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Abstract: The poroelastodynamic failure of a wellbore due to periodic loading during drilling is
an unsolved problem. The conventional poroelastic method to calculate the stress distribution
around wellbore is for static loading cases and cannot be used for short-time dynamic-loading cases
which result in wave propagation in the formation. This paper formulates a poroelastodynamic
model to characterize dynamic stress and pressure wave due to periodic loadings and to analyze
the transient failure of the suddenly drilled wellbore in a non-hydrostatic stress field. The fully
coupled poroelastodynamic model was developed based on the equations of motion, fluid flow
and constitutive equations to reflect stress and pressure waves that resulted from a periodic stress
perturbation at the wellbore surface. The model was analytically solved by means of field expansions
of the solutions, by performing a Laplace transform as well as some special techniques. Simulation
results show that the pressure and stress responses inside the formation resemble a damped oscillator
where the amplitude decays as the distance to wellbore increases. Especially the potential shear
failure zone around the wellbore was computed and plotted. Influences of poroelastic parameters,
in-situ stress and periodic load parameters on the shear failure responses were analyzed in a detailed
parametric study, and the results provide fundamental insights into wellbore stability maintenance in
different reservoirs.

Keywords: periodic stress; wellbore instability; poroelastodynamics; shear failure

1. Introduction

Wellbore instability can cause many substantial problems during drilling, such as stuck pipe and
lost circulation. Overall, problems related to wellbore collapse account for 5–10% of drilling costs
in exploration and production, which are hundreds of million dollars per year, when considering
time loss and the rental of drilling equipment [1]. Drilling a wellbore in a formation results in the
redistribution of the stress around the borehole. The maximum compressive stress usually occurs as
the hoop stress at the wellbore surface in the direction of the minimum principal stress. When the
shear stress exceeds the shear strength of the rock near the wellbore, shear failure happens. If the
failed rock exceeds the cleaning capacity of the mud circulation, the excessive failed rock can cause
stuck drill pipe or bottom-hole assembly. Sometimes, wellbore collapse can result in sidetracked holes
and abandoned wells, which means a great loss in oil and gas industry. Therefore, wellbore stability
analysis is vital to safe and effective drilling and production. Wellbore stability analysis requires the
information on stress distribution around the wellbore.

Study on stress distribution around a wellbore can be traced back to the Kirsch solution [2], which
is used to calculate the stress distribution near a circular hole in an infinite plate. Based on Kirsch’s
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work, Bradley [3] presented an analytical solution of wellbore stress distribution. This solution is
used as the standard approach to obtain stress distribution by researchers [1,4,5]. However, it can
only be used for static loading analyses. Several commonly used failure criteria for wellbore collapse
have also been developed, such as Mohr-Coulomb failure criterion, Modified Lade failure criterion,
von Mises criterion and Drucker-Prager failure criterion [1]. In fact, loadings inside the wellbore are
more often dynamic than static. The periodic loads applied at the borehole surface during drilling can
generate stress and pressure waves. In this regard, the inertial effect of the solid-fluid system has to be
taken into account [6]. Detournay and Cheng [7] proposed an analytical method for calculation of
wellbore stress distribution considering poroelastic effect and studied the failure initiation on the basis
of stress distribution. Zamanipour et al. [8] investigated the wellbore stress distribution and wellbore
stability when transient surge stress is generated in a directional wellbore during tripping process.
Zhang et al. [9] conducted wellbore stability analysis by coupling transient swab/surge model and
poromechanical solution during tripping and reaming processes and proposed a work flow to obtain
safe mud-weight window. Meng et al. [10] developed a coupled poroelastodynamic model to obtain
dynamic stress distribution around the wellbore.

One of the salient features of the poroelastic response is the generation and dissipation of excess
pore water pressure under applied loadings, and wave propagation is induced from various external
disturbances such as periodic surge/swab pressure during drilling [11,12]. Biot developed the theory
of wave propagation in poroelastic materials by adding the inertia terms to his three-dimensional
consolidation theory [13–15]. Over the past decades, Biot’s theory of poroelastodynamics has been used
by many researchers and the scientific groundwork for the model has been more firmly established
through some experimental validations of its most fundamental predictions [16–18]. A detailed review
on formulation and development of Biot’s theory of poroelastodynamics with some analytical solutions
can be found in [19].

An important class of problems encountered in dynamic response of using poroelastodynamics is
related to the study of wave propagation from an underground borehole. However, some studies on
the poroelastodynamics are limited to axisymmetric cases, thus, the problems can be simplified to one
dimension (1D) [20–22]. In reality, the original formation is subjected to a non-hydrostatic stress field
and the stress release at the wellbore surface after drilling includes radial and shear stress. The early
1D simplification is incapable of analyzing the shear stress wave propagation in the formation so that
it limits the application of the poroelastodynamic model in the engineering field. Two-dimensional
(2D) problems are also investigated by a few researchers in recent years. Liu et al. [23] theoretically
investigated the scattering of an elastic wave by a cylindrical shell embedded in a poroelastic
medium. They employed the normal mode expansion technique for analyzing the scattering field.
Hasheminejad and Kazemirad [24] studied the dynamic response of a permeable circular tunnel lining
of circumferentially varying wall thickness buried in an unbounded porous elastic fluid-saturated
formation. Particularly, they studied the two-dimensional dynamic interaction of monochromatic
progressive plane compressional and shear seismic waves. They used the Helmholtz decomposition
theorem to resolve the displacement fields as a superposition of longitudinal and transverse vector
components. Xia et al. [25] presented an exact closed-form solution for poroelastodynamic response of
a borehole in a non-hydrostatic stress field and the solution was decomposed into an axisymmetric
mode and an asymmetric mode. However, they considered a constant pressure at the wellbore surface
and the shear failure response was not analyzed.

More recently, Senjuntichai et al. [26] used poroelastodynamic model to investigate
three-dimensional (3D) dynamic response of a multilayered poroelastic medium subjected to
time-harmonic loading in Cartesian coordinate system. Keawsawasvong and Senjuntichai [27]
presented dynamic fundamental solutions of a transversely isotropic poroelastic half-plane subjected
to time harmonic buried loads and fluid sources. In drilling engineering, a periodic load during
drilling is a common occurrence. Although the equations of poroelastodynamics were put forward
by Biot very early, it is still challenging to study the transient responses of a wellbore subjected to
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a non-hydrostatic in-situ stress field and a periodic load during drilling. The problem becomes the
superposition of an axisymmetric mode and an asymmetric mode, and the periodic boundary condition
further amplifies the complexity of the problem. To the best of our knowledge, this challenge has not
been addressed directly.

In this paper, we consider the poroelastodynamic failure of a wellbore due to periodic loading
during drilling; the wellbore is embedded into a formation that is characterized by non-hydrostatic
horizontal far-field stresses. The poroelastodynamic model is developed based on Biot’s theory, and we
present a novel solution to the model. The stress and pressure waves in the formation resulted from a
periodic stress perturbation at the wellbore surface are analyzed in detail, and the results show that the
pressure and stress responses inside the formation resemble a damped oscillator where the amplitude
decays as the distance to wellbore increases. It is noteworthy that the pore pressure reaches its peak
at a certain time and location, while the conventional poroelastic theory always fails to discover this
phenomenon due to the lack of consideration of solid-fluid acceleration. The shear failure response has
also been studied. Finally, the influences of poroelastic parameters, in-situ stress and periodic load
parameters on the shear failure responses are analyzed in a detailed parametric study. The model
and results presented in this paper provide fundamental insights into wellbore instability in different
reservoirs, and suggestions are made on maintaining wellbore stability.

2. Mathematical Formulation

To find the governing equations for transient response of a wellbore subjected to dynamic loadings,
a fundamental knowledge of poroelastodynamics is required. In this section, we consider a vertical
borehole drilled in a poroelastic formation characterized by non-hydrostatic horizontal far-field stresses,
and a periodic load is applied at the borehole surface, as shown in Figure 1. The definitions of all
the symbols that have physical meanings are given in Table A1 in Appendix A. σyy and σxx are
the maximum and minimum horizontal in-situ stresses, respectively. It should be noted that the
directions of maximum and minimum horizontal in-situ stresses in the figures of stress or pore pressure
distribution and figures of shear failure zone distribution are in accordance with Figure 1.
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Figure 1. Borehole in a non-hydrostatic stress field (from Xia et al. [25]), the load applied at the wellbore
surface is periodic.

2.1. Constitutive and Dynamic Equations

Assuming the rock to be a linear-elastic, isotropic and saturated porous medium and considering
the effect of deformation on the balance of mass, the constitutive equations for linear poroelasticity,
could be written as follows (note that tension is here taken as positive) [7]:

σi j = 2µei j + λeδi j − αpδi j (1)

p = M(ζ− αe) (2)
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where σi j and ei j are the total stress and strain components, respectively; e is the volumetric strain; p is
the excess pore water pressure; δi j is the Kronecker delta, which equals 1 when i = j or equals 0 when
i , j; λ and µ are the Lame constants and µ is also called shear modulus; ζ is the increment of pore
fluid per unit volume; α and M are the Biot effective stress coefficient and Biot modulus, respectively,
which have the relations α = 1−K/Ks and 1/M = φ/K f + (1−φ)/Ks, where Ks and K f are the bulk
modulus of solid grains and pore fluid, respectively; K = λ+ 2µ/3 is the drained bulk modulus of the
porous medium. Compared to underground in-situ stress and pore pressure, body forces are negligible
in the case studied. In the absence of body forces, the dynamic equations of motion can be written
as [25]:

∂σrr

∂r
+

1
r
∂σrθ
∂θ

+
σrr − σθθ

r
= ρ

∂2ur

∂t2 + ρ f
∂2wr

∂t2 (3)

1
r
∂σθθ
∂θ

+
∂σrθ
∂r

+
2σrθ

r
= ρ

∂2uθ
∂t2 + ρ f

∂2wθ
∂t2 (4)

where ρ and ρ f are density of porous medium and fluid, respectively; t is time; r is radius defined in
Figure 1; ur, uθ, wr, wθ are the displacement components of solid and fluid, respectively; σrr, σθθ, σrθ
are the radial stress, hoop stress and shear stress, respectively. The subscripts r and θ refer to the radial
and azimuthal components, respectively. Substituting Equation (1) and Equation (2) into Equation (3)
and Equation (4), we have the governing equations in displacement form in polar coordinates:

µ∇2ur −
µ

r2

(
2∂uθ
∂θ

+ ur

)
+ (λ+ µ)

∂e
∂r
− α

∂p
∂r

= ρ
..
ur + ρ f

..
wr (5)

µ∇2uθ −
µ

r2

(
uθ −

2∂ur

∂θ

)
+ (λ+ µ)

∂e
r∂θ
− α

∂p
r∂θ

= ρ
..
uθ + ρ f

..
wθ (6)

It is noted that two “·” on top of a variable means the second derivative of the variable with respect
to time and similarly, one “·” on top means the first derivative of the variable with respect to time.

2.2. Fluid Flow Equation

The rates of total changes of the porous medium with respect to time satisfy the following
relationship:

1
V
∂V
∂t

=
1
V
∂Vs

∂t
+

1
V
∂Vp

∂t
=
∂e
∂t

(7)

where V, Vs, Vp are the volumes of the porous medium, solid grains and pores, respectively. The
changes of volume of soil grains and pores are given by:

1
V
∂Vs

∂t
= −

1−φ
Ks

∂p
∂t

+
1

3Ks
m
∂σ′

∂t
(8)

1
V
∂Vp

∂t
= −∇qw −

φ

K f

∂p
∂t

(9)

where m= [1 1 1 0 0 0] and σ′ = σi j −αpδi j denotes the effective stress vector of the porous medium; φ is
the porosity of the porous medium; qw is the volumetric flux of pore fluid, which is the rate of volumetric
flow across a unit area. Substituting the constitutive relation Equation (1) into Equation (8) gives:

1
V
∂Vs

∂t
= −

1−φ
Ks

∂p
∂t

+
K
Ks

∂e
∂t

(10)

Substituting Equations (8)–(10) into Equation (7) yields:

∇qw = −α
∂e
∂t
−

1
M
∂p
∂t

(11)
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Since we have ∇qw = ∇ ·
.

w, we can obtain the following formulation:

.
p = M

( .
ζ− α

.
e
)

(12)

In fluid dynamics, the water flux is given by [14]:

qw = −
κ
τ

(
∇p + ρ f

..
u +

aρ f

φ

..
w
)

(13)

Substituting Equation (13) into Equation (11) yields:

κ
τ
∇

2p = α
∂e
∂t

+
1
M
∂p
∂t
−
κρ f

τ
∇

..
u−

aρ fκ

τφ
∇

..
w (14)

where κ and τ are the permeability of the porous medium and viscosity of the fluid, respectively. a
is a non-dimensional tortuosity factor with (ρa + φρ f )/φ = aρ f , while ρa is the mass density of the
fluid added into the porous medium and ρa = cφρ f [20]. Combining Equation (2) and Equation (14)
we have:

∇p = −
τ
κ

.
w− ρ f

..
u−

aρ f

φ

..
w (15)

2.3. Dimensionless Governing Equations

With the help of Equation (5), Equation (6) and Equation (15), the governing equations in the
absence of the body force read:

(λ+ 2µ)∇2e− α∇2p =
(
ρ− ρ fα

)..
e−

ρ f

M
..
p (16)

κ
τ
∇

2p = α
∂e
∂t

+
1
M
∂p
∂t

+
κρ f

τ

(
aα
φ
− 1

)
..
e +

κρ f a

τφM
..
p (17)

In order to simplify the expressions, the physical quantities are non-dimensionalized as follows:

r =
r

rw
, u =

u
rw

, t =
1
rw

√
λ+ 2µ
ρ

t, p =
α

λ+ 2µ
p, σi j =

1
λ+ 2µ

σi j (18)

where rw is the radius of the borehole. It is noted that symbols with “–” on top are dimensionless
parameters or quantities. The dimensionless form of Equation (16) and Equation (17) reads:

∇
2
e−∇

2
p = Φ1

..
e + Φ2

..
p (19)

∇
2
p = Ω1

.
e + Ω2

.
p + Φ3

..
e + Φ4

..
p (20)

where the dimensionless quantities are listed as follows:

∇
2
=

∂2

∂r2 +
1
r
∂

∂r
+

1

r2
∂2

∂θ2 (21)

Ω1 =
α2τrw

κ
√
ρ(λ+ 2µ)

, Ω2 =
τrw

√
λ+ 2µ

Mκ
√
ρ

(22)

Φ1 =
ρ− αρ f

ρ
, Φ2 = −

ρ f (λ+ 2µ)

ραM
, Φ3 =

ρ fα(aα−φ)

ρφ
, Φ4 =

ρ f a(λ+ 2µ)

φMρ
(23)
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3. Solution Strategy

3.1. Field Expansions

As mentioned before, we consider a vertical wellbore drilled in a formation characterized by a
non-hydrostatic horizontal in-situ stress field, as shown in Figure 1. The problem can be considered as
an asymmetric plane strain problem in polar coordinates. The original stress and pressure in polar
coordinates are:

σ0
rr = −

(
P0 − S0 cos 2θ

)
(24)

σ0
θθ = −

(
P0 + S0 cos 2θ

)
(25)

σ0
rθ = −S0 sin 2θ (26)

p0 = p0 (27)

where P0 and S0 are the far-field mean and deviatoric parts of the stresses; p0 is the unperturbed pore
pressure; θ is the angle defined in Figure 1. The superscript 0 represents the original value. With
the consideration of symmetry, as used in the poroelastic theory [28–30], the field expansions of the
solutions should be sought to have the following form according to the far-field stresses:

{
e, ur, σrr, σθθ, p

}
=

{
e(0), u(0)

r , σ(0)rr , σ(0)
θθ

, p(0)
}
+

{
e(2), u(2)

r , σ(2)rr , σ(2)
θθ

, p(2)
}

cos 2θ (28)

{
uθ, σrθ

}
=

{
u(2)
θ

, σ(2)rθ

}
sin 2θ (29)

where the superscript (0) represents the axisymmetric mode solution, while (2) represents the
asymmetric mode solution resulting from the far-field deviatoric part of the stress.

3.2. Solutions in the Laplace Domain

The Laplace transform technique is used to solve the governing equations. By applying the Laplace
transformation to Equation (19) and Equation (20), we obtain the transformed governing equations:[

1 −1
0 1

] ∇
2
nẽn

∇
2
np̃n

 =

[
s2Φ1 s2Φ2

sΩ1 + s2Φ3 sΩ2 + s2Φ4

] ẽn

p̃n

 (30)

In each mode n(n = 0, 2), the transformed variables satisfy the dimensionless governing equations.
Equation (30) can be decoupled and solved:

ẽn = AnKn(β1r) + BnKn(β2r) (31)

p̃n = χ1AnKn(β1r) + χ2BnKn(β2r) (32)

where:

βi =
ξ1 ±

√
ξ2

1 − 4ξ2

2
(33)

χi =
β2

i − s2Φ1

β2
i + s2Φ2

(34)

ξ1 = s
(
Ω1 + Ω2

)
+ s2

(
Φ1 + Φ3 + Φ4

)
(35)

ξ2 = s3
(
Φ1Ω2 + Φ1Φ4s−Φ2Ω1 −Φ2Φ3s

)
(36)
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An and Bn are parameters depending only on s and can be determined by boundary conditions.
Combining Equations (5), (6) and (15) and performing non-dimensionalization and Laplace
transformation result in the following coupled equations:

∇
2
ũrn −

1

r2

(
2nũθn + ũrn

)
+ Ψ1

∂̃en

∂r
+ Ψ2

∂̃pn

∂r
= Ψ

2
3ũrn (37)

−∇
2
ũθn +

1

r2

(̃
uθn + 2nũrn

)
+ Ψ1

ñen

r
+ Ψ2

ñpn

r
= −Ψ

2
3ũθn (38)

where:

Ψ1 =
λ+ µ

µ
, Ψ2 =

(
1−Φ1

)
(λ+ 2µ)s2

µαη
−
λ+ 2µ
µ

, Ψ
2
3 =

λ+ 2µ
µ

s2
−

(
1−Φ1

)2
(λ+ 2µ)s4

µαη
(39)

η =
Ω1s
α

+
Ω1Φ4s2

αΩ2
(40)

A technique is used to eliminate the displacement curl that the displacement components can be
mapped into the following functions [29]:

Πn = ũrn − ũθn (41)

Λn = ũrn + ũθn (42)

After some algebraic manipulations involving Equations (31), (32), (37) and (38), we can obtain
the governing equations of the modified displacement functions Πn and Λn:(

∇
2
n−1 −Ψ

2
3

)
Πn = ∆1β1AnKn−1(β1r) + ∆2β2BnKn−1(β2r) (43)

(
∇

2
n+1 −Ψ

2
3

)
Λn = ∆1β1AnKn+1(β1r) + ∆2β2BnKn+1(β2r) (44)

where:

∆i = Ψ1 + Ψ2χi = −
β2

i −Ψ
2
3

β2
i

(45)

Through the solution of ordinary differential equations, Equations (43) and (44), which involves
some manipulations, we can obtain the general expressions for the displacement components in the
Laplace transform domain, and the dynamic stress distribution finally yields:

σ̃
n
rr = An

{
λ

2β1r [Kn−1(β1r) + Kn+1(β1r)] + λn2

β2
1r2 Kn(β1r) + (1− χ1)Kn(β1r)

}
+Bn

{
λ

2β2r [Kn−1(β2r) + Kn+1(β2r)] + λn2

β2
2r2 Kn(β2r) + (1− χ2)Kn(β2r)

}
+Cn

{
nλ
r2 Kn

(
Ψ3r

)
+ nΨ3λ

2r

[
Kn−1

(
Ψ3r

)
+ Kn+1

(
Ψ3r

)]} (46)

σ̃
n
θθ = An

{
−
λ
4 [Kn−2(β1r) + 2Kn(β1r) + Kn+2(β1r)] + (1− χ1)Kn(β1r)

}
+Bn

{
−
λ
4 [Kn−2(β2r) + 2Kn(β2r) + Kn+2(β2r)] + (1− χ2)Kn(β2r)

}
+Cn

{
−

nΨ3
2r

[
Kn−1

(
Ψ3r

)
+ Kn+1

(
Ψ3r

)]
−

nλ
r2 Kn

(
Ψ3r

)} (47)
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σ̃
n
rθ = An

{
nλ

2β1r [Kn−1(β1r) + Kn+1(β1r)] + λn
β2

1r2 Kn(β1r)
}

+Bn

{
nλ

2β2r [Kn−1(β2r) + Kn+1(β2r)] + λn
β2

2r2 Kn(β2r)
}

+Cn


n2λ
2r2 Kn

(
Ψ3r

)
+ Ψ3λ

4r

[
Kn−1

(
Ψ3r

)
+ Kn+1

(
Ψ3r

)]
+

Ψ
2
3λ
8

[
Kn−2

(
Ψ3r

)
+ 2Kn

(
Ψ3r

)
+ Kn+2

(
Ψ3r

)]


(48)

3.3. Boundary Conditions

The analytical solutions presented above, together with the appropriate boundary conditions
at the wellbore, can be used to analyze the transient failure responses. We consider the drilling of
a vertical borehole by a bit generates periodic loads at the bottom hole (the Sinusoidal and Cosine
loads are considered in this paper). In the axisymmetric mode (n = 0), C0 = 0 and the remaining two
constants A0 and B0 can be computed by the radial stress and pore pressure boundary conditions.
If we assume a Sinusoidal oscillation of the bottom-hole pressure around a constant value pw with an
amplitude 2L and an angular frequency ω (as shown in Figure 2), then the stress and pore pressure
boundary conditions in the axisymmetric mode (n = 0) can be written in the Laplace domain:

σ̃
0
rr(1, s) =

1
s

(
P0 − pw

)
−

ωL
s2 +ω2 (49)

p̃0(1, s) =
1
s

(
pw − p0

)
+

ωL
s2 +ω2 (50)
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In the asymmetric mode (n = 2), the stress release at the wellbore results from the deviatoric parts
of the far-field stress. After drilling, the rotational waves are coupled with compressional waves to
propagate into the formation. The three constants A2, B2, C2 should be determined by the trigonometric
part of radial stress, hoop stress and pore pressure applied at the wellbore surface after removing the
far-field values, which can be expressed in the Laplace domain as:

σ̃
2
rr(1, s) = −

S0

s
(51)

σ̃
2
rθ(1, s) =

S0

s
(52)

p̃
2
(1, s) = 0 (53)

These boundary conditions must be used for closed solutions.



Energies 2019, 12, 3486 9 of 21

3.4. Numerical Method

The solutions presented in the Laplace domain should be carefully inverted to the real time domain.
Since the solutions reflect the wave propagation phenomenon, the method of Crump is employed
which uses a truncated Fourier series to approximate the complex inversion integral. This method
serves a more accurate algorithm particularly suitable for transient and highly oscillatory problems [31].
The method of Crump approximates the inversion integral using the following equation [25]:

f (t) =
eat

t

1
2

F(a) + Re
n∑

k=1

F
(
a +

kπ
t

i
)
(−1)k

 (54)

where i =
√
−1, and the parameters a and n must be optimized, and generally we can set at = 4.5 and

n = 100 to have a good accuracy [25]. Figure 3 shows the modeling methodology with user-defined
input parameters for a better understanding of the method proposed in this work.
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4. Stress Distribution and Failure Responses

In all the computations and plots, the stress components and pressure are scaled by the original
pore pressure value. The values of the used dimensional parameters are listed in Table 1. These values
are selected from a gas well in Keshen block in Tarim oil field.

Table 1. Parameter sets used in the calculation.

Parameter Value Parameter Value

Shear modulus µ [GPa] 10 Lame constant λ [GPa] 7

Biot coefficient α 0.6 Biot modulus M [GPa] 10

Pore fluid density ρ f [kg·m−3] 300 Rock density ρ [kg·m−3] 2800

Rock permeability κ [mD] 0.8 Pore fluid viscosity τ [Pa·s] 3 × 10−5

Tortuosity factor a 1.6 Rock porosity φ 0.06

Maximum principal stress σH [MPa] 130 Minimum principal stress σh [MPa] 100

Initial pore pressure p0 [MPa] 50 Wellbore radius rw [m] 0.1

We assume a Sinusoidal oscillation of the bottom-hole pressure that holds:

ph = pw + L sin
(
ωt

)
(55)

where the dimensional bottom-hole pressure is 50 MPa and L = 0.2pw, ω = 10.

4.1. Model Verification

Since the existing models and poroelastodynamic solutions in the literature cannot be directly
used for our problem, we first considered a simplified case where the bottom-hole pressure is constant
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and the two principal far-field stresses are the same, and thus, the problem becomes axisymmetric.
Senjuntichai and Rajapakse [32] gave the axisymmetric solutions under constant fluid pressure that can
be used in this simplified case. In our model, we considered the complex drilling conditions involving
differential stress and periodic loads and used a different approach to solve the problem. The final
solution is the superposition of an axisymmetric mode (n = 0) and an asymmetric mode (n = 2),
and the two modes have the same form of the solution. To verify our solution, we compared the
axisymmetric mode (n = 0) with the solution given by Senjuntichai and Rajapakse [32] using the input
parameters defined in Table 1. The results are shown in Figures 4 and 5 for the pressure and radial
stress, respectively, which demonstrates that the axisymmetric mode solution obtained in this paper
agrees well with the published solution [32] when the pressure is prescribed at the wellbore surface,
although the solution strategy is different. This comparison shows the validity and the robustness of
the model and solution.
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4.2. Dynamic Distributions of Stress Components and Pressure

We first examined the profiles of stress components with the two-dimensional isobaric plots for
the solutions. Figures 6–8 show the dynamic distribution of stress components in the vicinity of the
wellbore. The values in all the figures in this paper are dimensionless. It can be seen from the results
that the stress components are all characterized by wave-propagation properties during the drilling
process, and the stress perturbation applied at the wellbore surface propagates into the formation.
At an early time after drilling (t = 0.2 and t = 0.5 in Figures 6–8), a disturbance zone is observed
near the wellbore and expands as time increases. The stress components appear to fluctuate in the
disturbance zone. The stress outside the disturbance zone keeps the original state and the disturbance
boundary propagates into the formation. The propagation velocity of the disturbance boundary equals
the propagation velocity of the stress wave. It can be clearly seen from the plots that the wave velocities
of radial and hoop stress are larger than that of the shear stress. Figure 9 shows the dynamic pore
pressure distribution in the vicinity of the wellbore, which also exhibits fluctuations in the disturbance
zone. Due to the sudden release of stress at the wellbore surface, the pore pressure near the wellbore
decreases significantly at the beginning of drilling, even to a negative value. Then, due to the existence
of the differential stress, the pore pressure increases in the direction of the minimum principal stress
and gradually reaches a much higher value compared to the initial pore pressure.
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The maximum shear stress occurs in the direction of the minimum principal stress, and hence,
shear failure at the wellbore surface initiates in the direction of the minimum principal stress [5].
In order to further analyze the dynamic evolution of stress and pore pressure in the formation, we
selected three locations along the direction of minimum principal stress to analyze the time variation
of the stress and pressure. The coordinates of the selected locations are (r,θ) = (1, 0), (2, 0), (3, 0),
respectively. Figure 10 shows the pressure fluctuation at the selected locations. The pressure at r = 1 is
the given boundary condition that is a sinusoidal wave. Inside the wellbore (r = 2 and r = 3), the
pore pressure decreases at the beginning and then increases to a peak, and finally approaches stable
fluctuation. It is interesting to find the fluctuation amplitude decreases as distance increases. The
pore pressure reaches its peak at a certain time and location, while the conventional poroelastic theory
always fails to discover this phenomenon due to the lack of consideration of solid-fluid acceleration.
Figure 11 shows the variation of radial stress with time at selected locations. The model in this paper
assumes compression as negative, thus, the computed stresses are all negative. The radial stress at the
wellbore surface equals the given pressure boundary condition. When the stress wave propagates to a
certain location, the radial stress increases from the initial value at the beginning and then decreases,
and finally approaches to stable fluctuation. Figure 12 shows the hoop stress fluctuation at the selected
locations. Because the hoop stress is not given at the wellbore surface and the radial stress is suddenly
released, the hoop compressive stress at the wellbore surface increases rapidly after drilling. The
magnitudes of radial stress as well as hoop stress decrease as distance increases.Energies 2019, 12, x FOR PEER REVIEW 13 of 21 
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4.3. Failure Responses

We consider shear failure mode with the Mohr Coulomb criteria in this section to analyze the
transient failure response. The failure criteria can be written as [28]:

F =

∣∣∣− tanϕ(σ1 + σ3) + 2Ct
∣∣∣√

tan2 ϕ+ 1
− σ3 + σ1 ≤ 0 (56)

where ϕ is the internal friction angle and Ct s the cohesion; σ1 and σ3 are the maximum and minimum
principal stresses, respectively. We assume ϕ = 20◦ and Ct = 10 MPa. We first examine the dynamic
profiles of the differential stress, i.e., σ1 − σ3 at different times, and the results are shown in Figure 13.
The differential stress at the wellbore surface is small at the beginning of drilling, and becomes larger in
the direction of minimum principal stress as time increases, which results in a high-risk zone of shear
failure. Figure 14 shows the variation of the differential stress with time at three selected locations
in the direction of minimum principal stress and the coordinates are (r,θ) = (1, 0), (1.2, 0), (1.5, 0).
The differential stress also exhibits fluctuation characteristic at selected locations. However, different
from the stress components, the amplitude of the differential stress almost keeps the same as distance
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increases. It is in accordance with expectation that the differential stress decreases with distance; thus,
the shear failure is most likely to occur at the wellbore surface. Figure 15 shows the dynamic shear
failure zone distribution in the vicinity of the wellbore. The values in the figures of shear failure zone
distribution correspond to F in Equation (56). When F is greater than 0, dynamic shear failure occurs,
and a greater F value means more severe shear failure. At the beginning (t = 0.2), the wellbore is
stable. As time increases, the stress wave propagates into the formation, and a symmetrical failure zone
appears in the direction of the minimum principal stress, and the area of the failure zone gradually
increases. In the following subsections, the influences of poroelastic parameters, in-situ stress and
periodic load parameters on the shear failure responses are analyzed in a detailed parametric study.
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right: t = 0.2, t = 0.5, t = 2, t = 10.

4.3.1. Effect of Poroelastic Parameters

We investigate the shear failure response under various sets of poroelastic parameters, while
keeping the rest at their baseline values: (i) the Lamé constant λ; (ii) the Biot coefficient α; (iii) the Biot
modulus M; (iv) the rock permeability κ. For a completely dry porous medium M = 0, whereas for a
material with incompressible constituents we have M→∞ and α→ 1 . The shear failure modes in
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response to different values of poroelastic parameters are plotted in Figures 16–19, and each figure
corresponds to variation in one of the four sets of parameters (i)–(iv). Among the four poroelastic
parameters, the Lamé constant λ has the slightest effect on the area of failure zone. A larger value of α
or M slightly enlarges the area of failure zone in the direction of the minimum principal stress. It is
interesting to observe that a small value of M (for example a gas reservoir) can cause a slight failure
along the diagonal direction, which is isolated near the wellbore. A higher permeability κ enables a
higher speed of pressure diffusion so that it will shrink the failure area in the direction of the minimum
principal stress and the wellbore becomes more stable.
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Figure 16. Shear failure zone distribution in the vicinity of the wellbore at different values of λ, from
left to right: λ = 2 GPa, λ = 5 GPa, λ = 20 GPa.
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Figure 17. Shear failure zone distribution in the vicinity of the wellbore at different values of α, from
left to right: α = 0.5, α = 0.7, α = 0.9.
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Figure 18. Shear failure zone distribution in the vicinity of the wellbore at different values of M, from
left to right: M = 1 GPa, M = 10 GPa, M = 100 GPa.
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4.3.2. Effect of In-Situ Stress

In this subsection, we compute the shear failure responses under different in-situ stress states.
Figure 20 shows the failure zone distribution in the vicinity of the wellbore with different deviatoric
part of the stress while the mean part of the stress keeps the same. It can be seen from the plot that
a larger differential stress results in a much more severe failure around the wellbore, especially in
the diagonal direction. Figure 21 shows the failure zone distribution with different mean part of the
stress while the deviatoric part of the stress keeps the same. It is interesting to find that a higher stress
state with the same differential value results in a more severe failure response in the direction of the
minimum principal stress; however, a smaller stress state can cause a slight failure along the diagonal
direction, which is connected with the wellbore and greatly increases the area of the shear failure zone.
Generally, a larger mean value of the original principal stress always indicates a deeper reservoir. We
can conclude that a more severe wellbore instability occurs to a shallow reservoir compared to a deep
reservoir, when the differential stress is the same.

Energies 2019, 12, x FOR PEER REVIEW 16 of 21 

 

Figure 18. Shear failure zone distribution in the vicinity of the wellbore at different values of M , 

from left to right: 1GPaM = , 10GPaM = , 100GPaM = . 

 

Figure 19. Shear failure zone distribution in the vicinity of the wellbore at different values of  , 

from left to right: 1mD = , 0.1mD = , 0.01mD = . 

4.3.2. Effect of In-Situ Stress 

In this subsection, we compute the shear failure responses under different in-situ stress states. 

Figure 20 shows the failure zone distribution in the vicinity of the wellbore with different deviatoric 

part of the stress while the mean part of the stress keeps the same. It can be seen from the plot that a 

larger differential stress results in a much more severe failure around the wellbore, especially in the 

diagonal direction. Figure 21 shows the failure zone distribution with different mean part of the 

stress while the deviatoric part of the stress keeps the same. It is interesting to find that a higher 

stress state with the same differential value results in a more severe failure response in the direction 

of the minimum principal stress; however, a smaller stress state can cause a slight failure along the 

diagonal direction, which is connected with the wellbore and greatly increases the area of the shear 

failure zone. Generally, a larger mean value of the original principal stress always indicates a 

deeper reservoir. We can conclude that a more severe wellbore instability occurs to a shallow 

reservoir compared to a deep reservoir, when the differential stress is the same. 

 

Figure 20. Shear failure zone distribution in the vicinity of the wellbore at different in-situ stress 

states with different deviatoric parts of the stress. 

 

Figure 21. Shear failure zone distribution in the vicinity of the wellbore at different in-situ stress 

states with different mean parts of the stress. 
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with different deviatoric parts of the stress.
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Figure 21. Shear failure zone distribution in the vicinity of the wellbore at different in-situ stress states
with different mean parts of the stress.

4.3.3. Effect of Periodic Loads

In this subsection, we analyze the effect of the parameter value of the given periodic load on
the failure responses. We assume the bottom-hole pressure is periodically fluctuating, which can be
caused by trips or bit vibration during drilling. The load is applied at the wellbore surface and can be
mathematically described by a simple Sinusoidal function as shown in Equation (55). We considered
three parameters: the mean value of the load pw, the angular frequency of the Sinusoidal load ω and
the amplitude of the Sinusoidal load L. The load is non-dimensionalized by the initial pore pressure
p0. We first considered three cases: (i) pw = 0.9 < 1, corresponding to an underbalanced drilling; (ii)
pw = 1, corresponding to a balanced drilling; (iii) pw = 1.1 > 1, corresponding to an overbalanced
drilling. Figure 22 shows the shear failure responses under the three conditions. Unsurprisingly,
increasing the bottom-hole pressure helps maintain the wellbore stability. We then investigate the
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effect of the frequency of the periodic load on the failure response, and the results are shown in
Figure 23. It is noteworthy that the failure is more severe at a certain value of the load frequency, and
the area of the failure zone reaches a peak when ω = 10. The effect of amplitude of the Sinusoidal
load is also examined, which is found to be negligible on the shear failure response, as shown in
Figure 24. For further investigation, we calculate the differential stress at two selected locations in the
direction of minimum principal stress, and the results are shown in Figure 25. The amplitude of the
differential stress is found to be much smaller than the load amplitude, indicating that subtraction of
the principal stress reduces the wave amplitude and decreases the risk of wellbore instability due to
wave propagation.
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Figure 22. Shear failure zone distribution in the vicinity of the wellbore at different values of pw, from
left to right: pw = 0.9, pw = 1, pw = 1.1.
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Based on the results of the parametric study, we found that the in-situ stress, especially the
differential stress, is the most critical parameter for wellbore stability. Moreover, the Biot coefficient α,
Biot modulus M, permeability κ, bottom-hole pressure pw and the frequency of the Sinusoidal load
ω also impact the area of shear failure zone. Meanwhile, the Lamé constant λ and the amplitude of
the Sinusoidal load 2L have the slightest effect on the shear failure response. Thus, their effect can be
ignored in practical analysis of wellbore stability.

5. Conclusions

This paper presents a poroelastodynamic model that is based on Biot’s theory to study transient
stress distribution and failure response of a wellbore subjected to periodic loading during drilling.
In response to the periodic load perturbation at the wellbore surface, pressure and stress waves are
created and propagate into the formation. The wave phenomenon is characterized by introducing
solid-fluid acceleration term into the coupling mass conservation equation. The solutions are obtained
in the Laplace domain through a new method and inverted numerically to the real time domain
using a reliable numerical scheme. The results show that a disturbance zone is created after drilling.
Inside the disturbance zone, pressure and stress waves propagate; outside the disturbance zone, the
pressure and stress keep the original state. The disturbance zone expands over time. When the stress
waves propagate to a certain location, the pore pressure, radial and hoop stresses change rapidly at
the beginning, and then reach a stable fluctuation. It was found that the wave velocities of radial
stress, hoop stress and pressure are larger than that of the shear stress. It is noteworthy that pore
pressure reaches its peak at a certain time and location, while the conventional poroelastic theory
always fails to discover this phenomenon when a periodic load is applied on the wellbore due to the
lack of consideration of solid-fluid acceleration.

Through the detailed parametric study on shear failure responses, we found that a smaller value
of Biot coefficient α or Biot modulus M can shrink the area of failure zone in the direction of the
minimum principal stress and helps maintain wellbore stability. A higher permeability of a reservoir
enables a higher speed of pressure diffusion so that it will also shrink the failure area and make the
wellbore more stable. A larger differential stress of the original non-hydrostatic stress field results
in a much more severe failure around the wellbore, especially in the diagonal direction. A larger
mean value of the original non-hydrostatic stress field results in a more severe failure response in the
direction of the minimum principal stress. However, a larger mean value of the original non-hydrostatic
stress field helps to maintain stability along the diagonal direction. It is also noted that the wellbore
instability is most severe at a certain value of the load frequency, which is dependent on the reservoir
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properties. It is suggested that the simulation should be performed prior to drilling to optimize the
engineering parameters.

The model developed in this paper is 2D; however, 3D simulation is necessary for a directional
well that is drilled in a deep reservoir. To solve 3D poroelastodynamics, Fourier transformation should
be employed. One of the features in the deep reservoir is the extremely high temperature, which leads
to the thermal dilation of the solid and fluid. Thus, the coupling of heat flux is an important future
subject. In general, our model can be readily extended to 3D or thermal-poroelastodynamics.
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Appendix A

Table A1 shows the symbols with commonly used units and their definitions.

Table A1. List of symbols and definitions.

Symbol Unit Definition

r m Radius defined in Figure 1

θ Angle defined in Figure 1

rw m Radius of the borehole

P0, S0 MPa Far-field mean and deviatoric parts of the stress

ur, uθ m Displacement components of the solid

wr, wθ m Displacement components of the fluid

σi j MPa Stress component

σrr, σθθ, σrθ MPa Radial stress, hoop stress and shear stress

ei j Strain component

e Volumetric strain

p MPa Excess pore water pressure

pw MPa Constant bottom-hole pressure

ph MPa Transient bottom-hole pressure

δi j Kronecker delta. δi j = 1 when i = j and δi j = 0 when i , j

λ GPa Lame constant of the bulk material

µ GPa Shear modulus of the bulk material

ζ Increment of pore fluid per unit volume

α Biot effective stress coefficient

M GPa Biot modulus

Ks GPa Bulk modulus of solid grains

K f GPa Bulk modulus of pore fluid

K GPa Drained bulk modulus of the porous medium

ρ Kg·m−3 Density of porous medium

ρ f Kg·m−3 Density of porous fluid
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Table A1. Cont.

Symbol Unit Definition

t s Time

V, Vs, Vp m3 Volumes of the porous medium, solid grains and pores

σ′ MPa Effective stress vector of the porous medium

qw m3
·s−1
·m−2 Volumetric flux of pore fluid

ρa Kg·m−3 Mass density of the fluid added into the porous medium

φ Porosity of the porous medium

κ mD(10−15m2) Permeability of the porous medium

τ mPa·s Viscosity of the porous fluid

p0 MPa Unperturbed pore pressure

2L MPa Amplitude of stress wave

ω s−1 Angular frequency of stress wave

ϕ ◦ Internal friction angle

Ct MPa Cohesion

σH MPa Maximum principal stress

σh MPa Minimum principal stress

a Non-dimensional tortuosity factor

η, Ω1, Ω2
Φ1, Φ2, Φ3, Φ4
Ψ1, Ψ2, Ψ3

Dimensionless quantities

An, Bn, Cn Constants in different mode solutions
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