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Abstract: This paper investigates the impact of jumps in forecasting co-volatility in the presence of
leverage effects for daily crude oil and gold futures. We use a modified version of the jump-robust
covariance estimator of Koike (2016), such that the estimated matrix is positive definite. Using this
approach, we can disentangle the estimates of the integrated co-volatility matrix and jump variations
from the quadratic covariation matrix. Empirical results show that more than 80% of the co-volatility
of the two futures contains jump variations and that they have significant impacts on future
co-volatility but that the impact is negligible in forecasting weekly and monthly horizons.

Keywords: commodity markets; co-volatility; forecasting; jump; leverage effects; realized covariance;
threshold estimation

1. Introduction

The severity and global nature of the recent financial crisis highlighted the risks associated
with portfolios containing only conventional financial market assets [1]. Such a realization triggered
an interest in considering investment opportunities in the energy (specifically oil) market [2]. In fact,
the recent financialization of the commodity market [3,4] and, in particular, oil has resulted in
an increased participation of hedge funds, pension funds, and insurance companies in the market,
with investment in oil now being considered as a profitable alternative instrument in the portfolio
decisions of financial institutions [5,6].

With gold traditionally considered as the most popular ‘safe haven’ [7–9], recent studies have
analyzed volatility spillovers across the gold and oil markets [10–12], where volatility spillovers
are defined as the delayed effect of a returns shock in one asset on the subsequent volatility or
co-volatility in another asset [13]. For corresponding studies on co-movements in gold and oil returns,
see References [14–17], and references cited therein. A literature review on return and volatility
spillovers across asset classes can be found in Reference [18].

In this regard, it must be realized that modelling and forecasting the co-volatility of gold and oil
markets is of paramount importance to international investors and portfolio managers in devising
optimal portfolio and dynamic hedging strategies [19]. By definition, (partial) co-volatility spillovers
occur when the returns shock from financial asset k affects the co-volatility between two financial
assets, i and j, one of which can be asset k [13].
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Against this backdrop, the objective of this paper is to forecast the daily co-volatility of gold
and oil futures derived from 1-min intraday data over the period 27 September 2009 to 25 May 2017
(Although the variability of daily gold and oil price returns have traditionally been forecasted based
on Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-type models of volatility,
recent empirical evidence suggests that the rich information contained in intraday data can produce
more accurate estimates and forecasts of daily volatility (see Reference [20] for a detailed discussion)).
In particular, realizing the importance of jumps, that is, discontinuities, in governing the volatility of
asset prices [21–23], we investigate the impact of jumps by simultaneously accommodating leverage
effects in forecasting the co-volatility of gold and oil markets, following the econometric approach
of [24] (applied to three stocks traded on the New York Stock Exchange (NYSE)).

Although studies dealing with forecasting gold and oil market volatility has emphasized the role
of jumps in forecasting realized volatility. (For a givenfixed interval, realized volatility is defined as the
sum of non-overlapping squared returns of high frequency within a day [25] which, in turn, presents
volatility as an observed rather than a latent process.) (see, for example, References [26–28]), this paper
would be seen to be the first attempt to incorporate their role in predicting the future co-volatility path
of these two important commodities.

The remainder of the paper is structured as follows—Section 2 lays out the theoretical details of
the econometric framework, while Section 3 presents the data, empirical results and analysis. Section 4
gives some concluding remarks.

2. Model Specification

Let X∗τ and Y∗τ denote latent log-prices at time s for two assets X and Y. Define p∗(τ) = (X∗τ , Y∗τ )′,
and let W(τ) and Q(τ) denote bivariate vectors of independent Brownian motions and counting
processes, respectively. Let K(τ) be the 2× 2 process controlling the magnitude and transmission of
jumps, such that K(τ)dQ(τ) is the contribution of the jump process to the price diffusion. Under the
assumption of a Brownian semimartingale with finite-activity jumps (BSMFAJ), p∗(τ) follows:

dp∗(τ) = µ(τ)ds + σ(τ)dW(τ) + K(τ)dQ(τ), 0 ≤ τ ≤ T (1)

where µ(τ) is a 2× 1 vector of continuous and locally-bounded variation processes, and σ(τ) is the
2× 2 càdlàg matrix, such that Σ(τ) = σ(τ)σ′(τ) is positive definite. Note that although we explain
the framework with finite-activity jumps, the estimators used in this paper are applicable under
infinite-activity jumps, as shown by Reference [29].

Assume that the observable log-price process is the sum of the latent log-price process in
Equation (1) and the microstructure noise process. Denote the log-price process as p(τ) = (Xτ , Yτ)′.
Consider non-synchronized trading times of the two assets and let Z and Ξ be the set of transaction
times of X and Y, respectively. Denote the counting process governing the number of observations
traded in assets X and Y up to time T as nT and mT , respectively. By definition, the trades in X and Y
occur at times Z = {ζ1, ζ2, . . . , ζnT} and Ξ = {ξ1, ξ2, . . . , ξmT}, respectively. For convenience, we set
the opening and closing times as ζ1 = ξ1 = 0 and ζnT = ξmT = T, respectively.

The observable log-price process is given by:

Xζi = X∗ζi
+ εX

ζi
and Yξ j = Y∗ξ j

+ εY
ξ j

, (2)

where εX ∼ iid(0, σ2
εX), εY ∼ iid(0, σ2

εY), and (εX , εY) are independent of (X, Y).
Define the quadratic covariation (QCov) of the log-price process over [0, T] as:

QCov = plim
∆→∞

bT/∆c

∑
i=1

[p(i∆)− p((i− 1)∆)] [p(i∆)− p((i− 1)∆)]′ . (3)
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By Proposition 2 of Reference [26], we obtain:

QCov = ICov + ∑
0<τ≤T

K(τ)K′(τ), (4)

where

ICov =
∫ T

0
Σ(τ)dτ.

The first term on the right-hand side of (4) is the integrated co-volatility matrix over [0, T],
while the second term is the matrix of jump variability. We are interested in disentangling these two
components from the estimates of QCov for the purpose of forecasting QCov.

There are several estimators for QCov and Icov (see the survey in Reference [24]). Among them,
we use the estimators of [30] for QCov and [29] for ICov, respectively. Especially, the estimator of
Reference [29] is consistent under non-synchronized trading times, jumps and microstructure noise for
the bivariate process in (2) (see Appendix A for the detailed explanation of the calculation of these
estimators). Note that the realized kernel (RK) estimator of Reference [31] is positive (semi-)definite
and robust to microstructure noise under non-synchronized trading times. However, the robustness to
jumps is still an open and unresolved issue for the multivariate RK estimator. Denote the estimators
of QCov, ICov and jump component at day t as Σ̂t, Ĉt and Ĵt, respectively, where Ĵt = Σ̂t − Ĉt

(Jump variations can be defined strictly, as discussed in Reference [32]). By the definitions in (1)–(4),
the estimators should be positive (semi-) definite, but there is no guarantee for it. For this purpose,
Reference [24] suggest regularizing the estimated covariance matrix by the use of thresholding.

As shown by References [33–35], the regularized estimator has consistency, assuming a sparsity
structure. Define the thresholding operator for a square matrix A as:

Th(A) = [aij1(|aij| ≥ h)], (5)

which can be regarded as A thresholded at h. Define the Frobenius norm by ||A||2F = tr(AA′). For the
selection of h, we follow Reference [34]. In order to obtain Ã = Th(Â), we minimize the distance
by the Frobenius norm ||Th(Â) − Â||2F, with the restriction that Ã is positive semi-definite. As in
Reference [24], we obtain C̃t = Th(Ĉt) and J̃t = Th( Ĵt), which are consistent and positive semi-definite.
Note that Σ̂t is positive semi-definite as it is the sample analogue of QCov. In addition, we also
disentangling observed return series into continuous and jump components, by applying the technique
of Reference [36] (see Appendix A.3).

In order to examine the effects of jump and leverage in forecasting co-volatility, we consider four
kinds of specifications, including the three models introduced by Reference [24]. Let Σ̃t(l) denote the
l-horizon average, defined by:

Σ̃t(l) =
1
l
(
Σ̃t + · · ·+ Σ̃t−l+1

)
.

In order to examine the impact of jumps and leverage for forecasting volatility and co-volatility,
we use four kinds of heterogeneous autoregressive (HAR) models for forecasting the (i, j)-elements of
Σ̃t(l) (l = 1, 5, 22), as follows:

Σ̃ij,t(l) = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + eij,t (6)

Σ̃ij,t(l) = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + γar−i,t−1r−j,t−1 + eij,t (7)

Σ̃ij,t(l) = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + eij,t (8)

Σ̃ij,t(l) = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + γarc−i,t−1rc−j,t−1 + eij,t, (9)

where r−i,t = ri,t I(ri,t < 0) and rc−i,t = rci,t I(rci,t < 0), which are the negative parts of the observed
return and its continuous part for the i-th asset. The second model accommodates the asymmetric
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effects, as in the specification of the asymmetric BEKK model of Reference [37]. For i 6= j, γar−i,t−1r−j,t−1
represents the ‘co-leverage’ effect, which is caused by simultaneous negative returns in two assets.
In the third model, we use the previous values of the estimated continuous sample path component
variation, C̃t, rather than those of the estimated quadratic variation, Σ̃t, following the volatility
forecasting models of References [21,23]. We exclude weekly and monthly effects of the jump
component, J̃t, in order to evaluate the impact of a single jump on future volatility and co-volatility.
Note that C̃t and J̃t are positive (semi-) definite by the thresholding in (5). In addition to jump variability,
the fourth model includes the asymmetric effect. Note that we use the continuous components of
returns rather than the observed returns for the fourth model. We refer to Equations (6)–(9) as the
HAR, HAR-A, HAR-TCJ and HAR-TCJA models, respectively. We estimate these models by ordinary
least squares (OLS) and use the heteroskedasticity and autocorrelation consistent (HAC) covariance
matrix estimator, with bandwidth 25 (see Reference [38]). We will examine the four models (6)–(9) in
the next section.

3. Empirical Analysis

We examine the effects on jumps and leverage in forecasting co-volatility, using the estimates of
QCov, ICov and jump variation, for two futures contracts traded on the New York Mercantile Exchange
(NYMEX), namely West Texas Intermediate (WTI) Crude Oil and Gold. With the CME Globex system,
the trades at NYMESX cover 24 h (The futures price data, in continuous format, are obtained from
http://www.kibot.com/). Based on the vector of returns for the two futures for a 1-min interval of
trading day at t, we calculated the daily values of Σ̃t, C̃t and J̃t, as explained in the previous section
and also the corresponding open-close returns and their continuous components, rt and rct, respectively,
for the two futures. The sample period starts on 27 September 2009 and ends on 25 May 2017,
giving 1978 observations. The sample is divided into two periods—the first 1000 observations
are used for in-sample estimation, while the last 978 observations are used for evaluating the
out-of-sample forecasts.

Table 1 presents the descriptive statistics of the returns, rt, and estimated QCov, Σ̃t. The empirical
distribution of the returns is highly leptokurtic. Regarding volatility, their distributions are skewed
to the right, with evidence of heavy tails in the two series. More than 90% of the sample period
contains significant jumps in volatility. For co-volatility, the empirical distribution is highly leptokurtic
and co-jump variations were found for 80% of the period.

Table 1. Descriptive statistics of returns, volatility and co-volatility.

Stock Mean Std. Dev. Skew. Kurt. Jump

Return
Crude Oil 0.0256 0.6824 −0.4784 8.0378 0.9267

Gold 0.0185 1.4887 −0.0573 5.0225 0.9459
Volatility
Crude Oil 0.4238 0.5070 7.2211 90.688 0.9267

Gold 1.5152 1.6510 3.3689 19.071 0.9459
Co-Volatility

(Crude Oil, Gold) 0.1368 0.2844 −0.7851 37.359 0.8049

Note: The sample period is from 27 September 2009 to 25 May 2017. ‘Jump’ denotes the percentage of occurrence of
significant jumps.

Figures 1 and 2 show the estimates of quadratic variation, integrated volatility, and jump
variability, namely the diagonal elements of Σ̃t, C̃t, and J̃t, respectively. It is known that spot and
future prices of crude oil are effected by a variety of geopolitical and economic events. For instance,
the estimates of volatility in Figure 1 are relatively high for the period following the Arab Spring of
2011, and the extreme jump in 2015 is caused by the oversupply and the technological advancements
of US shale oil production. On the other hand, the spot and futures prices of Gold reflect news and

http://www.kibot.com/
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recessions, as investigated by Reference [39]. The estimates of volatility are high in 2011 during the
European debt crisis, and the last one-third in Figure 2. For the latter, it corresponds to China’s
economy growing at its slowest pace for 24 years in 2014.

Figure 1. Estimates of Quadratic Variation, Integrated Volatility, and Jump Variability for Crude Oil
Futures. Figure 1 shows the (1, 1)-elements of Σ̃t, C̃t, and J̃t.

Figure 2. Estimates of Quadratic Variation, Integrated Volatility, and Jump Variability for Gold Futures.
Figure 2 shows the (2, 2)-elements of Σ̃t, C̃t, and J̃t.
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Figure 3 illustrates the estimates of quadratic covariation, integrated co-volatility and jump
co-variability, namely the (2, 1)-element of Σ̃t, C̃t, and J̃t. Figure 3 indicates that crude oil and gold
futures are negatively correlated for the first half in 2011, but the sign changes for the latter half. A large
and positive co-jump variability is found in 2013, which reflects the political unrest in Egypt and the
values of Dow Jones Industrial Average kept increasing with a rapid trend.

Figure 3. Estimates of Quadratic Covariation, Integrated Covolatility, and Jump Co-variability for
Crude Oil and Gold Futures. Figure 3 shows the (2, 1)-elements of Σ̃t, C̃t, and J̃t.

In the following empirical analysis based on the four models (6)–(9), we:

(a) examine the robustness of the positive effects of jump components under microstructure noise
for the volatility equation (i = j);

(b) test the robustness of the leverage effects under jump and microstructure noise for the
volatility equation;

(c) investigate the effects of co-jumps and co-leverage for the co-volatility equation;
(d) compare the out-of-sample forecasts of the above models.

For the above models for the volatility equation, the estimates of γj are expected to be positive.
However, the empirical results of Reference [21] indicate that the estimates of γj are generally
insignificant. Reference [23] noted that the puzzle is due to the small sample bias of the integrated
volatility, and found that the estimates of γj are positive and significant. Since the estimators of
quadratic variation and integrated volatility used in Reference [23] are biased in the presence of
microstructure noise, we re-examine the robustness of the result and this is the motivation of (a).
With respect to (b), we also test γa > 0 under microstructure noise in order to check the robustness of
the result of Reference [40]. Among (a)–(d), (c) is the main purpose of the current empirical analysis.

For volatility equation (i = j), the estimates of γj and γa are expected to be positive and significant.
On the other hand, their signs are not determined for the co-volatility equation (i 6= j). As noted in
(d), we compare the forecasting performances of the HAR, HAR-TCJ and HAR-TCJA models for daily,
weekly and monthly horizons. For crude oil futures, Reference [41] found that HAR-TCJA is the
best forecasting one-day-ahead volatility, while the HAR model is preferred for weekly and monthly
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forecasts, after removing the effects of structural breaks. In addition to crude oil, we examine the
forecasting performances of the volatility of gold futures and the co-volatility of the two futures.

As stated in the previous section, we use the HAC estimator for the covariance matrix of
the OLS estimators. To ensure the statistical adequacy of the approach, we conduct three kinds
of conventional diagnostic tests. The first is the White test for heteroskedasticity. When the number
of explanatory variables is k, excluding the constant, the Wald statistic for the White test has the
asymptotic χ2 distribution with the degree-of-freedom parameter (k + 1)(k + 2)/2 under the null of
homoskedasticity. The second test is the ARCH(2) test with the auxiliary regression:

ê2
ij,t = δ0 + δ1 ê2

ij,t−1 + δ2 ê2
ij,t−1 + errorij,t,

where êij,t is the residuals. Under the null hypothesis of homoskedasticity, that is δ1 = δ2 = 0, the Wald
statistic has the asymptotic χ2 distribution with the degree-of-freedom parameter 2. The third one is
the test for autocorrelation with the auxiliary regression:

êij,t = ρ0 + ρ1 êij,t−1 + · · ·+ ρ10 êij,t−1 + errorij,t.

Under the null hypothesis of no autocorrelation, that is ρ1 = · · · = ρ10 = 0, the Wald statistic has
the asymptotic χ2 distribution with the degree-of-freedom parameter 10.

We estimate each model using the first 1000 observations, and obtain a forecast, Σ̃ f
1001.

We re-estimate each model fixing the sample size at 1000, and obtain new forecasts based on updated
parameter estimates. For evaluating the forecasting performance of the different models, we consider
the Mincer and Zarnowitz (MZ) [42] regression, namely:

Σ̃ij,t = α0 + α1Σ̃ f
ij,t + errorij,t, t = 1001, . . . , 1978.

We estimate the MZ regression via the OLS and report R2 for comparing forecasting performance.
Intuitively, a model with the highest R2 indicates the accuracy of forecasts. We also use the
heteroskedasticity-adjusted root mean square error suggested in Reference [43], namely:

HRMSE =

√√√√√ 1
978

1978

∑
t=1001

 Σ̃ij,t − Σ̃ f
ij,t

Σ̃ij,t

2

.

For the latter, we examine equal forecast accuracy using the Diebold-Mariano (DM) [44] test at
the 5% significance level, and use the HAC covariance matrix estimator, with bandwidth 25. We also
examine the forecasts of Σ̃ij,t(5) and Σ̃ij,t(22) in the same manner.

As an application of forecasts of covariance matrix, we examine performances of portfolio weights
determined by the forecasts. We consider a portfolio of two options, rpt = w′t{p(t) − p(t − 1)},
where p(s) is the vector of log-prices stated in Section 2 and wt is the vector of portfolio weights.
With the forecasts of covariance matrix, Σ̃ f

t , the weights of the minimum variance portfolio are
given by:

w∗t = (ι′Σ̃ f−1
t ι)−1Σ̃ f−1

t ι, (10)

where ι = (1, 1)′. Given the realized value Σ̃t, the corresponding portfolio variance is evaluated as:

σ2
pt = w∗′t Σ̃tw∗t . (11)

We calculate the HRMSE of σ2
pt for the four models, and compare the values by the DM test.

In the same manner, we compare the portfolio weights of the minimum variance portfolio based on
the forecasts of Σ̃ij,t(5) and Σ̃ij,t(22).
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Table 2 shows the estimates of the daily regressions for the first 1000 observations. For the jump
parameter, γj, the estimates are positive and significant at five percent level in all cases. The results
for the volatilities support the empirical evidence of Reference [23]. For the asymmetric effect, the
estimates of γa are positive and significant in all cases, supporting the negative relationship between
return and one-step-ahead volatility, as in Reference [40]. The results for the co-volatility equation
indicate that a pair of negative returns and/or co-jumps of two assets increases future co-volatility.
Either of HAR-A and HAR-TCJA model gives the highest R̄2 in all cases.

Table 3 presents the diagnostic statistics for the daily regressions. White and ARCH(2) reject
the null hypothesis of homoskedasticity at the five percent level in all cases. The test for 10th-order
autocorrelation rejected the null hypothesis of no autocorrelation for the volatility of Gold futures.
Hence, it is justified to use the HAC covariance matrix estimates for the OLS estimates in Table 2.
The corresponding results for the weekly and monthly regressions are omitted to save space.

Table 4 presents R2 of the MZ regressions and HRMSE for the daily regressions. The HAR-A has
the highest R2 for four-ninth of the cases, while the results of the DM tests regarding the HRMSE
indicate that there are no significant differences for the four models in all cases.

Table 5 reports the estimates of the weekly regressions. The estimates of the jump parameter, γj,
and the parameter of the asymmetric effect, γa, are positive and significant. For the weekly regressions,
the HAR-A model gives the highest R̄2 values in all cases. Table 6 gives the R2 values of the MZ
regressions, and HRMSE for the out-of-sample forecasts for the weekly regressions. Tables 5 and 6
indicate that the values of R2 (and R̄2) are higher than those for the daily regressions in Tables 2 and 4,
respectively. Table 6 shows that the HAR-A model gives the highest R̄2 for volatility. For co-volatility,
R2 for MZ tends to select the HAR model, while HRMSE chooses the HAR-A model. However, the DM
tests show that there are no significant differences for the four models for co-volatility.

Table 7 shows the in-sample estimates of the monthly regressions, while Table 8 reports the results
of the corresponding out-of-sample forecasts. As in the weekly regressions, the HAR-A model gives
the highest R̄2 values in all cases. Tables 7 and 8 indicate that the values of R2 are higher than those
for the daily regressions in Tables 5 and 6, respectively. Table 8 shows that the HAR-A model is the
best model in all cases and, moreover, there are significant differences between HAR-A model and
(HAR-TCJ, HAR-TCJA) models in forecasting volatility.

Table 9 presents the results for forecasts regarding the portfolio weights of the minimum variance
portfolio. Using the portfolio weights defined in (10), we evaluated the portfolio variance applying
the weights to the realized covariance as in Equation (11). For the forecasts via the daily regression,
the HAR-TCJA model has the highest R2 value for the MZ regression, while the HAR-A gives the
smallest HRMSE value. The DM test indicates there is no significant difference in the four models for
the forecasts based on the daily regressions. On the other hand, the HAR-A model has the highest R2

value and smallest HRMSE value for the weekly and monthly regressions.
The empirical results for the volatility models support the findings of References [23,40,41].

Regarding co-volatility, the impacts of co-jumps of two assets are positive and significant for the daily,
weekly, and monthly regressions. Although the four models show similar forecasting performance
for the daily regressions, the weekly and monthly regressions prefer the HAR-A model. We may
improve the HAR-TCJ and HAR-TCJA models by accommodating the positive and negative jumps of
Reference [45], in addition to the weekly and monthly averages of jumps and leverage effects.
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Table 2. In-sample estimates for daily regressions.
HAR Σ̃ij,t = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + eij,t

HAR-A Σ̃ij,t = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + γar−i,t−1r−j,t−1 + eij,t

HAR-TCJ Σ̃ij,t = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + eij,t

HAR-TCJA Σ̃ij,t = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + γarc−i,t−1rc−j,t−1 + eij,t

Model γ0 γd γw γm γj γa R2 R̄2

Volatility: Crude Oil

HAR 0.0958 0.4428 0.1047 0.2665 0.3514 0.3494
(0.0021) (0.0054) (0.0050) (0.0056)

HAR-A 0.1067 0.2258 0.2000 0.2905 0.1301 0.4153 0.4129 †

(0.0018) (0.0039) (0.0040) (0.0056) (0.0032)
HAR-TCJ 0.1239 0.5182 0.1012 0.2879 0.2410 0.3546 0.3520

(0.0017) (0.0083) (0.0064) (0.0064) (0.0112)
HAR-TCJA 0.1301 0.2285 0.2431 0.3176 0.2575 0.1292 0.4140 0.4110

(0.0015) (0.0067) (0.0054) (0.0064) (0.0097) (0.0032)

Volatility: Gold

HAR 0.2039 0.4730 0.2067 0.1462 0.4396 0.4378
(0.0028) (0.0060) (0.0053) (0.0043)

HAR-A 0.0356 0.3161 0.3324 0.1337 0.0574 0.4320 0.4296
(0.0009) (0.0045) (0.0046) (0.0062) (0.0010)

HAR-TCJ 0.2520 0.5629 0.1512 0.1767 0.2913 0.4414 0.4391
(0.0027) (0.0082) (0.0057) (0.0048) (0.0094)

HAR-TCJA 0.2193 0.4612 0.2066 0.1621 0.2427 0.1189 0.5266 0.5242 †

(0.0024) (0.0066) (0.0051) (0.0041) (0.0069) (0.0014)

Co-Volatility: Crude Oil & Gold

HAR 0.0431 0.3938 0.3199 0.0923 0.4034 0.4016
(0.0009) (0.0043) (0.0049) (0.0064)

HAR-A 0.1704 0.3793 0.2547 0.1328 0.1205 0.5271 0.5252 †

(0.0024) (0.0052) (0.0048) (0.0036) (0.0014)
HAR-TCJ 0.0515 0.5028 0.3268 0.1447 0.2047 0.4116 0.4092

(0.0008) (0.0065) (0.0060) (0.0071) (0.0057)
HAR-TCJA 0.0444 0.4086 0.3486 0.1933 0.1664 0.0564 0.4391 0.4362

(0.0008) (0.0069) (0.0057) (0.0068) (0.0049) (0.0010)

Note: Standard errors are given in parentheses. ‘†’ denotes the model which has the highest R̄2 value of the four models.

Table 3. Diagnostic tests for daily regressions.

Model White d.f. p-Value ARCH(2) p-Value AutoCor (10) p-Value

Volatility: Crude Oil

HAR 68.955 10 [0.0000] 7.3212 [0.0257] 12.849 [0.2322]
HAR-TCJ 137.08 15 [0.0000] 8.6057 [0.0135] 12.510 [0.2524]

HAR-TCJA 565.48 21 [0.0000] 15.150 [0.0005] 18.158 [0.0524]
HAR-A 280.45 15 [0.0000] 14.439 [0.0007] 17.012 [0.0741]

Volatility: Gold

HAR 127.72 10 [0.0000] 58.588 [0.0007] 28.195 [0.0017]
HAR-TCJ 162.06 15 [0.0000] 66.637 [0.0000] 27.113 [0.0025]

HAR-TCJA 369.97 21 [0.0000] 27.265 [0.0000] 29.001 [0.0013]
HAR-A 284.90 15 [0.0000] 22.363 [0.0000] 30.453 [0.0007]

Co-Volatility: Crude Oil & Gold

HAR 62.977 10 [0.0000] 25.708 [0.0000] 9.5972 [0.4765]
HAR-TCJ 74.695 15 [0.0000] 30.078 [0.0000] 9.6906 [0.4680]

HAR-TCJA 87.284 21 [0.0000] 17.846 [0.0000] 12.637 [0.2447]
HAR-A 67.424 15 [0.0000] 14.547 [0.0000] 15.075 [0.1294]

Note: The table presents the values of the diagnostic statistics for the OLS residuals. ‘White’ denotes the White test
for heteroskedasticity, ‘ARCH(2)’ is the ARCH(2) test, and AutoCorr(10)’ is the test for 10th-order autocorrelation.
‘df‘ denotes the degree-of-freedom. While the ARCH(2) test has the asymptotic χ2(2) under the null hypothesis,
the asymptotic distribution of AutoCorr(10) test is χ2(10).
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Table 4. Out-of-sample forecast evaluation for daily regressions.

Model R2 HRMSE R2-J HRMSE-J R2-C HRMSE-C

Volatility: Crude Oil (900 Times Jump)

HAR 0.0796 2.5591 0.0818 2.6478 0.0590 1.1057
HAR-A 0.0987 2.0655 0.1023 2.1329 0.0702 1.0018

HAR-TCJ 0.0928 2.0476 0.0944 2.1156 0.0775 † 0.9635
HAR-TCJA 0.0995 † 2.0205 0.1037 † 2.0869 0.0641 0.9672

Volatility: Gold (950 Times Jump)

HAR 0.6900 0.9009 0.6918 0.9066 0.6017 0.7857
HAR-A 0.6933 † 0.8376 0.6944 † 0.8431 0.6292 † 0.7249

HAR-TCJ 0.6907 0.9103 0.6929 0.9132 0.5891 0.8534
HAR-TCJA 0.6925 0.8493 0.6938 0.8521 0.6211 0.7945

Co-Volatility: Crude Oil & Gold (616 Times Co-Jump)

HAR 0.2199 † 40.906 0.1897 45.317 0.3247 † 32.033
HAR-A 0.2197 41.743 0.2007 † 45.906 0.2927 33.489

HAR-TCJ 0.2103 36.572 0.1832 40.316 0.3127 29.114
HAR-TCJA 0.2119 37.543 0.1971 41.018 0.2806 30.739

Note: The table presents R2 for the MZ regression and heteroskedasticity-adjusted root mean squared error (HRMSE).
R2-J (HRMSE-J) is R2 (HRMSE) conditionally on having a jump at time t− 1, respectively, while R2-C (HRMSE-C)
is conditional on no jump at time t− 1. ‘†’ indicates the model which has the highest R2 value of the four models.
For the DM test of equal forecast accuracy, there were no significant differences at the five percent level.

Table 5. In-sample estimates for weekly regressions.
HAR Σ̃ij,t(5) = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + eij,t

HAR-A Σ̃ij,t(5) = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + γar−i,t−1r−j,t−1 + eij,t

HAR-TCJ Σ̃ij,t(5) = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + eij,t

HAR-TCJA Σ̃ij,t(5) = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + γarc−i,t−1rc−j,t−1 + eij,t

Model γ0 γd γw γm γj γa R2 R̄2

Volatility: Crude Oil

HAR 0.0203 0.1731 0.7803 0.0070 0.9208 0.9206
(0.0006) (0.0015) (0.0028) (0.0017)

HAR-A 0.0221 0.1387 0.7954 0.0108 0.0206 0.9237 0.9234 †

(0.0005) (0.0015) (0.0029) (0.0017) (0.0008)
HAR-TCJ 0.0562 0.1843 0.8853 0.0002 0.2655 0.9060 0.9057

(0.0006) (0.0024) (0.0039) (0.0022) (0.0028)
HAR-TCJA 0.0571 0.1441 0.9050 0.0043 0.2678 0.0179 0.9081 0.9076

(0.0006) (0.0026) (0.0039) (0.0023) (0.0026) (0.0008)

Volatility: Gold

HAR 0.0446 0.1793 0.7970 −0.0142 0.9403 0.9402
(0.0008) (0.0016) (0.0023) (0.0012)

HAR-A 0.0380 0.1609 0.8064 −0.0168 0.0236 0.9456 0.9454 †

(0.0007) (0.0015) (0.0023) (0.0012) (0.0003)
HAR-TCJ 0.1086 0.2244 0.8310 −0.0058 0.2440 0.9240 0.9237

(0.0009) (0.0023) (0.0033) (0.0016) (0.0019)
HAR-TCJA 0.1027 0.2059 0.8411 −0.0084 0.2351 0.0217 0.9285 0.9281

(0.0009) (0.0021) (0.0033) (0.0016) (0.0015) (0.0003)

Co-Volatility: Crude Oil & Gold

HAR 0.0099 0.1441 0.8321 −0.0207 0.9346 0.9344
(0.0002) (0.0012) (0.0020) (0.0017)

HAR-A 0.0084 0.1277 0.8347 −0.0120 0.0121 0.9367 0.9364 †

0.0002) (0.0012) (0.0020) (0.0016) (0.0002)
HAR-TCJ 0.0237 0.1790 0.9493 0.0140 0.1996 0.9160 0.9157

(0.0003) (0.0021) (0.0031) (0.0024) (0.0013)
HAR-TCJA 0.0222 0.1594 0.9538 0.0241 0.1916 0.0117 0.9180 0.9176

(0.0003) (0.0022) (0.0031) (0.0023) (0.0011) (0.0003)

Note: Standard errors are given in parentheses.‘†’ denotes the model which has the highest R̄2 value of the
four models.
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Table 6. Out-of-sample forecast evaluation for weekly regressions.

Model MZ R2 HRMSE R2-J HRMSE-J R2-C HRMSE-C

Volatility: Crude Oil (900 Times Jump)

HAR 0.8060 0.1980 c,d 0.7964 0.2011 c,d 0.8792 0.1578 c,d

HAR-A 0.8138 † 0.1996 c,d 0.8035 † 0.2032 c,d 0.8874 † 0.1523 c,d

HAR-TCJ 0.7321 0.2444 0.7286 0.2469 0.8064 0.2141
HAR-TCJA 0.7381 0.2465 0.7340 0.2492 0.8120 0.2128

Volatility: Gold (929 Times Jump)

HAR 0.9748 0.1258 c,d 0.9750 0.1262 c,d 0.9639 0.1168
HAR-A 0.9755 † 0.1224 a,c,d 0.9756 † 0.1228 a,c,d 0.9679 † 0.1158

HAR-TCJ 0.9692 0.1592 0.9693 0.1595 0.9601 0.1546
HAR-TCJA 0.9697 0.1557 c 0.9698 0.1559 c 0.9647 0.1510

Co-Volatility: Crude Oil & Gold (616 Times Co-Jump)

HAR 0.8884 † 9.2664 0.8695 11.509 0.9138 † 2.5693
HAR-A 0.8876 8.2840 0.8709 † 10.254 0.9102 2.5458

HAR-TCJ 0.8567 4.7787 0.8391 5.0081 0.8834 4.3606
HAR-TCJA 0.8564 4.0257 0.8409 3.9249 0.8799 4.1917

Note: The table presents R2 for the MZ regression and heteroskedasticity-adjusted root mean squared error
(HRMSE). R2-J (HRMSE-J) is R2 (HRMSE) conditionally on having a jump at time t− 1, respectively, while R2-C
(HRMSE-C) is conditional on no jump at time t− 1. ‘†’ indicates the model which has the highest R2 value of the
four models. For the DM test of equal forecast accuracy, ‘a’, ‘b’, ‘c’, and ‘d’ denote significant improvements in
forecasting performance with respect to the HAR, HAR-A, HAR-TCJ and HAR-TCJA models, respectively.

Table 7. In-sample estimates for monthly regressions.
HAR Σ̃ij,t(22) = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + eij,t

HAR-A Σ̃ij,t(22) = γ0 + γdΣ̃ij,t−1 + γwΣ̃ij,t−1(5) + γmΣ̃ij,t−1(22) + γar−i,t−1r−j,t−1 + eij,t

HAR-TCJ Σ̃ij,t(22) = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + eij,t

HAR-TCJA Σ̃ij,t(22) = γ0 + γdC̃ij,t−1 + γwC̃ij,t−1(5) + γmC̃ij,t−1(22) + γj J̃ij,t−1 + γarc−i,t−1rc−j,t−1 + eij,t

Model γ0 γd γw γm γj γa R2 R̄2

Volatility: Crude Oil

HAR 0.0010 0.0148 0.0261 0.9573 0.9913 0.9913
(0.0001) (0.0003) (0.0003) (0.0005)

HAR-A 0.0015 0.0049 0.0305 0.9584 0.0059 0.9917 0.9917 †

0.0001) (0.0002) (0.0003) (0.0005) (0.0001)
HAR-TCJ 0.0441 0.0117 0.0430 1.0977 0.0752 0.9741 0.9740

(0.0003) (0.0004) (0.0008) (0.0016) (0.0009)
HAR-TCJA 0.0444 −0.0031 0.0503 1.0992 0.0760 0.0066 0.9746 0.9745

(0.0003) (0.0003) (0.0008) (0.0016) (0.0008) (0.0002)

Volatility: Gold

HAR −0.0017 0.0201 0.0288 0.9518 0.9931 0.9931
(0.0003) (0.0003) (0.0004) (0.0005)

HAR-A −0.0033 0.0157 0.0311 0.9511 0.0057 0.9936 0.9936 †

(0.0003) (0.0002) (0.0004) (0.0005) (0.0001)
HAR-TCJ 0.0819 0.0198 0.0335 1.0575 0.0850 0.9820 0.9819

(0.0004) (0.0005) (0.0007) (0.0008) (0.0008)
HAR-TCJA 0.0805 0.0154 0.0360 1.0569 0.0829 0.0052 0.9824 0.9823

(0.0004) (0.0004) (0.0007) (0.0008) (0.0007) (0.0001)

Co-Volatility: Crude Oil & Gold

HAR −0.0004 0.0166 0.0363 0.9482 0.9922 0.9922
(0.0001) (0.0002) (0.0003) (0.0005)

HAR-A −0.0007 0.0133 0.0369 0.9500 0.0025 0.9924 0.9924 †

(0.0001) (0.0002) (0.0003) (0.0005) (0.0001)
HAR-TCJ 0.0184 0.0131 0.0279 1.1670 0.0551 0.9790 0.9790

(0.0001) (0.0004) (0.0006) (0.0011) (0.0006)
HAR-TCJA 0.0181 0.0093 0.0288 1.1690 0.0536 0.0023 0.9792 0.9791

(0.0001) (0.0004) (0.0006) (0.0011) (0.0006) (0.0001)

Note: Standard errors are given in parentheses. ‘†’ denotes the model which has the highest R̄2 value of the
four models.
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Table 8. Out-of-sample forecast evaluation for monthly regressions.

Model MZ R2 HRMSE R2-J HRMSE-J R2-C HRMSE-C

Volatility: Crude Oil (900 Times Jump)

HAR 0.9794 0.0542 c,d 0.9786 0.0552 c,d 0.9856 0.0424 c,d

HAR-A 0.9798 † 0.0542 c,d 0.9790 † 0.0551 c,d 0.9856 † 0.0420 c,d

HAR-TCJ 0.8563 0.1386 0.8571 0.1384 0.8625 0.1404
HAR-TCJA 0.8581 0.1381 0.8589 0.1379 0.8640 0.1403

Volatility: Gold (929 Times Jump)

HAR 0.9978 0.0340 c,d 0.9978 0.0342 c,d 0.9975 0.0299 c,d

HAR-A 0.9978 † 0.0339 c,d 0.9978 † 0.0341 c,d 0.9976 † 0.0299 c,d

HAR-TCJ 0.9944 0.0864 0.9945 0.0865 0.9933 0.0834
HAR-TCJA 0.9945 0.0856 0.9945 0.0858 0.9939 0.0827

Co-Volatility: Crude Oil & Gold (616 Times Co-Jump)

HAR 0.9888 3.0184 0.9855 1.8945 0.9941 4.3019
HAR-A 0.9888 † 2.9907 0.9856 † 1.9492 0.9941 † 4.2070

HAR-TCJ 0.9668 8.7480 0.9652 3.8293 0.9698 13.483
HAR-TCJA 0.9670 8.6250 0.9657 3.7655 0.9696 13.299

Note: The table presents R2 for the MZ regression and heteroskedasticity-adjusted root mean squared error (HRMSE).
R2-J (HRMSE-J) is R2 (HRMSE) conditionally on having a jump at time t− 1, respectively, while R2-C (HRMSE-C)
is conditional on no jump at time t− 1. ‘†’ indicates the model which has the highest R2 value of the four models.
For the Diebold-Mariano test of equal forecast accuracy, ‘a’, ‘b’, ‘c’, and ‘d’ denote significant improvements in
forecasting performance with respect to the HAR, HAR-A, HAR-TCJ and HAR-TCJA respectively.

Table 9. Out-of-sample forecast evaluation for minimum variance portfolio weights.

Daily Regression Weekly Regression Monthly Regression

Model MZ R2 HRMSE MZ R2 HRMSE MZ R2 HRMSE

HAR 0.8202 0.1801 0.9938 0.0231c,d 0.9998 0.0040c,d

HAR-A 0.8315 0.1709 0.9940† 0.0228c,d 0.9999† 0.0040c,d

HAR-TCJ 0.8298 0.1790 0.9919 0.0294 0.9994 0.0101
HAR-TCJA 0.8390† 0.1775 0.9921 0.0291 0.9994 0.0100

The table reports R2 of the MZ regression and heteroskedasticity-adjusted root mean squared error (HRMSE).
‘†’ denotes the model which has the highest R2 value of the four models. For the DM test of equal forecast accuracy,
‘a’, ‘b’, ‘c’, and ‘d’ denote significant improvements in forecasting performance with respect to the HAR, HAR-A,
HAR-TCJ and HAR-TCJA respectively.

4. Concluding Remarks

The paper investigated the impacts of co-jumps and leverage of crude oil and gold futures in
forecasting co-volatility. We use the approach of Reference [24] for disentangling the estimates of
the integrated co-volatility matrix and jump variations so that they are positive (semi-) definite for
coherence of the estimator. The empirical results showed that more than 80% of the co-volatility of
the two futures has non-negligible jump co-variations, and that the co-jumps of the two futures have
significant impacts on future co-volatility, but that the impacts are minor in forecasting weekly and
monthly horizons.

The empirical results also showed that the impacts of the co-leverage effects caused by the
negative returns of two assets are significant, but the impact decreases in forecasting longer horizons.
The results of in-sample and out-of-sample forecasts showed that the datasets generally prefer the
HAR-A model, which was not used in Reference [24].

Overall, the analysis given in the paper should be useful for investment analysis, and both
public and private policy prescription, in terms of accommodating jumps and leverage, as well as
choice of models and time frequency horizons, in forecasting the co-volatility of oil and gold futures.
Extensions to other financial, precious and semi-precious metals, and alternative sources of renewable
and non-renewable energy, are the subject of ongoing research.
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Abbreviations

The following abbreviations are used in this manuscript:

DM Diebold-Mariano
HAR Heterogeneous Autoregression
HRMSE Heteroskedasticity-adjusted Root Mean Squared Error
ICov Integrated Co-volatility
MZ Mincer-Zarnowitz
OLS Ordinary Least Squares
QCov Quadratic Covariation
RK Realized Kernel

Appendix A

We explain the calculation of the estimators of Qcov and ICov in (4), and jump components in
returns. Parts of the following technical section follow [24] closely.

Appendix A.1. Estimator of Quadratic Covariation

We introduce below the pre-averaged Hayashi–Yoshida (PHY) estimator, proposed by [30]
for improving the estimator of [46] for non-synchronized trading times. The PHY estimator is
a consistent estimator of QCov under non-synchronized trading times, jumps and microstructure
noise, as shown by [29].

Consider a sequence, cn, of integers and a number, κ0 ∈ (0, ∞), satisfying cn = κ0
√

n + o(n1/4),
where n is the observation frequency. Assume that a continuous function g : [0, 1]→ < is piecewise
C1 with piecewise Lipschitz derivative g′ that satisfies g(0) = g(1) = 0 and κHY =

∫ 1
0 g(x)dx 6= 0.

We also consider pre-averaged observation data of X and Y based on the sampling designs T and Ξ as:

X̄i =
cn−1

∑
p=1

g
(

p
cn

)(
Xζi+p − Xζi+p−1

)
Ȳ j =

cn−1

∑
q=1

g
(

q
cn

)(
Yξ j+q − Xξ j+q−1

)
, i, j = 0, 1, . . . .

Then the PHY estimator is defined by:

PHY(X, Y) =
1

(cnκHY)2

∞

∑
i,j=0

max(ζi+cn ,ξ j+cn )≤T

X̄iȲ jK̄ij, (A1)

where K̄ij = 1([ζi, ζi+cn) ∩ [ξ j, ξ j+cn) 6= ∅). Under non-synchronized trading times and microstructure
noise without jumps, the PHY estimator has the consistency and asymptotic mixed normality,
as shown by [30]. For the quadratic covariation of (X, Y), ref. [29] shows that the PHY estimator
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is consistent. Following [29], we use the specifications g(x) = min(x, 1 − x), cn = dκ0
√

n e and
κ0 = 0.15.

We can obtain the estimator of quadratic variation of X, by using PHY(X, X). Hence, we can
construct a consistent estimator of QCov for the bivariate case. As noted above, the estimator of QCov
is generally positive definite, as it is the sample analogue of preaveraged data.

Appendix A.2. Estimator of Integrated Co-Volatility

This section explains the estimator of [29] for ICov under non-synchronized trading times, jumps
and microstructure noise. A truncation technique is used by [29] for removing the jump components
in order to obtain the pre-averaged truncated Hayashi–Yoshida (PTHY) estimator:

PTHY(X, Y) =
1

(cnκHY)2

∞

∑
i,j=0

max(ζi+cn ,ξ j+cn )≤T

X̄iȲ jK̄ijΨ̄ij, (A2)

where Ψ̄ij = 1(|X̄i|2 ≤ vX(ζi), |Ȳ j|2 ≤ vY(ξ j)), and vX(t) and vY(t) are sequences of positive-valued
stochastic process. Note that a similar idea is proposed by [47] for the truncation in the univariate case.
The consistency and asymptotic mixed normality of the PTHY estimator were shown by [29].
Furthermore, the consistency of the quadratic co-variation of the jump component was shown by [29],
using the difference between the PHY and PTHY estimators.

For the process of the threshold value of X:

vX(ζi) = 2 log(N)1+εσ̂2
ζi

,

was used by [36] with ε = 0.2, where:

σ̂2
ζi
=

µ−2
1

M− 2cn + 1

i−2cn

∑
p=i−M

|X̄p||X̄p+cn |, i = M, M + 1, . . . , N,

and σ̂2
ζi

= σ̂2
ζM

if i < M. Here, µ1 =
√

2/π, M = dN3/4e, and N is the number of the available
pre-averaged data X̄i. We can obtain vY(ξ j) in the same manner.

We construct a consistent estimator of ICov for the bivariate case, Ĉt, using the estimators based on
PTHY(X, X) and PTHY(X, Y). In order to guarantee the positive semi-definiteness of the estimators
of ICov and the jump component, we use the approach of [22], as explained above.

Using estimation techniques for PTHY(X, X) and PTHY(X, Y) (Equation (A2)), we can construct
a consistent estimator of the 2 × 2 integrated co-volatility matrix at day t, Ĉt, under jumps and
microstructure noise. We can also obtain the estimator of QCov, which we denote as Σ̂t, by using
PHY(X, X) and PHY(X, Y) (Equation (A1)), which yields the jump estimator, Ĵt = Σ̂t − Ĉt. We obtain
the final estimates as Σ̃t = Th(Σ̂t), C̃t = Th(Ĉt) and J̃t = Th( Ĵt), applying the threshold operator
defined by (5).

Appendix A.3. Estimation of Jump Component in Returns

A simple methodology was suggested by [36] to decompose asset returns sampled at a
high frequency into their base components (continuous and jumps). For the process of log-prices,
X, the return is defined by rX = ∑nT

i=2(Xζi − Xζi−1) = Xm − X1, where m = max{i : ζi ≤ T}.
Following the idea of [36], we define continuous, jump, and noise components of the return by:
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rcX =
1

cnκHY

m−cn

∑
i=0

X̄i1(|X̄i|2 ≤ vX(ζi)),

rjX =
1

cnκHY

m−cn

∑
i=0

X̄i1(|X̄i|2 ≥ vX(ζi)),

rnX = rX − rcX − rjX .

The decomposition of R into RC, RJ, and RN corresponds to that of Σ̃t into C̃t, J̃t, and Σ̃t − C̃t − J̃t.
In the empirical analysis, we use the continuous component of the return for the HAR-TCJA model,
and we use the observed return for the HAR-A model.
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