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Abstract: Power dispatching systems currently receive massive, complicated, and irregular monitoring
alarms during their operation, which prevents the controllers from making accurate judgments on
the alarm events that occur within a short period of time. In view of the current situation with the
low efficiency of monitoring alarm information, this paper proposes a method based on natural
language processing (NLP) and a hybrid model that combines long short-term memory (LSTM) and
convolutional neural network (CNN) for the identification of grid monitoring alarm events. Firstly,
the characteristics of the alarm information text were analyzed and induced and then preprocessed.
Then, the monitoring alarm information was vectorized based on the Word2vec model. Finally,
a monitoring alarm event identification model based on a combination of LSTM and CNN was
established for the characteristics of the alarm information. The feasibility and effectiveness of the
method in this paper were verified by comparison with multiple identification models.

Keywords: power grid monitoring; alarm information mining; Word2vec; long short-term memory
network; convolutional neural network

1. Introduction

With the rapid construction of power informatization, there has been explosive growth in
power-grid data. As a kind of Chinese text data, grid monitoring alarm information is an important
type of foundation data for regulatory personnel to monitor the running status of power grids. Over
recent years, the amount of alarm information in the access control system has continued to increase
with all collected information displayed in chronological order without any inference or process. It is
easy for the regulator to miss important information regarding an alarm and they cannot accurately
identify it in a short period of time. Therefore, the text mining of historical alarm information and the
establishment of a fast and accurate identification method have become important issues in the field of
power dispatching.

Many scholars have done profound research on the intelligent identification and alarm technology
of power systems. At present, there are three kinds of techniques, which are theoretically mature: Expert
system (ES), analytic model, and artificial neural network (ANN). In addition, rough set (RS) [1,2],
Petri net [3–5], Bayesian network [6–8], and fuzzy set (FS) [9–11] have also been successfully applied
in the intelligent identification and alarm of power systems. Expert system identifies through expert
knowledge representation and logical reasoning mechanisms. A rule base is generated by using expert
experience knowledge and fuzzy inference matching rules are applied to the alarm information to
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identify fault event categories [12,13]. The relevant rules and knowledge base established by the above
methods need manual refinement and maintenance, and they cannot be self-learned and improved.
Lee et al. [14] present a practical expert system for fault diagnosis of distribution substations. Based on
the knowledge of topology and operation rules of protective devices, the reverse imprecise reasoning
process is used to estimate the fault section. Although the expert system is constantly improving,
there are still shortcomings, such as the incomplete fault event rules, low recognition efficiency, and
vulnerability to information errors or missing interference.

The analytic model-based method describes the fault diagnosis as an unconstrained 0–1 integer
programming problem, and the optimization algorithm is used to minimize the objective function,
with the optimal solution as the fault diagnosis result. In reference [15], an analytic model based on
chance-constrained programming technology is introduced, and a genetic algorithm based on the
Monte Carlo simulation is used to resolve the objective function. In reference [16], an analytic method
based on the topological description is proposed and the mapping relationship between protection
device and section is built according to an event matrix. In reference [17], the concept of a dynamic
correlation path is used to reflect the time relationship between the action of protective relay and circuit
breaker in various forms, and the accurate identification results of multiple faults are obtained. In
addition, wide-area measurement can provide synchronous data and enhance the estimation ability
of fault sections in diagnostic models [18,19]. In reference [20], the system is divided into subnet
and protection areas, and the identification vector indicating the fault area is obtained by current
measurement. Then, the fault location is accurately located according to wide-area measurement data.

In order to improve the fault recognition ability of the monitoring and alarm system in the case of
information errors and missing information, the monitoring and alarm means based on ANN have
been gradually applied. Reference [21] uses a generalized regression neural network (GRNN) and a
multi-layer perceptron neural network (MPNN), two types of neural network modeling, for power
system fault identification. Reference [22] extracts the logic state of the relevant switch protection
from the alarm information and then obtains the fault identification result based on the ANN. In
reference [23], a hybrid model based on the rule base and ANN is proposed for intelligent alarm and
fault location of substation. The analytic model-based method and ANN method do not need to define
definite rules, which enhances the identification velocity and generalization ability of the monitoring
and alarm system, and has a certain degree of fault tolerance and adaptability. However, the accuracy
of identification depends on the detailed power network topology, complete protection device action
logic, or real-time measurement data, which reduces the practicability of the above methods.

The development of natural language processing (NLP) and deep learning provides new ideas
and methods for directly relying on monitoring alarm information texts for alarm event identification.
Natural language processing has been successfully applied in the fields of information retrieval, text
classification, intelligent Question and Answer, and machine translation [24]. Some scholars have
begun to apply NLP in the field of power systems. In reference [25], the vector space model (VSM) is
used to express the semantics, and the K-nearest neighbor (KNN) algorithm is used to evaluate the
whole life state of circuit breakers. Reference [26] uses a naive Bayesian algorithm to analyze historical
fault event records to predict substation faults. In reference [27], a method is proposed based on the
supervised Latent Dirichlet Allocation (sLDA) to detect and identify blackout accidents by mining text
about blackouts in social networks. The text semantic expression of the above method is based on the
statistical processing of word frequency, and the identification method is a traditional machine-learning
model. Deep learning can more fully monitor the sample characteristics of big data compared to
traditional machine-learning models. In reference [28], a defect text classification model based on a
convolutional neural network (CNN) is constructed for the defect text of power equipment. However,
the analysis of the power equipment fault defect text is a single statement sample, the processing
is relatively easy, and the classification model is a single deep-learning model. On the contrary, the
monitoring alarm information is a multi-statement sample on the time series, and the processing is
more complicated and difficult.
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For the sake of further studying the application of deep learning and its combination model
in grid monitoring alarm information mining, this paper proposes a grid monitoring alarm event
identification method based on NLP and a long short-term memory (LSTM)-CNN combination model.
The main contributions of this paper are as follows:

1. The Word2vec model is used to realize the semantic expression of monitoring alarm information
text, instead of the semantic expression based on character retrieval matching or word frequency
statistical probability. The text-based power grid monitoring alarm event identification is realized;

2. We analyze a large amount of historical warning information and summarize the differences
between them and ordinary Chinese text. Combining the excellent performance of LSTM in
dealing with the time-series problem and CNN in mining local features of short text, a hybrid
deep-learning model is built to realize the rapid identification of alarm events. Compared with
the single deep-learning model, the accuracy shows great improvement.

The proposed LSTM-CNN model is compared with several different machine-learning models
and single deep-learning models to prove its feasibility and superiority. The other sections of this paper
are arranged as follows. Section 2 introduces the characteristics of monitoring alarm information and
alarm event samples. Section 3 introduces the pretreatment process of the identification method and
the detailed structure and algorithm of the identification model. Section 4 carries out computational
experiments, provides the identification results based on the method and other models, and compares
the performance of each model. Finally, we discuss the experimental results and draw conclusions in
Section 5.

2. Monitoring Alarm Event Identification Process and Characteristics of Monitoring Alarm
Information

The original data collected in this paper are monitoring alarm information generated by Supervisory
Control and Data Acquisition (SCADA). Each piece of monitoring alarm information includes four
parts: Alarm time, alarm location, alarm content, and action status. The alarm content is unstructured
Chinese text, which contains a detailed description of the switch and the equipment. A typical alarm
message is shown in Figure 1.
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information is extracted to form an alarm information set. Then, the information set is judged by 

Figure 1. Example of alarm information.

The alarm event sample is the data used for training the identification model. Each sample is a set
of alarm information that contains the information collected when an alarm event occurs. The set of
alarm information reflects the characteristics of the event type to which the sample belongs. A typical
alarm event sample is shown in Table 1.
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Table 1. Example of an alarm event sample.

Alarm Event Type Related Alarm Information

Instantaneous fault
(successful reclosure)

XX City XX substation 124 over-current protection II section action

XX City XX substation 124 switch control loop disconnection action

XX City XX substation 124 over-current protection II section return

XX City XX substation 124 switch control loop disconnection reset

XX City XX substation 10 kV XX line 124 switch opening

XX City XX substation 124 accident total action

XX City XX substation 124 protection reclosing action

XX City XX change 10 kV XX line 124 switch closing

XX City XX substation 124 protection reclosing return

XX City XX substation 124 switch spring does not store energy

XX City XX substation 124 switch motor pressure action

This paper proposes an identification technology of monitoring alarm events based on NLP and
LSTM-CNN. The main steps for its identification are as follows:

1. Pre-processing the original monitoring alarm information, including word segmentation and
filtering of stop words;

2. Using the Word2vec model to represent distributed vector of pre-processed monitoring
alarm information;

3. Extracting various types of alarm event samples from historical monitoring alarm information in
a semi-automatic manner and labeling the event types. In the specific implementation, taking
the monitoring alarm information with the key-word of “opening” as the sign and the discrete
monitoring alarm information of the same substation or line in the 15 s before and after the
information is extracted to form an alarm information set. Then, the information set is judged
by the experience rules of regulators. The alarm information in the set is divided into position
signal, protection signal, and accompanying signal. The rules of each type of alarm event contain
the necessary and unnecessary conditions for event determination. After each alarm event is
handled, the regulator writes a scheduling log to record the occurrence time, the cause of the
event, the processing flow, and the type of event. The set of alarm information determined by
rules is checked against the dispatch log to form nine types of monitoring alarm event samples;

4. Inputting the alarm event sample into the trained identification model based on LSTM-CNN to
obtain the identification result;

5. Comparing the model-identifying result with the actual type of the alarm event. If the result is
wrong, it can be corrected by manual supervision and added to the sample library of historical
alarm events for self-learning.

The identification process of grid monitoring alarm events is shown in Figure 2.
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Compared to the general expression Chinese text, the monitoring alarm information and the
alarm event sample have the following characteristics:
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1. Monitoring alarm information relates to the neighborhood content of power engineering, which
contains a large number of professional vocabularies for power system operation. The vocabularies
contain between two and five words, such as “busbar differential”, “reclosing”, “control loop”,
and “fault recorder”;

2. The monitoring alarm information contains a detailed description of the power device name and
device action, and there is no fixed number of words and structure, which is unstructured text.
At the same time, the Chinese words are arranged in a row next to the English text, and there is
no space between them;

3. A large number of monitoring alarms contain text, numbers, and quantization units. Most of the
numbers are line names or switch numbers. These fields play an important role in extracting
discrete monitoring alarm information for a period of time before and after a certain piece of
information is received;

4. Due to the complexity of different types of alarm events and the difference in recording accuracy
caused by the version of the on-site information collection system, the number of monitoring
alarms contained in various event samples is also different. According to the statistics of the
extracted alarm event samples, the shortest contains only five pieces of information, and the
longest can contain 137 pieces of information;

5. The monitoring alarm information in each alarm event sample occurs continuously over a short
period of time and is arranged according to the time of occurrence with a strict timing relationship.

3. Monitoring Alarm Event Identification Based on NLP and LSTM-CNN

3.1. Monitoring Alarm Information Preprocessing

The preprocessing stage of monitoring alarm information in this paper includes two steps:

1. Word segmentation. Collecting professional electric vocabulary through data review and
importing the substation name and line name derived from the historical monitoring alarm
information into the vocabulary as a power dictionary for word segmentation. Using the accurate
model of the Jieba [29] word segmentation tool to initiate the word segmentation and to generate
time-ordered monitoring alarm information consisting of a series of Chinese phrases;

2. Filtering of the stop words. Noise such as irregular characters and punctuation in the monitoring
alarm information may interfere with the mining of subsequent text information. Therefore, this
paper establishes a stop-words list, eliminates the meaningless words in the alarm information,
and achieves data cleaning to improve the post-training effect.

3.2. Vectorization Model of Monitoring Alarm Information Based on Word2vec

Due to the monitoring alarm information being in Chinese text, it needs to be converted to
distributed vector representation. This idea was first proposed by Hinton in 1986 [30]. The purpose is
to transform the word semantics into the corresponding n-dimensional real vector, which has achieved
good results [31]. The currently used vector space embedding method is the Word2vec model, a
method proposed by Mikolov et al. in 2013 [32]. As an unsupervised model, Word2vec solves, in
a traditional one-hot encoding representation, the problem of large vector dimension and matrix
sparseness, which can easily cause dimensional disaster. At the same time, contextual semantic features
are introduced into the model to facilitate the classification of text. The Word2vec model is divided
into two main categories: The continuous bag-of-words (CBOW) model and the Skip-gram model.
Due to the training efficiency of the CBOW model being greater, this paper mainly used the training
framework based on the CBOW model, as shown in Figure 3.
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The CBOW model is a neural network with three layers: Input layer, projection layer, and output
layer [33]. Suppose that the training sample consists of the current central word w and its c words in
the context (context(w), w). The CBOW model inputs the one-hot code of 2c words, the output is the
probability of occurrence of the center word w, and the distributed vector representation of each word
is obtained through iterative training.

Mapping from the input layer to the projection layer, the CBOW model does not adopt the method
of linear transformation plus activation function of the traditional neural network, but rather adopts
the method of summing and averaging all the input word vectors of the context. Word vectors are
calculated from the following equation:

xw =
1
2c

2c∑
i=1

xi(context(w)) (1)

From the projection layer to the output layer, the CBOW model replaces the softmax layer of the
traditional neural network with Hierarchical Softmax. Specifically, all the words in the training corpus
are used as leaf nodes and a Hoffman tree constructed by weighing the number of occurrences of each
word in the corpus is used as the output layer. Each leaf node (light node in Figure 3) corresponds to
the word vector of each center word w in the training corpus, and each non-leaf node (dark node in
Figure 3) corresponds to a parameter vector θw.

The total number of nodes included in the path from the Hoffman tree root node word vector xw

to the leaf node where the center word w is located is l, and each time a non-leaf node experiences a
binary classification and is defined as a positive class to the left (Hoffman code is 1), right is defined as
a negative class (Huffman code is 0), and the probability of binary logistic regression through node j −
1 is:
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∣∣∣context(w)) of the central word w. The training goal

of the model is to maximize the prediction probability and take the log-likelihood function of the
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historical alarm information database defined in the pre-processing stage as the objective function of
the model:

L =
∑
w∈D

log P(w
∣∣∣context(w)) =

∑
w∈D

log
l∏

j=2

p(dw
j

∣∣∣∣xw,θw
j−1) (3)

This uses the garden ascending method to iteratively obtain all parameter θw vectors and word
vector xw.

When an alarm event occurs, the monitoring alarm information is expressed in the form of a
statement, and one of the statements may contain one or more characteristics of the event. Therefore,
after the word vector is obtained through the Word2vec model, it needs to be converted into a sentence
vector for each monitoring alarm information. In this paper, a vector of all words in the monitoring
alarm information is averaged to obtain a distributed vector representation of the monitoring alarm
information with the same word vector dimension. This method can express information semantics to
a certain extent, and provide data input for subsequent models. The calculation formula is:

vec_sum(d) =
∑

t vec(t)
word_num

, t ∈ d (4)

where d means one monitoring alarm information; word_num means the numbers of words in d; t
means the words in monitoring alarm information; vec(t) means the vector of t; and vec_sum(d) means
the distributed vector representation of a monitoring alarm message.

3.3. Monitoring Alarm Event Identification Model Based on LSTM-CNN

3.3.1. Model Structure

A recurrent neural network (RNN) has the powerful function of processing time-dependent
sequences, has been widely used to solve time series problems [34,35], and has a wide range of
applications in natural language processing [36]. Long short-term memory is an improvement to RNN
that successfully resolves the existence of gradient disappearance and gradient explosion defects [37].
Convolutional neural network is one of the most mature models in deep learning and is extensively
applied to image recognition, text classification, and other fields [38].

The monitoring alarm information triggered by the alarm event occurs continuously over a short
period of time. The information of the entire event is arranged according to the time of occurrence
and has a strict timing relationship. At the same time, depending on the meaning of the statement
expression, one piece of information may contain one or multiple features of an event. It is also possible
that a plurality of adjacent pieces of specific information together contain important features of the
result of the alarm event’s launching, indicating that there is a mutual connection between the partial
information. The LSTM realizes the forgetting and retaining of the monitoring alarm information
by controlling the memory unit, that is, the action occurring first in the alarm event can be saved.
Therefore, the overall meaning of the monitoring alarm information sequence is better represented.
CNN has the characteristics of local sensing, excellent feature extraction performance, and can mine
the correlation feature between adjacent monitoring alarm information.

Based on the advantages of the two models, this paper constructs an LSTM-CNN alarm event
identification model. Firstly, the recursive idea is used to represent the timing law in the event’s
monitoring alarm information, and the grammar and semantic features are learned. Then, the
multi-granularity convolution kernel is used to convolve the learned grammar and semantic features
to further explore the depth features in the information. Then, the most important feature in the
information is extracted through the pooling operation. Finally, the softmax classifier outputs the
identified alarm event type. The structure of the identification model is shown in Figure 4.
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and has a strict timing relationship. At the same time, depending on the meaning of the statement 
expression, one piece of information may contain one or multiple features of an event. It is also 
possible that a plurality of adjacent pieces of specific information together contain important features 
of the result of the alarm event’s launching, indicating that there is a mutual connection between the 
partial information. The LSTM realizes the forgetting and retaining of the monitoring alarm 
information by controlling the memory unit, that is, the action occurring first in the alarm event can 
be saved. Therefore, the overall meaning of the monitoring alarm information sequence is better 
represented. CNN has the characteristics of local sensing, excellent feature extraction performance, 
and can mine the correlation feature between adjacent monitoring alarm information. 

Based on the advantages of the two models, this paper constructs an LSTM-CNN alarm event 
identification model. Firstly, the recursive idea is used to represent the timing law in the event’s 
monitoring alarm information, and the grammar and semantic features are learned. Then, the multi-
granularity convolution kernel is used to convolve the learned grammar and semantic features to 
further explore the depth features in the information. Then, the most important feature in the 
information is extracted through the pooling operation. Finally, the softmax classifier outputs the 
identified alarm event type. The structure of the identification model is shown in Figure 4. 
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Figure 4. Structure of combined long short-term memory and convolutional neural network
(LSTM-CNN) identification model.

3.3.2. Long Short-Term Memory Network

Hochreater and Schmidhuber proposed the LSTM network structure in 1997 [39], and it has
progressed with the mushroom growth of deep-learning technology in recent years. The LSTM module
is mainly composed of four parts: Input gate, forget gate, memory cell, and output gate [40]. The
output of the LSTM is simultaneously affected by the hidden-layer information and the memory cell.
The hidden layer calculates the output in view of the current time input and the historical hidden-layer
information, and sends the calculation result to the next layer and memory cell. The memory cell
accepts these data and deletes the redundant saved information, then generates output values that act
on the hidden layer. Long short-term memory achieves effective control of the state of the memory
unit through three controllable gates, achieving its purpose of long-term memory and transmission of
timing information. The calculation process of each part is specifically described below with reference
to Figure 5.
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The input gate realizes the control of the input information at the current time and determines
how much information in the network input is saved to the memory unit at the current moment, as
shown in Figure 5a. Then, the output is obtained with the following formula:

it = σ(wxixt + whiht−1 + bi) (5)
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where it is the output of the input gate; xt and ht−1 are the current input and previous output of
hidden layer; wxi and whi are weights of xt and ht−1, respectively; and bi is the bias of the input
gate. Furthermore, σ is the sigmoid activation function and the calculation formula is adopted in this
study as:

σ(x) =
1

1 + e−x (6)

where x is the independent variable of the activation function.
In addition, the input gate also outputs a temporary memory cell:

c,
t = tanh(wxcxt + whcht−1 + bc) (7)

where wxc and whc are weights of input xt and ht−1, respectively; and bc is the bias of temporary
memory cell.

The forget gate realizes the control of the memory cell at the previous moment, determines how
many data are retained in the previous memory cell for the current memory cell, and is responsible for
continuing to store long-term important information, as shown in Figure 5b. The output of the forget
gate can be formulated as below:

ft = σ
(
wx f xt + wh f ht−1 + b f

)
(8)

where ft is the output of the forget gate; wxf and whf are the weights of input xt and ht−1, respectively;
and bf is the bias of the forget gate.

The memory cell, as shown in Figure 5c, consists of two parts. The first part is the calculated
value of the memory cell output to the forget gate at the previous moment, and the second part is the
temporary memory cell which is input to the input gate at the current moment. Add the two parts to
obtain the current time memory ct:

ct = ft · ct−1 + it · c′t (9)

where ct−1 is the output value of the memory cell at the previous moment.
Long short-term memory combines the temporary c′t and long-term memory ct−1 to generate a

new memory cell. Through the forget gate control, the LSTM can retain important information of the
long-term sequence, and through the input gate control, the non-important information at the current
moment is prevented from entering the memory cell.

For the output gate, the outcome is determined by the input in the current moment, the output of
the memory cell in the current moment, and the output of the hidden layer in the previous moment all
together, as shown in Figure 5d. The calculation formulas are as follows:

ot = σ(wxoxt + whoht−1 + bo) (10)

ht = ot · tanh(ct) (11)

where ot and ht are the output of the output gate and the current hidden layer, respectively; wxo and
who are the weight of xt and ht−1, respectively; and bo is the bias of ot.

The input of the LSTM layer is a sample of alarm events. It can be represented as X = {x1, x2, · · · , xn},
where xi is the distributed vector representation of monitoring alarm information, i = 1, 2, · · · n, and n
is the amount of monitoring alarm information contained in the alarm event sample (n = 5 in Figure 6).
Since the monitoring alarm information in the event is arranged in chronological order, each vector
represents an external input of the LSTM on a time step. The alarm event sample x is input into the
LSTM to extract the overall characteristics of the entire monitoring alarm information sequence, and
the hidden layer output at each time step is used as an input of the CNN to extract features between
local information. The connection between the LSTM, the input layer, and the convolution layer is
shown in Figure 6.
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3.3.3. Convolutional Neural Network

Convolutional neural network was originally applied in the field of image processing [41], but
with the development of NLP, it has gradually been applied to the field of text processing over recent
years. A CNN generally includes an input layer, convolution layer, pooling layer, and fully connected
layer. This paper uses a network structure based on reference [42], as shown in Figure 7.
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For the input layer, input the matrix H ∈ Rn×k, into which the hidden layer output values of the
alarm event samples are spliced at all times after being calculated by LSTM, where n is the time series
length of the alarm event sample, that is, the amount of monitoring alarm information contained in the
event (n = 7 in Figure 7), and k is the vector dimension of the LSTM hidden layer output value.

In the convolution layer, the convolution matrix W ∈ Rh×k is convoluted with all sub-matrices of
the same size in the input layer matrix H, leading to a convolution result:

ri = W ·Hi:i+h−1 (12)
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where Hi:i+h−1 is the sub-matrix formed by matrix H, from row i to i + h − 1, and the arithmetic
symbol “.” is a point multiplication operation, that is, to multiply the elements of two matrices at the
same position and then sum them. The results of each convolution after the non-linear operation are
as follows:

ci = ReLU(ri + bi) (13)

where bi is the bias term and ReLU is the activation function. The calculating formula is as follows:

ReLU = (0, x) (14)

Arrange all the results in order to obtain the convolution layer feature vector c ∈ Rn−h+1. The total
number of convolution operations is n − h + 1.

For ordinary neural networks, there will be a parameter explosion when the number of model
layers is too large. A convolutional neural network proposes a method of local perception and
weight sharing, which enormously decreases the network parameter quantity and alleviates the model
over-fitting problem, but also causes some data information to be lost during training. To avoid the loss
of information features in the training process, this paper makes use of a multi-granularity convolution
kernel to extract more related features hidden within local information. Different types of convolution
windows are formed by changing the number of rows of the convolution matrix, and different types of
convolution windows are represented in three colors (red, green, and yellow) in Figure 7. At the same
time, the number of convolution windows in each category is set sufficiently, and the matrix element
values of different convolution windows also vary. In Figure 7, the different shades of each color are
used to represent the different convolution windows for each category.

The pooling layer reduces the feature vector by a certain downsampling rule, which improves the
efficiency of the classifier calculation and further extracts the characteristics of the alarm event. In this
paper, the max-pooling is used to take the maximum value of the feature vector c obtained by each
convolution operation as the eigenvalue:

cmax = max{c} (15)

Coordinating the feature values extracted by all the different feature vectors through the pooling
operation to form a pooled layer output vector q ∈ Rv, where v = m · k, m is the number of categories in
the convolution window, and k is the number of convolution windows per type.

For the fully connected layer, the pooling layer vector q is input to the fully connected layer. The
softmax classifier outputs the probability of belonging to each alarm event type, and selects the type
with the highest probability as the identification result to the input monitoring alarm information:

p = softmax(Wq · q + bq) (16)

where Wq is the weight corresponding to event q, and bq is the bias corresponding to event q.

4. Results

4.1. Data Selection and Processing

For the sake of studying the application effect of the monitoring alarm event identification model
constructed in this paper, a total of more than 14 million historical monitoring alarm information of a
city grid company in 2016 and 2017 was used as a corpus, and nine types of alarm event samples were
extracted for training and testing. The extracted alarm event samples contained all the monitoring
alarm information in a fixed time window when the event occurred, so there was a small amount of
information triggered by this event. The deep learning was robust and therefore had a certain fault
tolerance for redundant information. Each type of alarm event sample was randomly divided into 10,
of which nine were used as a training set and one was used as a test set. The type of alarm event and
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the number of samples of each type are shown in Table 2. The Word2vec model was used to convert
monitoring alarm information into sentence vectors. The parameters of the model were set as shown
in Table 3.

Table 2. Number of alarm event samples.

Alarm Event Type Training Set Test Set Total

Bus fault 71 9 80
Instantaneous fault (successful reclosure) 4284 501 4785
Permanent fault (unsuccessful reclosure) 2959 296 3255

Permanent fault (reclosure failure) 2413 285 2698
Main transformer electrical fault 313 29 342
Main transformer grave gas fault 238 26 264

Main transformer gas fault in voltage regulation 140 13 153
Capacitor fault 1440 166 1606

Station/grounding transformer fault 340 31 371
Total 12,198 1356 13,554

Table 3. Key parameters of the Word2vec model.

Model Parameter Parameter Meaning Parameter Value

Training algorithm 0: CBOW algorithm
01: Skip-gram algorithm

Window size The maximum distance between the current word
and the predicted word in a piece of information 5

Minimum word frequency Words whose word frequency is less than the number
of parameter values will be discarded 0

Training acceleration strategy 0: negative sampling
11: hierarchical softmax

Word vector dimension Vector dimension of each word 300

4.2. Model Parameter Setting

The input layer is a m × n dimension matrix, m is the maximum number of input alarm event
samples containing monitoring alarm information, and n is the vector dimension of a single piece of
monitoring alarm information and determines the matrix size as 137 × 300. The output layer is an
alarm event class vector represented by one-hot coding. For various situations, it is still a matter for the
solution to determine the optimal structure of different deep-learning models [43]. In this section, the
structure of the identification model is defined by combining human experience with machine search.
Firstly, the hidden unit number in the LSTM layer was determined. Compared to the identification
accuracy when the hidden unit numbers are 64, 128, and 256, it was found that when the hidden unit
number was 128, the identification accuracy was highest. By analyzing the text of monitoring alarm
events, it was found that 2–3 pieces of adjacent monitoring alarm information have a local correlation
characteristic. However, there might be interference from accompanying information, so three kinds
of convolution kernels were set up with sizes of 3, 4, and 5. Then, experiments were carried out to
observe the effect of the convolution kernel number, as shown in Figure 8a. When the number was
100, the identification accuracy reached the maximum. The ReLU, a significant unsaturated activation
function, was used as the activation function of the convolution layer, according to its successful
application in CNN [44] and deep belief networks (DBN) [45]. Dropout is a valid way of resolving
the over-fitting problem, but it plays a small role in the convolution layer and it was only adopted in
the fully connected layer in this paper. The effect of dropout on identification accuracy is shown in
Figure 8b. As can be seen from the figure, when the dropout is 0.5, the model identification accuracy is
highest. Adam [46] optimization algorithm was adopted to renew the model parameters.
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Figure 8. Effect of parameters on identification accuracy: (a) Convolution kernel number and
(b) dropout.

The model of this paper was built in Tensorflow 1.4.0 [47] and Keras 2.2.4 [48] in the Python
3.6.5 environment. The entire training and testing process was performed on a Windows 10 system
computer with an Intel Core i7-8550U 2.0 GHz processor and 8.0 GB RAM. The final parameter settings
were determined by several experiments as shown in Table 4.

Table 4. Parameters of combined model LSTM-CNN.

Network Layer Parameter Name Parameter Value

LSTM
Alarm information vector dimension 300

Unit number 128

CNN

Convolution kernel size 1 3
Convolution kernel size 2 4
Convolution kernel size 3 5

Convolution kernel number 100
Activation function ReLU

Dense
Dropout 0.5

Activation function softmax
Output dimension 9

In order to illustrate the use of the Word2vec-based alarm information vectorization model in
this paper, we can better express the semantic features in the alarm information text and heighten the
accuracy of model identification. This paper designed two sets of controlled experiments: Changing
the generation method of the initial input vector of the model and whether the alarm vector was
updated in the model training. The parameters of each control model are set as shown in Table 5.

Table 5. Comparison model parameters.

Model Parameter Model of This Paper Contrast Model A Contrast Model B

If the input alarm info vector is
randomly generated No Yes No

If the input alarm info vector is
iteratively updated Yes No No

In addition, in order to validate the identification effect of the LSTM-CNN model proposed in
this paper, several single learning models and typical machine learning models were selected for
comparative verification. The deep-learning model selected CNN, LSTM, and bidirectional long
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short-term memory (Bi-LSTM). The text of the alarm information was represented by the Word2vec
vectorization model. The machine-learning model selected the support vector machine (SVM) [49],
logistic regression (LR), and random forest (RF) [50]. The text representation of the alarm information
mainly used the term frequency-inverse document frequency (TF-IDF) [51].

4.3. Criteria for Identification Result

The confusion matrix divides all events into four categories according to their actual attribution
and identification attribution. Accuracy, Precision, Recall, and F1-score are employed to measure the
identification performance of the model. The two-class confusion matrix is shown in Table 6.

Table 6. Confusion matrix in event identification.

Event Recognized as This Type of Event Recognized as Other Type of Event

Actually for this type of event TP (true positive) FN (false negative)
Actually for other type of event FP (false positive) TN (true negative)

The formulas for calculating the four indicators are as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1-score = 2×
P×R
P + R

(20)

where Accuracy indicates the proportion of the event that identifies the correct event from all events;
Precision indicates the proportion of the sample that is recognized by the model as the event that is
actually the category; Recall indicates the actual prediction for the sample of the event, and is also the
proportion of the category; and F1-score is a composite average of the accuracy rate and the recall rate.
The range of values of all four is [0, 1], and the closer the value is to 1, the better the identification effect
of the model is.

4.4. Discussion of Results

In practical application, the training of corpus word vectors and sentence vectors can be done
offline and the result can be saved in advance and be recalled directly when being identified, without
repeated training. Consequently, the training time and test time mentioned in this paper are only the
training and test time of various identification models. The identification results of the model and
the comparison model are shown in Table 7, and the identification results compared to the other six
models are shown in Table 8.

Table 7. Identification results of each comparison model.

Model Accuracy (%) Training Time (s) Test Time (s)

Model of this paper 98.30 1042.57 6.52
Contrast model A 76.84 1054.76 6.49
Contrast model B 97.08 806.62 6.30
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Table 8. Comparison of identification results of this model with other models.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Training Time (s) Test Time (s)

LSTM-CNN 98.30 98.32 98.30 98.66 1042.57 6.52
Bi-LSTM 96.75 96.79 96.76 96.75 582.47 2.66

LSTM 96.61 96.64 96.61 96.61 516.19 3.28
CNN 92.69 92.74 92.63 92.66 539.08 2.74
SVM 88.20 88.17 88.20 88.15 220.82 21.78
RF 91.18 91.52 91.08 91.18 21.88 0.064
LR 86.21 86.33 86.21 86.25 3.62 0.001

From model A in Table 7, compared with the randomly generated alarm information input vector,
the advance training history monitoring alarm information corpus generates the monitoring alarm
information vector and can obviously increase the accuracy of the model identification, indicating
that the Word2vec model can better express the semantic features of the alarm message text. From
model B in Table 7, compared with the initial training mode in which the initial alarm information
vector was fixed during the training process, the iterative fine-tuning of the model during the training
process could improve the identification accuracy rate of the model to some extent. It indicates that
the identification model had a self-learning ability. With the expansion and update of the sample
library, the association between the alarm information is further explored, the parameter structure
was adjusted and improved, and the identification ability was enhanced. Although the training of the
alarm information vector and the iterative update in the training process of the identification model
took a certain amount of time, the model training of the large sample size was generally offline training,
and did not occupy the time of the online test, so it did not affect the identification speed of the model
in practical engineering.

From Table 8, the accuracy of the CNN model in the four deep-learning models was at least
92.69%, and the accuracy of the random forest model in the three machine-learning models was 91.18%.
For the identification of alarm information in this paper, the deep-learning model worked better than
the machine-learning model. For a specific single model, the model of this paper was better than other
models in all indicators. The accuracy of the LSTM model was 96.61%, and the accuracy of the CNN
model was 92.69%. The accuracy of the model in this paper was 98.30%, which is 1.69% and 5.61%
higher than the other two. The accuracy, recall, and F1-score were 1.68%, 1.69%, and 2.05% higher
than the LSTM model, respectively. Compared with the CNN model, it was 5.58%, 5.61%, and 6%,
respectively. At the same time, the Bi-LSTM model with the highest identification accuracy in other
models reached 96.75%, and the model was still 1.55% higher than this.

According to the principle of the model in Section 3.3, taking the “Instantaneous fault (successful
reclosure)” in Table 1 as an example, the advantages of the model in this paper are analyzed concretely.
The event triggered 11 monitoring alarm messages, each of which was taken as a time step to extract the
temporal characteristics of the whole event by LSTM. Secondly, local information association features
were extracted by CNN. When an event occurred, part of the information played a major role in the
event identification result, and other information was an accompanying signal of interference. For
example, “reclosing action”, “switch closing”, and “reclosing return” were three signals that illustrate
the characteristic of “reclosing work” together, but there was an accompanying signal of “spring does
not store energy”. If the convolution window size is 3, the main feature cannot be extracted. Therefore,
this paper set up convolution windows of different sizes to more fully extract the correlation features
between local monitoring alarm information. However, single LSTM, Bi-LSTM, or CNN cannot extract
global temporal features and local correlation features comprehensively, so the LSTM-CNN model had
a higher identification accuracy.

In the training time, the model in this paper took the longest. On the one hand, because the model
combines LSTM and CNN, the network structure was more complex than a single deep-learning
model. There were more network training parameters, and the time was about twice that of the
other two. On the other hand, the semantic expression of alarm information in LSTM-CNN model
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was expressed by 300-dimensional vectors and updated iteratively in the training process. The
semantic expression of the machine-learning model was TF-IDF, which only required statistical
analysis. However, the time of testing 1356 alarm events in LSTM-CNN model was 6.52 s, which is
much faster than manual identification.

In order to better illustrate that the model has a good identification effect for each type of alarm
event extracted, Tables 9–11 show the accuracy, recall, and F1-score of each model for each type of
alarm event, respectively.

Table 9. Comparison of accuracy of this model with other models.

Event Type LSTM-CNN Bi-LSTM LSTM CNN RF SVM LR

Bus fault 100.00 88.89 88.89 100.00 85.71 87.50 77.78

Instantaneous fault (successful reclosure) 97.85 96.09 96.60 92.48 93.14 89.82 86.87

Permanent fault (unsuccessful reclosure) 98.97 96.21 93.33 83.82 84.06 78.08 74.01

Permanent fault (reclosure failure) 97.90 98.92 98.64 97.53 95.62 90.17 94.20

Main transformer electrical fault 96.67 87.50 96.55 90.32 65.85 86.67 77.42

Main transformer grave gas fault 96.30 95.83 92.86 96.00 95.65 95.83 84.62

Main transformer gas fault in voltage regulation 100.00 92.31 100.00 100.00 71.43 90.91 85.71

Capacitor fault 99.40 98.81 97.65 99.39 97.01 94.32 94.12

Station/grounding transformer fault 100.00 96.88 100.00 96.88 100.00 100.00 93.55

Table 10. Comparison of recall of this model with other models.

Event Type LSTM-CNN Bi-LSTM LSTM CNN RF SVM LR

Bus fault 88.89 88.89 88.89 77.78 87.50 77.78 77.78

Instantaneous fault (successful reclosure) 98.80 98.00 96.41 90.82 89.82 88.02 85.83

Permanent fault (unsuccessful reclosure) 97.30 94.26 94.60 87.50 78.08 77.03 76.01

Permanent fault (reclosure failure) 97.90 96.14 97.19 96.84 89.86 93.33 91.23

Main transformer electrical fault 100.00 96.55 96.55 96.55 86.67 89.66 82.76

Main transformer grave gas fault 100.00 88.46 100.00 92.31 100.00 88.46 84.62

Main transformer gas fault in voltage regulation 100.00 92.31 84.62 92.31 90.91 76.92 92.31

Capacitor fault 99.40 100.00 100.00 98.80 94.32 100.00 96.39

Station/grounding transformer fault 100.00 100.00 100.00 100.00 100.00 93.55 93.55

Table 11. Comparison of F1-score of this model with other models.

Event Type LSTM-CNN Bi-LSTM LSTM CNN RF SVM LR

Bus fault 94.12 88.89 88.89 87.50 75.00 82.35 77.78

Instantaneous fault (successful reclosure) 98.81 97.04 96.50 91.64 91.24 88.91 86.35

Permanent fault (unsuccessful reclosure) 98.13 95.22 93.96 85.62 87.34 77.55 75.00

Permanent fault (reclosure failure) 98.76 97.51 98.40 97.18 93.74 91.72 92.69

Main transformer electrical fault 98.31 91.80 96.55 93.33 77.14 88.14 80.00

Main transformer grave gas fault 98.11 92.00 96.30 94.12 89.80 92.00 84.62

Main transformer gas fault in voltage regulation 100.00 92.31 91.67 96.00 74.07 83.33 88.89

Capacitor fault 99.40 99.40 98.81 99.09 97.30 97.08 95.24

Station/grounding transformer fault 100.00 98.41 100.00 98.41 96.67 96.67 93.55

From Table 9, eight of the nine types of fault have the highest accuracy model for this model. In
the case of permanent faults (reclosure failure), it was lower than Bi-LSTM and LSTM, with a difference
of 1.02% and 0.74%, respectively. From Table 10, the recall of the model was only 0.6% lower than that
of other models in the case of capacitor fault. Due to the sample size of the bus fault being less than
other types, the extraction characteristics in the training are not completely caused by the category
of bus faults, which is significantly lower than other categories. From Table 11, the F1-score of the
model was the highest among the nine types of fault, and the difference between the categories is
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small, indicating that the model has good identification effect for each type of fault and that there are
no inter-category identification imbalances.

5. Conclusions

In view of the current situation of low monitoring efficiency and a high false positive rate, this
paper proposed a monitoring alarm event identification method based on NLP and LSTM-CNN. The
alarm events have the characteristics of professional and mixed texts and numbers of the professional
monitoring alarm information, have a large difference in the amount of information, and information
arranged in sequence of time series. Combined with the Word2vec model, LSTM-CNN was used to
construct a classification model capable of autonomously identifying grid monitoring alarm events
based on the advantages of distributed vector representation. Taking the actual engineering data as
a sample, through a comprehensive comparison with single deep-learning models and traditional
machine-learning models, the significant advantages of the method in identification accuracy were
demonstrated, which provided a novel idea for the development of artificial intelligence technology in
the field of power grid monitoring.

The method proposed in this paper needs to learn rules and experience based on sufficient samples
and cannot replace the mechanism of occurrence and physical modeling after event identification.
Therefore, rule-based processing methods can be used for mechanism analysis and events with a small
sample size. The organic combination of the two can form a complete intelligent alarm system.
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