossRef]

19. Kunwar, N.; Yash, K.; Kumar, R. Area-load based pricing in DSM through ANN and heuristic scheduling.
IEEE Trans. Smart Grid 2013, 4, 1275–1281. [CrossRef]

20. Liu, D.; Sun, Y.; Qu, Y.; Li, B.; Xu, Y. Analysis and Accurate Prediction of User’s Response Behavior in
Incentive-Based Demand Response. IEEE Access 2018, 7, 3170–3180. [CrossRef]

21. Liu, Y.; Yuen, C.; Hassan, N.U.; Huang, S.; Yu, R.; Xie, S. Electricity Cost Minimization for a Microgrid With
Distributed Energy Resource Under Different Information Availability. IEEE Trans. Ind. Electron. 2015, 62,
2571–2583. [CrossRef]

22. Li, C.; Bosio, F.d.; Chen, F.; Chaudhary, S.K.; Vasquez, J.C.; Guerrero, J.M. Economic Dispatch for Operating
Cost Minimization Under Real-Time Pricing in Droop-Controlled DC Microgrid. IEEE J. Emerg. Sel. Top.
Power Electron. 2017, 5, 587–595. [CrossRef]

23. Chen, F.; Chen, M.; Li, Q.; Meng, K.; Zheng, Y.; Guerrero, J.M.; Abbott, D. Cost-Based Droop Schemes for
Economic Dispatch in Islanded Microgrids. IEEE Trans. Smart Grid 2017, 8, 63–74. [CrossRef]

24. Valdez, F.; Melin, P.; Castillo, O. An improved evolutionary method with fuzzy logic for combining particle
swarm optimization and genetic algorithms. Appl. Soft Comput. 2011, 11, 2625–2632. [CrossRef]

25. Precup, R.E.; David, R.C.; Petriu, E.M.; Szedlak-Stinean, A.I.; Bojan-Dragos, C.A. Grey wolf
optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity.
IFAC-PapersOnLine 2016, 49, 55–60. [CrossRef]

http://dx.doi.org/10.1109/TIA.2019.2893836
http://dx.doi.org/10.1109/TMAG.2010.2044636
http://dx.doi.org/10.1049/iet-gtd.2018.5881
http://dx.doi.org/10.1049/iet-gtd.2018.5332
http://dx.doi.org/10.1109/TPEL.2017.2721102
http://dx.doi.org/10.1109/TPWRS.2017.2736441
http://dx.doi.org/10.4130/jaev.10.1567
http://dx.doi.org/10.1109/TSG.2016.2623980
http://dx.doi.org/10.1109/TSG.2016.2596790
http://dx.doi.org/10.1109/TSG.2016.2632622
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1109/TII.2017.2789297
http://dx.doi.org/10.1109/TSG.2013.2262059
http://dx.doi.org/10.1109/ACCESS.2018.2889500
http://dx.doi.org/10.1109/TIE.2014.2371780
http://dx.doi.org/10.1109/JESTPE.2016.2634026
http://dx.doi.org/10.1109/TSG.2016.2581488
http://dx.doi.org/10.1016/j.asoc.2010.10.010
http://dx.doi.org/10.1016/j.ifacol.2016.07.089


Energies 2019, 12, 3494 15 of 15

26. Abed-alguni, B. Island-based Cuckoo Search with Highly Disruptive Polynomial Mutation. Int. J. Artif. Intell.
2019, 17, 57–82.

27. Shams, M.; Rashedi, E.; Dashti, S.; Hakimi, A. Ideal gas optimization algorithm. Int. J. Artif. Intell. 2017, 15,
116–130.

28. Farivar, M.; Low, S.H. Branch flow model: Relaxations and convexification—Part I. IEEE Trans. Power Syst.
2013, 28, 2554–2564. [CrossRef]

29. Li, N.; Chen, L.; Low, S.H. Optimal demand response based on utility maximization in power networks. In
Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011;
pp. 1–8.

30. Chung, K.H.; Kim, B.H.; Hur, D. A new approach to generation scheduling in interconnected power systems
using predictor-corrector proximal multiplier method. Electr. Eng. 2012, 94, 177–186. [CrossRef]

31. Kim, B.H.; Baldick, R. A comparison of distributed optimal power flow algorithms. IEEE Trans. Power Syst.
2000, 15, 599–604. [CrossRef]

32. ISO New England (ISO-NE) Home Page. Available online: https://www.iso-ne.com/ (accessed on 4 September 2019).
33. Glover, J.D.; Sarma, M.S.; Overbye, T. Power System Analysis & Design; SI Version; Cengage Learning:

stamford, CT, USA, 2012.
34. Independent Electricity System Operator (IESO) Home Page. Available online: www.ieso.ca/ (accessed on

4 September 2019).
35. Matpower Home Page. Available online: https://matpower.org/ (accessed on 4 September 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRS.2013.2255317
http://dx.doi.org/10.1007/s00202-012-0235-9
http://dx.doi.org/10.1109/59.867147
https://www.iso-ne.com/
www.ieso.ca/
https://matpower.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Microgrid System 
	Power Flow Constraints 
	Demand Forecasting Using Artificial Neural Network Method 
	Social Utility Maximization 

	Distributed Energy Trading Management Scheme 
	Introduction of Predictor Corrector Proximal Multiplier Method 
	Distributed Solution Method 
	Solving Supplier Cost Minimization 
	Solving Buses Utility Maximization 

	Algorithm Design and Implementation 

	Evaluation 
	Demand Forecasting Results 
	Energy Trading Results 

	Conclusions 
	References

