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Abstract: This paper presents a method for online detection of symmetrical components of arbitrarily
distorted and biased three-phase input signals. This method is based on Second-Order Generalized
Integrators (SOGIs), for which a new tuning based on a gradient search is presented to achieve the
fastest possible estimation. Frequency estimation is achieved by a Frequency Locked Loop (FLL) with
Gain Normalization (GN) for which an Output Saturation (OS) is applied; this OS guarantees stability
of the overall system. Offset detection is implemented by a combination of High-Pass Filter (HPF) and
HPF-Amplitude Phase Correction (APCHPF); the HPF filters out any offset, where the APC reconstructs
the original offset-free signal. An identical method (APCLPF) can be used for the implemented
Low-Pass Filter (LPF) used for noise filtering. The resulting estimates are then used for Harmonic
Sequence Detection (HSD) of each harmonic. For the overall system, stability is proven. The estimation
performances of the proposed overall system are verified by simulation results. The improvements in
tuning and offset detection are compared to standard approaches.

Keywords: second-order generalized integrator; symmetrical components; real Fortescue
transformation; frequency locked-loop; DC-offset detection; frequency detection; amplitude detection;
stability analysis; convergence analysis

Notation

N,R,C,Q: natural, real, complex and rational numbers. C(X; Y): set of continuous functions
f : X → Y (where X ⊆ Rm and Y ⊆ Rn, n, m ∈ N). Cpw(X; Y): set of piecewise continuous
functions f : X → Y. L∞(X; Y): set of essentially bounded functions f : X → Y equipped with norm
‖ f‖∞ := ess-supp∈X ‖ f (x)‖. deg(p): degree of polynomial p ∈ R[s]. x := (x1, . . . , xn)

> ∈ Rn: column

vector, n ∈ N (where := means “is defined as” and > means “transposed”). 0n ∈ Rn: zero vector.

‖x‖ :=
√

x>x: Euclidean norm of x. A ∈ Rn×m: real matrix, n, m ∈ N. λmin(A) ≤ λmax(A): minimal
and maximal eigenvalue of A. det(A): determinant of A. blockdiag(A1, . . . , An) ∈ Rnm×nm: block
diagonal matrix with matrix entries Ai ∈ Rm×m, i ∈ {1, . . . , n}. 0n×m ∈ Rnm: zero matrix.

ŷabc :=
(

ŷa, ŷb, ŷc)>: Estimate of signal yabc :=
(

ya, yb, yc
)>

. J =
[

0 −1
1 0

]
: Rotation matrix.

Tc =

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2

]
: Clarke transformation matrix and
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1. Motivation and Literature Review

In power systems, grid faults or unbalanced loading can lead to unbalanced conditions of the
grid quantities (like voltages or currents). Moreover, significant harmonic content can deteriorate the
fundamental signals. To handle and possibly compensate for such deteriorated operation conditions,
it is crucial to detect the harmonic and fundamental components of the considered quantities and to
decompose the unbalanced quantities into balanced (symmetrical) components. This decomposition
is called the Method of Symmetrical Components, and was introduced in 1918 by Fortescue [1] for the
steady-state case invoking the well-known complex phasor representation for each phase signal.
His findings have been modified and extended later for several applications, also considering the
dynamical case where original and respective quadrature signals have to be estimated [2–7]. However,
if the phase signals are additionally distorted by harmonics, DC-offset(s), and/or measurement noise,
the simple decomposition is no longer possible; then, the harmonics and the DC-offset also have
to be detected, and measurement noise has to be filtered out, inducing an inevitable time delay.
As already noted above, for an online detection of the symmetrical components, the quadrature signals
of the phase quantities are required. These can be estimated by Second-Order Generalized Integrators
(SOGIs) [8,9], which are also called Adaptive Notch Filters (ANFs) [6]. Since SOGIs (or ANFs) require an
estimate of the signal angular frequency to compute the quadrature signal, any time-varying change
of the frequency degrades the estimation performance of the SOGIs. Thus, for the detection of the
symmetrical components, the frequency of the phase signal(s) usually has to be estimated for the
fundamental component as well. Frequency detection can be achieved by a Frequency Locked Loop
(FLL) [6,7,9] or a Phase Locked Loop (PLL) [2,10]. DC-offset estimation was reported in [4,11], whereas
detection of higher-order harmonics was introduced in [12,13]. However, only in [13] was (local)
stability proven. Alternative approaches for the detection of the phase variables without SOGIs are
mostly based on delay blocks [5,14], which are not considered in this paper.

Table 1 shows a list of papers which relate primarily to phase-variable estimation; a few dealing
with symmetrical components (and not variable estimation) have been selected as well. No paper dealt
with a most general signal, and no paper used signals with jumps in each variable for verification.
Moreover, only a few papers considered variable detection and symmetrical components; these papers
mostly used non-distorted signals. Only in a very few papers, mathematical proofs could be found;
moreover, only in [13] was stability proof for the SOGIs included (however, in the opinion of the
authors, they used unnecessary assumptions), but not for the overall system.

This work proposes a complete model for the online estimation of DC-offset, fundamental
frequency, harmonics, phase angles, and amplitudes. In detail, (to the best knowledge of the authors),
new approaches for modular offset estimation using a High-Pass filter (HPF) and noise cancellation, as
well as high-order harmonic suppression using a Low-Pass filter (LPF) with amplitude phase correction
(APC) are shown. A new tuning rule for the parallelized second-order generalized integrators (SOGI)s
with improvement in convergence speed is proposed. Moreover, an overall stability analysis and
convergence analysis of the linear system is presented.
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Table 1. Used processing methods and verification signals of the cited papers compared to this paper.

Cited
Paper

Frequency
Estimation

Offset
Estimation

Harmonics
Estimation

Pre-
Filter

Phase
Estimation

Amplitude
Estimation

Symmetrical
Components

Stability
Proof

Used Sgnal for
Algorithm Verification

[1] 7 7 7 7 7 7 3 3 7

[3] 7 7 7 7 7 7 3 7 Unbalances with harmonics,
offset and amplitude jumps

[4] FLL 3 7 7 7 7 3 7 Offset and frequency jumps

[5] 7 7 7 7 7 7 3 7 Unbalances

[6] FLL 7 7 7 7 3 7 7 Unbalances with harmonics

[10] PLL 7 7 3 3 3 7 7 Frequency, phase
or amplitude jumps

[11] FLL 3 7 7 7 7 7 7 Offset

[12] FLL 7 3 7 7 7 7 7 Harmonics

[13] FLL 7 3 3 7 7 7 3 Harmonics

[14] FLL 7 7 7 3 3 7 7 Harmonics, amplitude,
offset and frequency jumps

[15] PLL 7 7 7 3 3 7 7 Harmonics, amplitude
and frequency jumps

[16] PLL 7 7 7 3 3 7 7 Frequency jumps,
harmonics or offset

[17] FLL 7 7 7 7 7 7 7 Frequency jumps,
harmonics or offset

[18] PLL 7 7 7 3 3 7 7 Amplitude and
frequency jumps

[19] FLL 7 7 7 7 7 7 7 Noisy signals

[20] FLL 7 7 7 7 7 7 7 Phase, amplitude and
frequency jumps

[21] PLL 7 7 7 3 3 7 7 Harmonics, frequency
and amplitude jumps

[22] PLL 3 7 7 3 3 7 7 7

[23] 7 7 3 7 7 7 7 7 7

[24] 7 3 7 3 7 7 7 7 7

[25] PLL 3 7 7 3 3 7 7 Offset jumps and harmonics

[26] PLL 7 7 7 3 3 7 7 7

[27] FLL 7 7 7 7 7 7 7 7

[28] PLL 7 7 7 3 3 7 7 Harmonics and
amplitude jumps

[29] 3 3 7 7 3 3 7 3 Frequency jumps

[30] 7 7 7 7 7 7 3 7 Unbalances with harmonics

[31] 7 3 7 7 7 7 7 7 Harmonics and offset jumps

[32] DFT 7 7 7 3 3 7 7 Harmonics

[33] PLL 3 7 7 3 3 7 7 Offset

[34] FLL 7 7 7 7 7 3 7 Frequency jumps

[35] PLL 3 7 7 3 3 3 7 Unbalances with offset

[36] FLL 7 7 7 7 7 7 7 Frequency jumps

[37] FLL 7 7 3 7 7 7 7 Frequency, phase
or amplitude jumps

[38] FLL 7 7 3 3 3 7 7
Frequency, phase, offset
and/or amplitude jumps
and harmonics

[39] FLL 7 3 3 3 3 7 7
Frequency, phase, offset
and/or amplitude jumps
and harmonics

[40] FLL 3 7 3 3 3 7 7 Frequency, phase
or amplitude jumps

[8] FLL 7 3 7 3 3 7 3 Frequency, phase
or amplitude jumps

this FLL 3 3 3 3 3 3 3 Arbitrary jumps
in each variable
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The contributions of this paper and outline are as follows:

• Overall problem statement in most general setting (see Section 1.1);
• Overall solution (see Section 1.2);
• Low-Pass Filter (see Section 2.1) and High-Pass Filter (see Section 2.2);
• Stability analysis and tuning rule of parallelized Second-Order Generalized Integrators

(see Section 2.3);
• Frequency Locked Loop with Gain Normalization and Output Saturation (see Section 2.4);
• Amplitude Phase Corrections for Low- and High-Pass Filters (see Section 2.5);
• DC-offset detection (see Section 2.6);
• positive-, negative-, and zero-sequence detection of each harmonic component and of the original

low-pass filtered input signals (see Section 2.7); and
• Illustration of the theoretical results by extensive simulations (see Section 3).

1.1. Problem Statement

Here, we consider unbalanced (for unbalanced three-phase signals, the following holds
ya(t) + yb(t) + yc(t) 6= 0 at least for some time instant t ≥ 0), three-phase systems or
signals (of e.g., voltages or currents) with significant and arbitrary harmonic distortion (In
this paper, all quantities of the phases a,b,c will be expressed as signal vectors of the form
yabc(t) =

(
ya(t), yb(t), yc(t)

)> ∈ R3 for all t ≥ 0, where y ∈ {v, i, ψ, . . . } could represent e.g., voltage,
current, or flux linkage). The considered systems consist of three phases, a, b, and c, and are described
in compact vector notation by the following input (original) signal vector.

∀ t ≥ 0 : yabc(t) :=

ya(t)
yb(t)
yc(t)

 :=

aa
0(t)

ab
0(t)

ac
0(t)


︸ ︷︷ ︸
=:yabc

dc (t)

+ ∑
ν∈H∞

aa
ν(t) cos

(
φa

ν(t)
)

ab
ν(t) cos

(
φb

ν(t)
)

ac
ν(t) cos

(
φc

ν(t)
)


︸ ︷︷ ︸
=:yabc

ν (t)

∈ R3; (2)

where H∞ := {1, ν2, . . . , ν∞} ⊂ Q>0 with DC-offsets ap
0 , fundamental amplitude ap

1 ,
harmonic amplitudes ap

ν2
, . . . , ap

ν∞
≥ 0, and angles φp

ν (in rad), respectively; where p ∈ {a, b, c}
represents the superscript for the three phases a, b, and c and ν ∈ H∞ indicates the ν-th harmonic
component (per definition ν1 := 1). Observe that ν does not necessarily need to be a natural number;
non-zero rational numbers larger or smaller than one (e.g., ν = ν2 = 2/3) are admissible as well to
consider, e.g., inter-harmonics. Moreover, to consider the most general case, note that the phase angles

∀ p ∈ {a, b, c} ∀ν ∈ H∞ ∀t ≥ 0 : φp
ν (t) =

∫ t

0
ν ω

p
1 (τ)︸ ︷︷ ︸

=:ωp
ν (τ)

dτ + φ
p
0,ν

of the ν-th harmonic component depend on the possibly time-varying angular fundamental frequency
ω

p
1 (·) > 0 rad

s , and the initial angle φ
p
0,ν ∈ R. Both quantities are allowed to differ between the three

phases p ∈ {a, b, c} and the harmonic components. The main goal of this paper is twofold:

(i) to detect online estimates of DC-offset âp
0 , amplitudes âp

ν , and angles φ̂p
ν of the three phases

p ∈ {a, b, c} for a limited bandwidth of the total harmonic distortion—that is, ν ∈ Hn :=
{1, ν2, . . . , νn} ⊂ H∞ (where, clearly, the highest harmonic νn is smaller than ν∞—that is, νn < ν∞),
such that, after a short transient phase, the estimated quantities (indicated by “̂ ”) are equal
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to the band-limited (low-pass and high-pass filtered; see Sections 2.1 and 2.2) original signal.
More precisely, the following should hold:

ŷabc(t) :=

âa
0(t)

âb
0(t)

âc
0(t)


︸ ︷︷ ︸
=:ŷabc

dc (t)

+ ∑
ν∈Hn

âa
ν(t) cos

(
φ̂a

ν(t)
)

âb
ν(t) cos

(
φ̂b

ν(t)
)

âc
ν(t) cos

(
φ̂c

ν(t)
)


︸ ︷︷ ︸
=:ŷabc

ν (t)

= yabc
dc (t) + ∑

ν∈Hn

yabc
ν (t); (3)

(ii) and if the fundamental frequencies of the three phases are identical (i.e., ωa
1(t) = ωb

1(t) =

ωc
1(t) for all t ≥ 0), to extract, for each harmonic ν ∈ Hn, positive sequence components

ŷabc
+,ν :=

(
ŷa
+,ν, ŷb

+,ν, ŷc
+,ν
)>, negative sequence components ŷabc

−,ν :=
(
ŷa
−,ν, ŷb

−,ν, ŷc
−,ν
)> (Positive

and negative sequences are balanced signals, that is, ŷa
x(t) + ŷb

x(t) + ŷc
x(t) = 0 for all t ≥ 0 and

x ∈ {+,−} ([9], Appendix A)) and zero sequence components ŷabc
0,ν :=

(
ŷa

0,ν, ŷb
0,ν, ŷc

0,ν
)> of the

low-pass filtered and offset free harmonic signal vector yabc
ν (·) as in (3) such that the following

holds yabc
ν (t) !

= ŷabc
+,ν(t) + ŷabc

−,ν(t) + ŷabc
0,ν (t) for all ν ∈ Hn and t ≥ 0 (at least in the steady-state).

Remark 1. Note that in (2), time-varying phase amplitudes (of each harmonic component) and time-varying
phase angles are considered. The typical assumption (see, e.g., ([9], Appendix A)) of a constant fundamental
angular frequency ω

p
1 > 0 with p ∈ {a, b, c} such that φp

ν (t) = ν ω
p
1 t is not imposed, since it is not

generally true.

1.2. Principle Idea of Proposed Overall Solution

The principle idea of the proposed overall solution is illustrated in Figure 1. The depicted block
diagram is fed by the input signals ya, yb, and yc of the respective phases a, b, c, and shows the
individual phase variables detection (PVDp) blocks for the three phases p ∈ {a, b, c} and the harmonic
sequence detection (HSDabc). The outputs of the block diagram are the respective estimated signal
components (see Section 1.1). In Figure 1, all components (sub-blocks) of PVDa are explicitly shown.
PVDb and PVDc have identical components. One can summarize: For p ∈ {a, b, c} and ν ∈ Hn,
each PVDp consists of the following sub-blocks:

• A Low-Pass Filter (LPFp) to filter out noise and limit the bandwidth of the input signal yp;
• A High-Pass Filter (HPFp) to filter out any DC-offset in the low-pass filtered signal yp

LPF;
• A parallelization of Second-Order Generalized Integrators (SOGIs) to detect the amplitude and phase

of each of the harmonic components of the high-pass filtered signal yp
HPF: the ν-th SOGIp will

output the estimated signal vector x̂p
HPF,ν := (ŷp

HPF,ν, q̂p
HPF,ν)

> compromising estimate of the
direct and quadrature signal of the ν-th harmonic, resp. All n-estimated signal vectors x̂p

HPF,ν are
merged into the overall estimate vector

x̂p
HPF :=

(
(ŷp

HPF,1, q̂p
HPF,1)

>︸ ︷︷ ︸
=:(x̂p

HPF,1)
>

, (ŷp
HPF,ν2

, q̂p
HPF,ν2

)>︸ ︷︷ ︸
=:(x̂p

HPF,ν2
)>

, . . . , (ŷp
HPF,νn

, q̂p
HPF,νn

)>︸ ︷︷ ︸
=:(x̂p

HPF,νn
)>

)> ∈ R2n. (4)

The overall estimate output ŷp
HPF = ∑ν∈Hn

ŷp
HPF,ν = c>y x̂p

HPF of the SOGI input signal yp
HPF is

established by the sum (linear combination) of the estimates of the direct signals of all SOGIs;
• a Frequency-Locked Loop (FLLp) to obtain the estimate ω̂

p
1 of the fundamental angular frequency

ω
p
1 of the high-pass filtered signal yp

HPF;
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• an Amplitude Phase Correction (APCp
x with x ∈ {LPF, HPF}) to mitigate for amplitude damping

and phase shift introduced by LPFp and HPFp, resp.: The merged estimated signal vector x̂p
HPF of

the parallelized SOGIs is fed into the APCp
HPF. The APCp

HPF output vector

x̂p
LPF =

(
(ŷp

LPF,1, q̂p
LPF,1)

>︸ ︷︷ ︸
=:(x̂p

LPF,1)
>

, (ŷp
LPF,ν2

, q̂p
LPF,ν2

)>︸ ︷︷ ︸
=:(x̂p

LPF,ν2
)>

, . . . , (ŷp
LPF,νn

, q̂p
LPF,νn

)>︸ ︷︷ ︸
=:(x̂p

LPF,νn
)>

)> ∈ R2n (5)

comprises all amplitude-correct and phase-correct direct and quadrature estimates of the low-pass
filtered signal yp

LPF (see Figure 1). The signal vector x̂p
LPF is fed into the APCp

LPF to reconstruct
amplitude-correct and phase-correct direct and quadrature estimates of the original signal yp

(see Figure 1). The output vector of the APCp
LPF is given by

x̂p =
(
(ŷp

1 , q̂p
1 )
>︸ ︷︷ ︸

=:(x̂p
1 )
>

, (ŷp
ν2

, q̂p
ν2
)>︸ ︷︷ ︸

=:(x̂p
ν2
)>

, . . . , (ŷp
νn

, q̂p
νn
)>︸ ︷︷ ︸

=:(x̂p
νn
)>

)> ∈ R2n. (6)

• A DC-offset detection to obtain an estimate âp
0 of the DC-offset ap

0 in the original signal yp

(see Figure 1).

PVDa

parallelized SOGIs

DC detection

LPFa
ya

HPFa

ya
LPF

Σ
ya

HPF
1-st SOGIa

ν2-th SOGIa

νn-th SOGIa

ea
HPF,y

...

c>y x̂a
HPF

x̂a
HPF,1

x̂a
HPF,2

x̂a
HPF,n

−

ŷa
HPF

FFLa

ω̂a
1

APCa
HPF

x̂a
HPF

APCa
LPF

c>y x̂a
LPF

Σ

ŷa
LPF

−

x̂a
LPF

HSDabc

x̂a

ω̂a
1

ŷabc
+,ν1

ŷabc
−,ν1

ŷabc
0,ν1

...

ŷabc
0,νn

ŷabc
−,νn

ŷabc
+,νn

âa
0

yb

PVDb x̂b

yc

PVDc x̂c

Figure 1. Overall block diagram of Phase Variables Detection (PVD) for the three phases a, b, c and
Harmonic Sequence Detection (HSD).

The output vectors x̂a, x̂b, and x̂c of the three PVDs (see Figure 1) are fed into the HSDabc block,
which finally extracts positive-, negative-, and zero-sequence vectors ŷabc

+,ν, ŷabc
−,ν, and ŷabc

0,ν of each
harmonic ν ∈ Hn. Each block and its function are explained in the following section. In the appendix,
a thorough stability analysis of the closed-loop system (parallelized SOGIs with FLL) is presented.

Remark 2. If the three phases can be considered to have a similar frequency content and the same
frequency, then only one FFL is required. Moreover, the LPFs, HPFs, and the corresponding APCs can
be designed identically.
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2. Detailed Discussion of Proposed Overall Solution

This section introduces the different sub-blocks illustrated in Figure 1 and describes their
contribution to the proposed overall solution to detect individual phase variables and positive-,
negative-, and zero-sequence components of all harmonics ν ∈ Hn of the input signal(s).

2.1. Low-Pass Filter (Bandwidth Limitation and Noise Filtering)

For each phase p ∈ {a, b, c}, a first-order, low-pass filter (LPF) is introduced to filter out noise and
limit the bandwidth of the original signal yp up to the n-th harmonic component. The filter dynamics
are given by

d
dt ξ

p
LPF(t) = ω

p
LPF(t)

(
− ξ

p
LPF(t) + yp(t)

)
, ξ

p
LPF(0) = 0

yp
LPF(t) = ξ

p
LPF(t),

}
(7)

where yp
LPF and ω

p
LPF (in rad

s ) are the filter output and (possibly time-varying) cut-off angular frequency
of the LPF, respectively. The LPF is stable for any uniformly positive cut-off frequency.

The cut-off frequency ω
p
LPF(·) should be chosen such that, for a given sampling frequency fs

(in Hz), Shannon’s Theorem is satisfied and the bandwidth is limited to a value specified by a desired

magnitude damping factor ε ∈ (0, 1) for the νn+1-th harmonic (a low-pass filter F(s) =
ω

p
lpf

s+ω
p
lpf

(that has

a constant cut-off frequency) has the magnitude damping |F(ω)| =
ω

p
lpf√

ω2+(ω
p
lpf)

2 ). That is,

ω
p
lpf√

(νn+1ω̂
p
1 )

2
+(ω

p
lpf)

2
≤ ε =⇒ 0 < ω

p
lpf ≤

ε√
1−ε2

νn+1ω̂
p
1 � 2π fs. (8)

Since the estimate ω̂
p
1 of the fundamental angular frequency (see Section 2.4) will change over time,

the choice of ω
p
LPF will also be time-varying to obtain a respective bandwidth limitation depending on

the fundamental angular frequency estimate ω̂
p
1 . For some constants kLPF ≥ 1, a reasonable choice

is ω
p
LPF(t) =

ε

kLPF

√
1−ε2

νn+1ω̂
p
1 (t). Note that a very small desired damping (i.e., ε� 1) implies a long

settling of the LPF and additional noise filtering, which is not necessary since the following SOGIs
filter out noise as well [21].

2.2. High-Pass Filter (Suppression of DC-Offset)

A first-order high-pass filter (HPF) is introduced for each phase p ∈ {a, b, c} to suppress any
DC-offset in the low-pass filtered input signal yp

LPF. The HPF dynamics are given by

d
dt ξ

p
HPF(t) = ω

p
HPF(t)

(
− ξ

p
HPF(t) + yp

LPF(t)
)
, ξ

p
HPF(0) = 0

yp
HPF(t) = −ξ

p
HPF(t) + yp

LPF(t),

}
(9)

where yp
HPF and ω

p
HPF (in rad

s ) are the DC-free output (after a transient phase) (see Figure 1) and the
(possibly time-varying) cut-off angular frequency of the HPF, respectively. The HPF is stable for any
uniformly positive cut-off frequency. The cut-off frequency must be chosen (much) smaller than the
sampling frequency fs (see above)—that is, ω

p
HPF(t)� 2π fs for all t ≥ 0.

2.3. Second-Order Generalized Integrator (SOGI)

This section introduces the key tool for the detection of phase variables: A second-order
generalized integrator (SOGI), which is a special kind of internal model to reduplicate sinusoidal
signals [41]. Their parallelization in combination with the frequency-locked loop (see Section 2.4) will
allow detection of the variables for each harmonic component.
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2.3.1. SOGI for the ν-th Harmonic Component of Phase p ∈ {a, b, c}

For now, let ν ∈ Hn, and consider only the ν-th harmonic component yp
HPF,ν(t) :=

ap
HPF,ν(t) cos

(
φ

p
HPF,ν(t)

)
. If the estimate ω̂p

ν := ν ω̂
p
1 of the ν-th harmonic frequency is known

(e.g., the fundamental is known, then ω̂
p
1 = ω

p
1 ), the implementation of a SOGI for the signal yp

HPF,ν(·)
allows to obtain online estimates ŷp

HPF,ν(·) and q̂p
HPF,ν(·) of the input (direct) signal and its quadrature

signal, respectively. A SOGI for the ν-th harmonic component is depicted in Figure 2.

ν-th SOGIp

ep
HPF,y

νω̂
p
1

kν Σ ×
∫

×
∫ q̂p

HPF,ν

ŷp
HPF,ν

−

Figure 2. Block diagram of a Second-Order Generalized Integrator (SOGI) for the detection of the ν-th
harmonic component.

Its dynamics are given by the following time-varying second-order differential equation ([9],
Appendix A):

d
dt

(
ŷp

HPF,ν(t)
q̂p

HPF,ν(t)

)
︸ ︷︷ ︸
=:x̂p

HPF,ν(t)∈R
2

= ν ω̂
p
1 (t)︸ ︷︷ ︸

=:ω̂p
ν (t)

[
−kp

ν −1
1 0

]
︸ ︷︷ ︸
=:Ap

ν∈R
2×2

x̂p
HPF,ν(t) + ω̂p

ν (t)

(
kp

ν

0

)
︸ ︷︷ ︸
=:bp

ν

yp
HPF,ν(t), kp

ν > 0; (10)

with arbitrary initial value x̂p
ν(0) = x̂p

0,ν ∈ R2 (most likely, x̂p
0,ν = 02 is a reasonable choice) and possibly

time-varying angular frequency ω̂ν(·). The gain kp
ν allows for tuning of the dynamical response of

the SOGI. For a constant frequency ω̂p
ν only, the characteristic equation and the SOGI poles are given

as follows:

χν(s) := det
[
sI2 − ω̂p

ν Ap
ν

]
= s2 + kp

νω̂p
ν s + (ω̂p

ν )
2 !
= 0 =⇒ pp

ν,1/2 = − kp
νω̂p

ν

2

(
1±

√
1− 4

(kp
ν )

2

)
. (11)

So, for a constant frequency only (note that for time-varying or nonlinear systems, the analysis of
poles is not sufficient to check stability ([42], Example 3.3.7)) and only one SOGI, stability is guaranteed
for kp

ν > 0. It will be shown later that this stability statement also holds true for the parallelized SOGIs
(see Appendix A.1). For 0 < kp

ν ≤ 2, an over-damped system response is obtained (i.e., imaginary parts

of the poles are zero). The estimated amplitude âp
HPF,ν(t) :=

∥∥∥x̂p
HPF,ν(t)

∥∥∥ =
√

ŷp
HPF,ν(t)

2 + q̂p
HPF,ν(t)

2

is given by the norm of the estimated signal and its quadrature signal and the estimated phase angle
by φ̂

p
HPF,ν(t) = arctan2

(
ŷp

HPF,ν(t), q̂p
HPF,ν(t)

)
. In conclusion, the phase variables âp

HPF,ν and φ̂
p
HPF,ν can

be detected online.

2.3.2. Parallelization of SOGIs

Since only one harmonic component can be detected with one SOGI, it is straightforward to
implement SOGIs for different harmonic components in parallel. Moreover, note that for the low-
& high-pass filtered input signal yp

HPF(·) (see Figure 1) with p ∈ {a, b, c}, the harmonic component
yp

HPF,ν(·) as in (10) is not available for implementation. However, it may be approximated by

yp
HPF,ν(t)≈yp

HPF(t)−
n

∑
k=1
k 6=ν

ŷp
HPF,k(t)

(10)
⇒ ω̂p

ν (t)b
p
ν yp

HPF,ν(t)≈ ω̂p
ν (t)b

p
ν yp

HPF(t)−ω̂p
ν (t) bp

ν

(
1, 0

)︸ ︷︷ ︸
=:Kp

ν

∑
k∈Hn
k 6=ν

x̂p
HPF,k(t), (12)
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where ŷp
HPF,k is the estimated signal and x̂p

HPF,k(t) is the state vector of the k-th SOGI as in (10). Clearly,
this leads to the parallelization of n SOGIs, as illustrated in Figure 1 (see highlighted box, “parallelized
SOGIs”). The dynamics of the parallelized SOGIs are given by a 2 n-th order time-varying differential
equation as follows:

d
dt


x̂p

HPF,1(t)
...

x̂p
HPF,n(t)


︸ ︷︷ ︸

=:x̂p
HPF(t)

=


ω̂

p
1 (t)Ap

1 · · · −ω̂
p
1 (t)K

p
1

...
. . .

...
−ω̂p

n(t)K
p
n · · · ω̂p

n(t)Ap
n

 x̂p
HPF(t) +


ω̂

p
1 (t)b

p
1

...
ω̂p

n(t)b
p
n

 yp
HPF(t)

= ω̂
p
1 (t)




−kp

1 −1 · · · −kp
1 0

1 0 · · · 0 0
...

...
. . .

...
...

−νnkp
n 0 · · · −νnkp

n −νn
0 0 · · · νn 0

 x̂p
HPF(t) +


kp

1
0
...

νnkp
n

0

 yp
HPF(t)

 (13)

= ω̂
p
1 (t)




J − Kp
1 · · · −Kp

1
...

. . .
...

−νnKp
n · · · νn

(
J − Kp

n
)


︸ ︷︷ ︸
=:Ap∈R2n×2n

x̂p
HPF(t) +


kp

1
0
...

νnkp
n

0


︸ ︷︷ ︸
=:bp∈R2n

yp
HPF(t)


.

Note that matrix Ap and vector bp are constant; nevertheless, due to a possibly time-varying
estimate ω̂

p
1 (·) of the fundamental angular frequency, the overall dynamics of the parallelized SOGIs

are time-varying. The output of the parallelized SOGI system is the direct component of the estimated
signal—that is,

ŷp
HPF(t) =

(
1, 0, 1, 0, . . . , 1, 0

)
︸ ︷︷ ︸

=:c>y ∈R
2n

x̂p
HPF(t). (14)

The linear combination of the estimated quadrature signals is given by

q̂p
HPF(t) =

(
0, 1, 0, 1, . . . , 0, 1

)
︸ ︷︷ ︸

=:c>q ∈R
2n

x̂p
HPF(t). (15)

In the Appendix A, it is shown that system (13) of the parallelized SOGIs has the following
properties: (i) It is bounded-input bounded-state/output (BIBS/O) stable—that is, there exists cv > 0
such that

∥∥∥x̂p
HPF(t)

∥∥∥ ≤ cv‖y
p
HPF‖∞ for all t ≥ 0 (see Theorem A2), and (ii) it asymptotically tracks the

input signal yp
HPF—that is, limt→∞

(
yp

HPF(t)− ŷp
HPF(t)

)
= 0, if (a) the matrix Ap is Hurwitz and (b) the

estimated and actual fundamental frequency is equal on some interval Iss ⊆ R≥0 (i.e., ω̂
p
1 (t) = ω

p
1 (t)

for all t ∈ Iss; see Theorem A3).

2.3.3. Tuning of the SOGIs

Tuning is important in terms of settling time. Regarding the poles (eigenvalues) of Ap, the biggest
real part of the poles defines the settling time; the corresponding pole is called a dominant pole.
A common way of tuning parallelized SOGIs is b = cy [13]; a more general and intuitive way is
b = gcy with g > 0. An analysis of the real parts in these cases shows that the dominant pole is close
to the imaginary axis, which implies a slow settling. Therefore, a new tuning method is proposed,
which finds the parameters k1, . . . , kn in (13) for the minimal dominant pole of Ap, and is based on the
gradient search ([43], p. 366). The respective Matlab code is shown in Appendix A.5.
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As a validation, Table 2 shows the dominant poles for several tunings. As an outcome,
the proposed tuning method decreases the dominant pole significantly, which leads to a faster
settling response.

Table 2. Dominant poles for different tunings (n = 10).

Tuning Real Part of Dominant Pole

b = 1
2 cy −0.135031721112582

b = cy −0.0975625042839749

b =
√

2cy −0.0729803842851082

b as in Appendix A.5 −0.303890132318627

2.4. Frequency-Locked Loop (FLL) with Gain Normalization and Output Saturation

As illustrated above, a correct estimate of the fundamental angular frequency is essential for a
proper functionality of the signal detection. In this section, the intuition of the working principle of a
FLL is briefly re-visited, and afterward extended by gain normalization and output saturation.

2.4.1. Intuition behind a FLL

As shown in Figure 1, any of the SOGIs requires a “reference angular frequency”—that
is, the fundamental frequency estimate ω̂

p
1 , to work properly. To illustrate the intuition behind the

working principle of a FLL, assume that the input signal has a constant angular frequency ω
p
1 within

some time interval [t0, t1], and only the fundamental components are considered. Then, in a steady-state
only, the fundamental component error ep

HPF,y,1(t), whose amplitude sign is dependent on the frequency
errors sign, is in-phase, with the fundamental component of the fundamental quadrature output
q̂p

HPF,1,1(t), whose amplitude sign has no dependency on the frequency error. Thus, a straightforward
adaption law can be formulated as:

d
dt ω̂

p
1 (t) = −γp q̂p

HPF,1(t) ep
HPF,y(t) ≈ −γp q̂p

HPF,1,1(t) ep
HPF,y,1(t) , ω̂

p
1 (0) > 0 (16)

with some gain γp > 0. The FLL can be extended by the commonly used Gain Normalization
(GN) [9] to desensitize the FLL to fundamental amplitude and frequency uncertainties; therefore, γp is
specified as

d
dt ω̂

p
1 (t) = −

ω̂
p
1 (t)Γ

p

max
(
‖x̂p

HPF,1(t)‖
2
, ap

1

)︸ ︷︷ ︸
=: γ(t)

q̂p
HPF,1(t) ep

HPF,y(t) , ω̂
p
1 (0) > 0 (17)

with some constant Γp > 0 ([9], Section 4.6); it should be chosen such that the FLL dynamic is slow
compared to the SOGI dynamics, since it is based on steady-state observations. In (17), the denominator
might get zero, so it has to be essentially bounded away from zero by some ap

1 > 0. Clearly,
this adaption makes the overall dynamics of SOGI and FLL nonlinear, and stability analysis becomes
quite tricky. To the best knowledge of the authors, only linearized and/or steady-state stability analyses
exist. In this paper, we present bounded-input, bounded-state/output (BIBS/O) stability—that is, there
exists cv > 0 such that

∥∥∥x̂p
HPF(t)

∥∥∥ ≤ cv‖y
p
HPF‖∞ for all t ≥ 0 (see Theorem A2), and (ii) asymptotic

tracking of the input signal yp
HPF—that is, limt→∞

(
yp

HPF(t) − ŷp
HPF(t)

)
= 0, if (a) the matrix Ap is

Hurwitz and (b) the estimated and actual fundamental frequency are equal on some interval Iss ⊆ R≥0
(i.e., ω̂

p
1 (t) = ω

p
1 (t) for all t ∈ Iss; see Theorem A3) of the parallelized SOGIs (13).
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2.4.2. Output Saturation

The most severe case for the SOGI-FLL are negative frequencies, since this might lead to instability
of the overall system; moreover, a frequency equal to zero will stop the FLL from working, due to
the GN (see (17)). In conclusion, the estimated angular frequency must be kept positive for proper
functionality, which can be achieved by an output saturation (OS), which limits the frequency to a
lower boundary ωp > 0. Since the frequency usually lies within a certain range, additionally, an upper
boundary ωp > 0 can be used. In [37], the authors already proposed an output saturation; however,
they did not include a Gain Normalization as in [9], but extended the OS by an anti-windup strategy
with a feedback gain, which, in the opinion of the authors, can destabilize the FLL (but not the SOGI!).
The FLL, including a GN and OS (FLL-GN-OS), is shown in Figure 3.

FLL-GN-OSp

ep
HPF,y

x̂p
HPF,1

(0, 1)x̂p
HPF,1

1
max
(
‖x̂p

HPF,1‖
2
, ap

1

) ×

×
∫

ω
p

ω
p

Γp

ω
p
1

Figure 3. Frequency Locked Loop with Gain Normalization and Output Saturation (FLL-GN-OS).

2.5. Amplitude and Phase Correction (APC) for Low-Pass Filter and High-Pass Filter

Since any filtering, due to a LPF or HPF, leads to a damping and phase shift of the filtered
signal, amplitude and phase corrections are crucial for an amplitude-correct and phase-correct signal
estimation. Basically, for each phase p ∈ {a, b, c} and each harmonic ν ∈ Hn, the amplitude and phase
of an estimated direct ŷp

HPF,ν and quadrature q̂p
HPF,ν signal can be corrected (at least in the steady-state)

by rotating and scaling the respective APC input signal vectors x̂p
HPF(·) and x̂p

LPF(·) (see Figure 1).
More precisely, the respective amplitude and phase corrections (i.e., APCHPF and APCLPF) for HPF
and LPF are achieved by the following linear transformations:

∀ p ∈ {a, b, c} : x̂p
LPF(t) =


CHPF,1(t) O2×2 . . . O2×2

O2×2 CHPF,ν2
(t)

. . .
...

...
. . . . . . O2×2

O2×2 . . . O2×2 CHPF,νn
(t)


︸ ︷︷ ︸

=:CHPF(t)∈R
2n×2n

x̂p
HPF(t) (18)

and

∀ p ∈ {a, b, c} : x̂p(t) =


CLPF,1(t) O2×2 . . . O2×2

O2×2 CLPF,ν2
(t)

. . .
...

...
. . . . . . O2×2

O2×2 . . . O2×2 CLPF,νn
(t)


︸ ︷︷ ︸

=:CLPF(t)∈R
2n×2n

x̂p
LPF(t), (19)

where

∀ ν ∈ Hn : CLPF,ν(t) :=

 1 − ωp
ν (t)

ω
p
LPF(t)

ωp
ν (t)

ω
p
LPF(t)

1

∈ R2×2 and CHPF,ν(t) :=

 1 ω
p
HPF(t)

ωp
ν (t)

−ω
p
HPF(t)

ωp
ν (t)

1

∈ R2×2 (20)



Energies 2019, 12, 3243 12 of 34

are the respective sub-correction matrices on the block diagonal of the overall correction matrices
CLPF(t) and CHPF(t). The derivation of these sub-correction matrices is presented in Appendix A.4.

Remark 3. If the cut-off frequencies ω
p
lpf and ω

p
hpf of LPF and HPF, respectively, are chosen to be multiples of

the fundamental frequency estimate ω̂
p
1 , then the APC transformation matrices in (18)–(20) become constant

matrices and, hence, are independent of ω̂
p
1 .

2.6. DC-Offset Detection

The detection of the DC-offset ap
0 in the original input signal yp, p ∈ {a, b, c} is achieved by

subtracting the linear combination ŷp
LPF = c>y x̂p

LPF from the low-pass filtered input signal yp
LPF

(see Figure 1). This difference gives the estimate âp
0 of the DC-offset. Note that only the use of

the amplitude- and phase-corrected signal ensures a correct DC-offset detection, since, for example,
the difference of yp

LPF − yp
HPF will be deteriorated by amplitude and phase deviations in yp

HPF
(see Figure 1).

2.7. Harmonic Sequence Detection (HSD) of Positive-, Negative-, and Zero-Sequence Components of
All Harmonics

The final step is to extract the positive-, negative-, and zero-sequence components of each
harmonic ν ∈ Hn. To do so, the estimated direct signals and estimated quadrature signals of each
harmonic ν ∈ Hn are merged into the vectors:

∀ν ∈ Hn ∀t ≥ 0 : ŷabc(t) :=

ŷa
ν(t)

ŷb
ν(t)

ŷc
ν(t)

 =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


︸ ︷︷ ︸

=:Cabc
y

x̂a
ν(t)

x̂b
ν(t)

x̂c
ν(t)


︸ ︷︷ ︸
=:x̂abc

ν (t)∈R6

∈ R3

and

∀ν ∈ Hn ∀t ≥ 0 : q̂abc
ν (t) :=

q̂a
ν(t)

q̂b
ν(t)

q̂c
ν(t)

 =

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


︸ ︷︷ ︸

=:Cabc
q

x̂abc
ν (t) ∈ R3,

respectively. Then, positive- ŷabc
+,ν, negative- ŷabc

−,ν, and zero ŷabc
0,ν -sequence components of each harmonic

ν ∈ Hn can be computed instantaneously by invoking the real Fortescue transformation [3] as follows:

∀ν ∈ Hn ∀t ≥ 0 : ŷabc
ν (t) = 1

2 T−1
c

=: D12︷ ︸︸ ︷[
1 0 0
0 1 0
0 0 0

]
Tcŷabc

ν (t) + 1
2 T−1

c

=: J︷ ︸︸ ︷[
0 −1 0
1 0 0
0 0 1

]
D12Tcq̂abc

ν (t)︸ ︷︷ ︸
=:ŷabc

+,ν(t) [positive sequence]

+ 1
2 T−1

c D12Tcŷabc
ν (t)− 1

2 T−1
c JD12Tcq̂abc

ν (t)︸ ︷︷ ︸
=:ŷabc

−,ν(t) [negative sequence]

(21)

+ T−1
c

=:D3︷ ︸︸ ︷[
0 0 0
0 0 0
0 0 1

]
Tcŷabc

ν (t)︸ ︷︷ ︸
=:ŷabc

0,ν (t) [zero sequence]

,

where a positive-, negative-, and zero-sequence can be obtained as illustrated in Figure 4, which shows
the block diagram of an implementation of the HSDabc.
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x̂a x̂b x̂c

x̂abc

x̂abc
ν

HSDabc
ν

Cabc
y Cabc

q

(21)

ŷabc
ν q̂abc

ν

ŷabc
−,νŷabc

+,ν ŷabc
0,ν

HSDabc
1 · · ·

x̂abc
1

ŷabc
−,1ŷabc

+,1 ŷabc
0,1

HSDabc
n· · ·

x̂abc
n

ŷabc
−,νn

ŷabc
+,νn

ŷabc
0,νn

Figure 4. Block diagram of the HSDabc implementation.

Remark 4. The implementation can be simplified by using the explicit results of the matrix products
in (21)—that is,

1
2 T−1

c D12Tc =
1
6

 2 −1 −1
−1 2 −1
−1 −1 2

 , 1
2 T−1

c JD12Tc =
√

3
6

 0 −1 1
1 0 −1
−1 1 0

 and T−1
c D3 = 1

3

1 1 1
1 1 1
1 1 1

 .

Remark 5 (Harmonic sequence detection in the stationary (α, β, γ)-reference frame). The harmonic
sequence detection in the stationary reference frame (i.e., HSDαβγ) is straightforward and can be obtained by
applying the Clarke transformation to the three-phase signal—that is,

ŷαβγ
ν (t) := Tcŷabc

ν (t)
(21)
= 1

2 D12Tcŷabc
ν (t) + 1

2 JD12Tcq̂abc
ν (t)︸ ︷︷ ︸

=:ŷαβγ
+,ν (t) [positive sequence]

+ 1
2 D12Tcŷabc

ν (t)− 1
2 JD12Tcq̂abc

ν (t)︸ ︷︷ ︸
=:ŷαβγ

−,ν (t) [negative sequence]

+ D3Tcŷabc
ν (t)︸ ︷︷ ︸

=:ŷαβγ
0,ν [zero sequence]

.


(22)

3. Implementation: Simulation Results

To verify the presented algorithms, simulations were carried out. The implementation was done
using Matlab/Simulink 2018b. In the following, four scenarios are considered:

(S1) Estimation of a fundamental, single-phase input signal ya with known and constant fundamental
angular frequency and without DC-offset to validate the functionality of the APC.

(S2) Estimation of a fundamental, single-phase input signal ya with known and constant fundamental
angular frequency and with DC-offset to (i) validate the proposed DC-offset estimation method
and to compare it to the existing method [4]. The signal undergoes offset jumps of 50 V at t = 0.04 s
and −100 V and at t = 0.08 s.

(S3) Estimation of a single-phase input signal ya with ten harmonics, known and constant fundamental
angular frequency and without DC-offset to (i) show the improved tuning method and to compare
it to [13]. The signal undergoes an amplitude jump (−75%) at t = 0.08 s and a phase jump (+π

3 ) at
t = 0.16 s.

(S4) Estimation of a three-phase input signal yabc with ten harmonics, unknown fundamental angular
frequency, and with DC-offset to verify the whole algorithm, including symmetrical components.
The signals undergo (i) an amplitude jump (−75%) in phase a, a phase (+π

2 rad) and frequency
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jump (+2π10 rad
s ) in phase b, and an offset jump (30 V) in phase c at t = 0.2 s, and (ii) a phase

(+π
3 rad) and frequency jump (−2π10 rad

s ) in phase a, an amplitude (+25%), offset (−20 V) and
frequency jump (−2π20 rad

s ) in phase b, and a frequency jump (−2π10 rad
s ) in phase c at t = 0.4 s.

At t = 0 s, the three phases are balanced, and they are unbalanced at t ≥ 0.2 s. Note that the
second harmonic component remains balanced.

For Scenario (S1), a noisy, single-phase, offset-free input signal ya with known angular frequency
(aa

1 = 200 V, aa
0 = 0 V, ωa

1 = 2π50 rad
s ) is fed into the algorithm without FLL—that is, the frequency

integrator is multiplied by zero and initialized with ω0 = ωa
1. This imposes constant cutoff frequencies

for the LPF and HPF, respectively; the respective APCs are constant as well. The system parameters
used for this scenario are collected in Table 3.

Considering Scenario (S2), a noisy, single-phase input signal ya with known angular frequency
(aa

1 = 200 V, ωa
1 = 2π50 rad

s ) and step-like changes in the DC-offset is fed (i) to the proposed algorithm
and (ii) to a SOGI capable of estimating offsets taken from [4]. For both models, the FLL is turned off
as in (S1). The system parameters for this scenario are shown in Table 3.

Scenario (S3) uses a noise-free, single-phase input signal with ten harmonics, known fundamental
angular frequency, and without DC-offset, but does use step-like changes in amplitude and angle
to compare the proposed tuning method to standard tunings. As a reference, model and tuning
from [13] are used. To focus only on the impact of the tuning, LPF, HPF, and FLL are disabled (but still
implemented). The system parameters are listed in Table 3, as well as the signal variables in Table 4
(only phase a is used).

For Scenario (S4), noisy and biased three-phase signals yabc with ten harmonics each are used for
algorithm verification. The amplitudes, phases, offsets, and frequencies of the harmonic components
have step-like changes in amplitudes, phase angles, frequencies, and DC-offsets. In this scenario,
the FLL is turned on (one for each phase) and its estimated frequency is used for the respective
LPF, HPF, and SOGIs (which implies constant APC matrices). The filters, SOGIs, and FLLs are tuned
identically for all phases. All parameters have been collected and shown in Table 3, and all signal
variables in Table 4.

Table 3. System parameters for Scenarios (S1), (S2), (S3), and (S4).

Scenario (S1) (S2) (S3) (S4)

Sampling time Ts 1 µs 1 µs 1 µs 1 µs

Phase p a a a a b c

LPF
cutoff frequency ω

p
LPF 2π50 rad

s 2π50 rad
s 6ω̂a

1 (t) 6ω̂b
1 (t) 6ω̂c

1 (t)
initial value ξ

p
LPF (0) 0 V 0 V 0 V 0 V 0 V

HPF
cutoff frequency ω

p
HPF 4π50 rad

s 4π50 rad
s 8ω̂a

1 (t) 8ω̂b
1 (t) 8ω̂c

1 (t)
initial value ξ

p
HPF (0) 0 V 0 V 0 V 0 V 0 V

SOGI
gain bp Appendix A.5 Appendix A.5 Appendix A.5 Appendix A.5 Appendix A.5 Appendix A.5
initial values x̂p

HPF (0) 02 V2 02 V2 020 V20 020 V20 020 V20 020 V20

FLL
gain Γp 0 1

s 0 1
s 0 1

s 46 1
s 46 1

s 46 1
s

initial value ω̂
p
1 (0) 2π50 rad

s 2π50 rad
s 2π50 rad

s 200 rad
s 200 rad

s 200 rad
s

GN
lower amplitude ap

1 0.01 V2 0.01 V2 0.01 V2

OS
lower frequency ωp 2π35 rad

s 2π35 rad
s 2π35 rad

s
upper frequency ωp 2π65 rad

s 2π65 rad
s 2π65 rad

s

Reference model [4] [13]
SOGI gain bp (

1.28 0
)> cy

DC gain kp
dc 0.26

initial values x̂p (0) 03 V3 020 V20
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Table 4. Signal variables for Scenarios (S3) and (S4).

ν 0 1 2 3 4 5 6 7 8 9 10

0 s ≤ t < 0.2 s

aa
ν 20 200 20 80 120 40 80 60 20 0 100

φa
ν(t = 0 s) / rad 0 2π

3
π
6

7π
4

5π
3

5π
6 0 π

4
π
3

π
2

ωa
1 / rad

s 2π50

ab
ν 0 200 20 80 120 40 80 60 20 0 100

φb
ν(t = 0 s) / rad 4π

3 0 3π
2

13π
12 π π

6
4π
3

19π
12

5π
3

11π
6

ωb
1 / rad

s 2π50

ac
ν −20 200 20 80 120 40 80 60 20 0 100

φc
ν(t = 0 s) / rad 2π

3
4π
3

5π
6

5π
12

π
3

3π
2

2π
3

11π
12 π 7π

6
ωc

1 / rad
s 2π50

0.2 s ≤ t < 0.4 s

aa
ν 20 50 5 0 30 10 20 15 5 0 25

φa
ν(t = 0.2 s) / rad 0 2π

3
π
6

7π
4

5π
3

5π
6 0 π

4
π
3

π
2

ωa
1 / rad

s 2π50

ab
ν 0 200 5 80 120 40 80 60 20 0 100

φb
ν(t = 0.2 s) / rad 11π

6 0 0 19π
12

3π
2

2π
3

11π
6

π
12

π
6

π
3

ωb
1 / rad

s 2π60

ac
ν 10 200 5 80 120 40 80 60 20 0 100

φc
ν(t = 0.2 s) / rad 2π

3
4π
3

5π
6

5π
12

π
3

3π
2

2π
3

11π
12 π 7π

6
ωc

1 / rad
s 2π50

0.4 s ≤ t ≤ 0.6 s

aa
ν 20 50 5 0 30 10 20 15 5 0 25

φa
ν(t = 0.4 s) / rad π

3 π π
2

π
12 0 7π

6
π
3

7π
12

2π
3

5π
6

ωa
1 / rad

s 2π40

ab
ν −20 250 5 100 150 50 100 75 25 0 125

φb
ν(t = 0.4 s) / rad 11π

6
π
3 0 19π

12
3π
2

2π
3

11π
6

π
12

π
6

π
3

ωb
1 / rad

s 2π40

ac
ν 10 200 5 80 120 40 80 60 20 0 100

φc
ν(t = 0.4 s) / rad 2π

3
5π
3

5π
6

5π
12

π
3

3π
2 π 11π

12 π 7π
6

ωc
1 / rad

s 2π40

3.1. Discussion of the Simulation Results of Scenario (S1)

The scope of Scenario (S1) was to show the influence of Low- and High-Pass Filters and their
respective Amplitude Phase Corrections; hence, the SOGI was driven without FLL. The SOGI was
tuned such that the fastest possible time response could be achieved, and the pre-filters acted as a
band-pass filter (see Table 3).

Figure 5 shows things besides the noise-free input signal ya
won ( ), the noisy input signal ya

( ), which is damped and shifted due to the LPF ( ), and HPF ( ). The resulting signal ya
HPF

was analyzed by the SOGI, whose in-phase output ŷa
HPF ( ), the reconstructed in-phase outputs

of the APCHPF ŷa
LPF ( ), and APCLPF ŷa ( ), respectively, are shown. The APCs reconstruct the

original input signal correctly, which can be seen in the estimation errors ea
y := ya

won − ŷa ( ),
ea

LPF,y := ya
LPF − ŷa

LPF ( ), and ea
HPF,y := ya

HPF − ŷa
HPF ( ), which tend toward zero within 20 ms.
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Figure 5. Simulation results for Scenario (S1): Noise-free input (ya
won: ), noisy input (ya: ),

LPF (ya
LPF: ), and HPF (ya

HPF: ) signals, its estimates, and respective errors (ŷa, ea
y: ; ŷa

LPF,
ea

LPF,y: ; and ŷa
HPF, ea

HPF,y: ).

3.2. Discussion of the Simulation Results of Scenario (S2)

In Scenario (S2), the proposed DC-offset detection method was compared to an existing method [4]
to obtain a better insight into the estimation performance, and the FLL is turned off in both models.
The pre-filters and SOGI are tuned as described in Table 3; the tuning for the referenced SOGI is taken
from [4]. The input signal undergoes step-like changes in the DC-offset, as described above.

In Figure 6, the first, second, and third subplots show the noise-free input signal ya
won ( ),

the noisy input signal ya ( ), & its estimates ŷa (this paper: , [4]: ), the DC-offset aa
0 & and its

estimates âa
0, and the error in DC-offset estimation ea

a0
:= aa

0 − âa
0, respectively. The proposed method

estimates the input signal and the DC-offset asymptotically. Moreover, the DC-offset estimation of
the proposed method is faster than the DC-SOGI, but is clearly still limited due to the limited time
response of the SOGI. The time response can be made faster by tuning the filters accordingly, which,
on the other hand, leads to larger overshoots.

Figure 6. Simulation results for Scenario (S2): Noisy input ya ( ), noise-free input ya
won, and

DC-offset aa
0 ( ), its estimates ŷa & âa

0 and DC-offset estimation error ea
a0

(this paper: , [4]: ).
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3.3. Discussion of the Simulation Results of Scenario (S3)

Scenario (S3) compares the proposed tuning method to the standard tuning [13]. To be able
to compare the tuning methods, the model used for validation was reduced to its basics—that
is, without pre-filters (and APCs) and FLL; the respective parameters have been collected and shown
in Table 3. The input specifications (only phase a) are described in Table 4.

Figure 7 shows the input signal ya ( ), and its estimate ŷa with the proposed tuning ( )
and the standard tuning ( ) in the first subplot; the second subplot shows the respective errors
ea

y := ya − ŷa, which are shown again in a close-up in the third subplot. Both methods are able to track
the input signal asymptotically. However, by using the proposed tuning, the settling time reduces
to 70 ms; where in contrast, the standard tuning does not settle down satisfactory in the time-frames
shown, and is much more turbulent. On the other hand, this faster time response comes at the cost of
(slightly) higher overshooting (see, e.g., 0 s ≤ t < 0.02 s).

Figure 7. Simulation results for Scenario (S3): Input signal ya ( ), its estimates ŷa, and estimation
errors ea

y (this paper: , [13]: ).

3.4. Discussion of the Simulation Results of Scenario (S4)

In Scenario (S4), the proposed overall estimation method (as in Figure 1) is investigated.
Each phase is filtered by a bandpass whose cut-off frequencies depend on the estimated fundamental
angular frequencies of the respective phases. Therefore, each phase has a separate frequency detection.
The SOGIs and FLL-GN-OSs are tuned identically (see Table 3). As a test signal, a three-phase input
with differing step-like changes in each variable in each phase is used (see Table 4).

In subplots 1 to 3 of Figure 8, the three-phase, noise-free input signals ya
won, yb

won & yc
won ( )

(but not the noisy signals ya, yb or yc) and its estimates ŷa ( ), ŷb ( ) & ŷc ( ) are shown, whereas
in the subplots 4 to 6, the estimation errors ea

y := ya − ŷa, eb
y := yb − ŷb and ec

y := yc − ŷc are depicted.
All SOGIs estimate the input signal properly.

Figure 9 shows the DC-offsets aa
0, ab

0 & ac
0 ( ), its estimates âa

0, âb
0 & âc

0, and errors ea
a0

:= aa
0 − âa

0,

eb
a0

:= ab
0− âb

0 & ec
a0

:= ac
0− âc

0 (phase a: ; phase b: ; phase c: ) in subplots 1 to 6, respectively.
The combination of HPF and APCHPF estimates the DC-offsets correctly.

In Figure 10, the fundamental angular frequencies ωa
1, ωb

1 & ωc
1 ( ) and its estimates ω̂a

1, ω̂b
1 &

ω̂c
1 (phase a: ; phase b: ; phase c: ) are shown in the first three subplots; in the last three

subplots, the respective errors ea
ω := ωa

1 − ω̂a
1, eb

ω := ωb
1 − ω̂b

1 & ec
ω := ωc

1 − ω̂c
1 (phase a: ; phase

b: ; phase c: ) are illustrated. The FLLs, in combination with the GN and OS, estimate the
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fundamental angular frequencies correctly. However, clearly, comparing Scenario (S4) to (S3), the FLLs
slow down the overall system; an overall estimation is achieved within 0.16 s or less. The proposed
frequency limitation (OS) enforces the frequency estimation to stay within the defined band (despite
the initial values), which prevents overshooting (see ω̂b

1 at t ≈ 0.23 s).

Figure 8. Simulation results for Scenario (S4): Inputs ya
won, yb

won & yc
won ( ), its estimates ŷa, ŷb &

ŷc and errors ea
y, eb

y & ec
y (phase a: ; phase b: ; phase c: ).

Considering the effects of the variable jumps to the overall system,

• The offset jump (+30 V at t = 0.2 s in phase c) has almost no influence on the overall system;
the changed input is estimated in about 0.03 s;

• The amplitude jump (−75% at t = 0.2 s in phase a) causes moderate system errors; the system
takes approximately 0.08 s to settle down again; and

• The frequency jump (−2π10 rad
s at t = 0.4 s in phase c) severely excites the settled system; it requires

0.16 s to settle down.
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Figure 9. Simulation results for Scenario (S4): DC-offset aa
0, ab

0 & ac
0 ( ), its estimates âa

0, âb
0 & âc

0,
and errors ea

a0
, eb

a0
& ec

a0
(phase a: ; phase b: ; phase c: ).

Figure 11 shows, from top to bottom, the estimated fundamental in-phase signals ŷabc
1 , and from

it, the calculated positive- ŷabc
+,1, negative- ŷabc

−,1 and zero-sequence ŷabc
0,1 (phase a: ; phase b: ;

phase c: ). In general, the positive-, negative-, and zero-sequence only shows in the steady-state.
In the first time-frame, (0 s ≤ t < 0.2 s), the fundamental component is balanced, so the symmetrical
component calculation only shows the positive sequence. In the second time-frame (0.2 s ≤ t < 0.4 s),
the frequencies are not identical, so the symmetrical components cannot be calculated anymore; in fact,
the positive-, negative-, and zero-sequences are enclosed by an oscillating hull, wherein each of the
phases has the same frequency, which is unequal to the true signal frequencies. In the last time-frame
(0.4 s ≤ t ≤ 0.6 s), the frequencies are identical, and the harmonic sequence detection works properly
again. As defined, the fundamental component is unbalanced, which finds itself in the presence of a
negative and zero sequence.
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Figure 10. Simulation results for Scenario (S4): Fundamental angular frequency ωa
1, ωb

1 & ωc
1 ( ),

its estimates ω̂a
1, ω̂b

1 & ω̂c
1, and errors ea

ω , eb
ω & ec

ω (phase a: ; phase b: ; phase c: ).

In Figure 12, the estimated second harmonic in-phase signals ŷabc
2 and its positive- ŷabc

+,2, negative-
ŷabc
−,2, and zero-sequence ŷabc

0,2 are shown from top to bottom, respectively (phase a: ; phase b: ;
phase c: ). Since the second harmonic component is balanced for all time steps, the negative and
zero sequence only show in the time-frame with differing frequencies. Referring to this time-frame
0.2 s ≤ t < 0.4 s, the sequence signals and the hull oscillate with double frequency with respect to the
fundamental component.
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Figure 11. Simulation results for Scenario (S4): Estimated in-phase signals ŷabc
1 , calculated positive-

yabc
+,1, negative- yabc

−,1 and zero-sequence yabc
0,1 of the fundamental component (phase a: ; phase b: ;

phase c: ).

Figure 12. Simulation results for Scenario (S4): Estimated in-phase signals ŷabc
2 , calculated positive-

yabc
+,2, negative- yabc

−,2 and zero-sequence yabc
0,2 of the second harmonic component (phase a: ; phase b:

; phase c: ).
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4. Conclusions and Outlook

This paper presented a unified method for online detection of symmetrical components. The
key tools herein were parallelized Second-Order Generalized Integrators (SOGIs) to obtain estimates
of direct and quadrature signals of the harmonic components, for which a new tuning method
was proposed. Frequency estimation was achieved by a Frequency Locked Loop (FLL) with Gain
Normalization (GN) which was extended by an Output Saturation (OS) to ensure stability of the
overall system. DC-offset detection was applied by a combination of High-Pass Filter (HPF) and
HPF-Amplitude Phase Correction (APCHPF); additional noise filtering was done by a Low-Pass Filter
(LPF) with respective APCLPF. Finally, a Harmonic Sequence Detection (HSD) for the calculation of
the symmetrical components of each harmonic was incorporated. For the overall system, a stability
proof was carried out; only for the FLL was a convergence proof not found. The proposed DC-offset
detection method allowed for an easy tuning of the system in contrast to existing methods, where,
to the best knowledge of the authors, no system capable of estimating harmonics and offset has yet
been investigated, nor has stability for such a system been proven. The modification in the SOGI
tuning achieved a faster system response with only a moderate increase of overshooting, leading to a
shorter overall settling time. The combination of filters and respective APCs allowed noise reduction
without undesired damping and phase lag of the input signal.

Future work will focus on the FLL, which remains the bottleneck of the overall system since it
significantly reduces the overall settling time.
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Appendix A

In this appendix, the main results are mathematically proven.

Appendix A.1. Hurwitz Stability

Theorem A1 (Hurwitz system matrix). Let p ∈ {a, b, c}, Hn as in (3) and Ap as in (13). Then, if and only
if kp

i > 0, i ∈ {1, . . . , n}, the system matrix Ap is a Hurwitz matrix and all its eigenvalues have negative real
part—that is,

∀ kp
i > 0, i ∈ {1, . . . , n} : < (λ) < 0, λ ∈

{
s ∈ C

∣∣ χAp (s) := det(sI2n − Ap) = 0
}

.

Proof. First note that, for constant ω̂
p
1 > 0, the system (13) can be represented by transfer functions as

depicted in Figure A1.

yp + + · · · + · · · νik
p
i ω̂

p
1 s

s2+(νiω̂
p
1 )

2

νjk
p
j ω̂

p
1 s

s2+(νj ω̂
p
1 )

2

...
νnkp

nω̂
p
1 s

s2+(νn ω̂
p
1 )

2

−−−
ŷp

i

Figure A1. Block diagram of (13) using transfer functions.
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Hence, each sub-transfer function V p
i (s) := ŷp

i (s)
yp(s)

with i ∈ {1, . . . , n} is given by

V p
i (s) =

νik
p
i ω̂

p
1 s

s2+(νiω̂
p
1 )

2

1 +
n
∑

j=1

νjk
p
j ω̂

p
1 s

s2+(νjω̂
p
1 )

2

=

νik
p
i ω̂

p
1 s

n
∏
j=1
j 6=i

(
s2 + (νjω̂

p
1 )

2
)

n
∏
j=1

(
s2 + (νjω̂

p
1 )

2
)
+

n
∑

j=1
νjk

p
j ω̂

p
1 s

n
∏
l=1
l 6=j

(
s2 + (νlω̂

p
1 )

2
) (A1)

and the characteristic polynomial of the overall system in Figure A1 is given by the denominator
of (A1), i.e.,

χ (s) =
n

∏
j=1

(
s2 + (νjω̂

p
1 )

2
)
+

n

∑
j=1

νjk
p
j ω̂

p
1 s

n

∏
l=1
l 6=j

(
s2 + (νlω̂

p
1 )

2
)

ŝ:= s
ω̂

p
1= (ω̂

p
1 )

2n
[ n

∏
j=1

random

(
ŝ2 + ν2

j

)
︸ ︷︷ ︸

=:χe
Ap (ŝ)

+
n

∑
j=1

νjk
p
j ŝ

n

∏
l=1
l 6=j

(
ŝ2 + ν2

l

)
︸ ︷︷ ︸

=:χo
Ap (ŝ)

]
(A2)

= (ω̂
p
1 )

2nχAp (ŝ) = det
(
sI2n − ω̂

p
1 Ap). (A3)

Note that the characteristic polynomial χAp (ŝ) = χe
Ap (ŝ) + χo

Ap (ŝ) can be split in even χe
Ap (ŝ)

and odd χo
Ap (ŝ) polynomials (having even and odd order, resp.). Now, the system matrix Ap is a

Hurwitz matrix if and only if the following three conditions hold ([44], Fact 11.17.6): (i) all coefficients
of χAp (ŝ) are positive, (ii) for all se ∈

{
s ∈ C

∣∣ χe
Ap (s) = 0

}
and so ∈

{
s ∈ C

∣∣ χo
Ap (s) = 0

}
, we have

<
(
se) = 0 and <

(
so) = 0, resp., and (iii) the roots are interlaced—that is, =

(
se

1
)
< =

(
so

1
)
< =

(
se

2
)
<

. . . < =
(
se

2n−1
)
< =

(
so

2n−1
)
< =

(
se

2n
)
.

To prove this, all three conditions are shown: It is easy to see that, for all kp
i > 0 and since νi > 0 for

all i ∈ {1, . . . , n}, the coefficients are products and sums of positive constants. Hence, all coefficients of
the characteristic polynomial χAp (ŝ) are positive which shows that condition (i) is satisfied.

Next conditions (ii) and (iii) are shown. Note that, with  being the imaginary unit, the roots of
even polynomial χe

Ap (s) are given by

∀i ∈ {1, . . . , n} : se
i1,2

= ±νi =⇒ <(se
i1,2

) = 0,

Except so
0 = 0 (clearly, with <(so

0) = 0), the other roots of odd polynomial χo
Ap (s) cannot

be computed analytically but can be estimated using the intermediate value theorem. Therefore,
consider two consecutive positive roots se

x and se
y, x, y ∈ {1, . . . , n} of even polynomial χe

Ap (s) and
insert those into odd polynomial χo

Ap (s) which yields

χo
Ap
(
se

x
)

= jν2
xkp

x

(
ν2

1 − ν2
x

)
. . .
(

ν2
x−1 − ν2

x

)
︸ ︷︷ ︸

=:Λx

(
ν2

y − ν2
x

) (
ν2

y+1 − ν2
x

)
. . .
(

ν2
n − ν2

x

)
︸ ︷︷ ︸

=:Γx

χo
Ap

(
se

y

)
= jν2

ykp
y

(
ν2

1 − ν2
y

)
. . .
(

ν2
x−1 − ν2

y

)
︸ ︷︷ ︸

=:Λy

(
ν2

x − ν2
y

) (
ν2

y+1 − ν2
y

)
. . .
(

ν2
n − ν2

y

)
︸ ︷︷ ︸

=:Γy

.
(A4)

Now, according to the intermediate value theorem, a continuous function f has at least one root
in the open interval (a, b) if f (a) and f (b) have opposite signs ([45], p. 132). Since the terms Λx, Λy,

Γx and Γy contain an equal amount of positive and negative factors, only for sign
(
kp

x
)
= sign

(
kp

y

)
it follows that sign

(
χo

Ap
(
se

x
))

= − sign
(

χo
Ap

(
se

y

))
and furthermore ∃ so ∈

(
se

x, se
y

)
s.t. χo

Ap
(
so) = 0.
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Hence, it holds <
(
so) = 0 and =

(
se

x
)
< =

(
so) < =

(
se

y

)
. Using two consecutive negative roots

instead, the result is analogue. Next, considering two opposite roots of χe
Ap (s), se

x and −se
x, x ∈

{1, . . . , n}, it follows

χo
Ap
(
se

x
)

= jν2
xkp

x

(
ν2

1 − ν2
x

)
. . .
(

ν2
x−1 − ν2

x

) (
ν2

x+1 − ν2
x

)
. . .
(

ν2
n − ν2

x

)
χo

Ap
(
−se

x
)

= −jν2
xkp

x

(
ν2

1 − ν2
x

)
. . .
(

ν2
x−1 − ν2

x

) (
ν2

x+1 − ν2
x

)
. . .
(

ν2
n − ν2

x

)
which implies that there exists so ∈

(
−se

x, se
x
)

such that χo
Ap
(
so) = 0 with <

(
so) = 0 and =

(
−se

x
)
<

=
(
so) < = (se

x
)
. According to the fundamental theorem of algebra, a polynomial of n-th order has

exactly n roots ([45], p. 63). Since deg
(
χo

Ap (s)
)
= 2n − 1 and deg

(
χe

Ap(s)
)
= 2n, for every two

consecutive roots of χe
Ap (s) there exists exactly one root of χo

Ap (s) = 0 in between which proofs
conditions (ii) and (iii).

Concluding, if and only if for all kp
i > 0, i ∈ {1, . . . , n}, all coefficients of the polynomial are

positive and

<
(
se

1
)
= <

(
se

2
)
= . . . = <

(
se

2n
)
= <

(
so

1
)
= <

(
so

2
)
= . . . = <

(
so

2n−1
)
= 0

=
(
se

1
)
< =

(
so

1
)
< =

(
se

2
)
< . . . < =

(
se

2n−1
)
< =

(
so

2n−1
)
< =

(
se

2n
)

.

Hence, the matrix Ap is a Hurwitz matrix which completes the proof (In [13], it was already
shown that, if all kp

i , i ∈ {1, . . . , n} are positive, the matrix Ap is a Hurwitz matrix. However, the proof
carried out here states that Ap is a Hurwitz matrix if and only ifall kp

i , i ∈ {1, . . . , n} are positive).

Appendix A.2. Bounded-Input Bounded-State/Bounded-Output Stability

Theorem A2 (Bounded-input bounded-state/bounded-output stability of the dynamics of the
parallelized SOGIs). Consider an essentially bounded input signal of phase p ∈ {a, b, c}—that is, yp(·) ∈
L∞(R≥0;R) and assume that (i) the estimated time-varying fundamental angular frequency is continuous,
bounded and uniformly bounded away from zero—that is, ω̂

p
1 (·) ∈ C(R≥0;R>0) ∩ L

∞(R≥0;R>0) and
ω̂

p
1 (t) ≥ εp

ω > 0 for all t ≥ 0, and (ii) the matrix Ap in (13) is a Hurwitz matrix. Then, the time-varying
system (13) is bounded-input bounded-state/bounded-output stable—that is,

∃cp, c̃p > 0 ∀p ∈ {a, b, c} :
∥∥x̂p(t)

∥∥ ≤ cp and |ŷp(t)| ≤ c̃p.

Proof. First note that, since Ap is Hurwitz, there exists Pp = (Pp)> > 0 such that, for any given
Qp = (Qp)> > 0, the following identity holds ([42], Corollary 3.3.47)

(Ap)>Pp + Pp Ap = −Qp. (A5)

Moreover, note that

∀ a, b ≥ 0 ∀m > 0 : 2 a b = a2

m + mb2 −
( a√

m −
√

m b
)2 ≤ a2

m + mb2. (A6)

Next, introduce the non-negative Lyapunov-like function

V : R2n → R≥0, x̂p 7→ V(x̂p) := (x̂p)>Pp x̂p

where, clearly, the following holds

∀ x̂p ∈ R2n : λmin(P
p)
∥∥x̂p∥∥2 ≤ V(x̂p) ≤ λmax(P

p)
∥∥x̂p∥∥2

=⇒ −
∥∥x̂p∥∥2 ≤ − 1

λmax(P
p)

V(x̂p). (A7)
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The right-hand side of (13) is locally Lipschitz continuous with bounded Lipschitz constant
and bounded exogenous perturbation. Hence, the solution of (13) exists globally on R≥0 ([42],
Theorem 2.2.14 & Proposition 2.2.19) (but still might diverge as t → ∞). The time derivative of
V(·) along the solution of (13) is, for all t ≥ 0, given and upper bounded by

d
dt V

(
x̂p(t)

)
= d

dt x̂p(t)>Pp x̂p(t) + x̂p(t)>Pp d
dt x̂p(t)

(13)
= ω̂

p
1 (t)

[
x̂p(t)>

(
(Ap)>Pp + Pp Ap)x̂p(t) + yp(t)(bp)>Pp x̂p(t) + x̂p(t)>Ppbpyp(t)

]
= ω̂

p
1 (t)

[
x̂p(t)>

(
(Ap)>Pp + Pp Ap)x̂p(t) + 2x̂p(t)>Ppbpyp(t)

]
(A5)
= ω̂

p
1 (t)

[
− x̂p(t)>Qp x̂p(t) + 2x̂p(t)>Ppbpyp(t)

]
(A7)
≤ ω̂

p
1 (t)

[
− λmin(Q

p)
∥∥x̂p(t)

∥∥2
+ 2

∥∥x̂p(t)
∥∥︸ ︷︷ ︸

=:a

∥∥Pp∥∥ ∥∥bp∥∥ ‖yp‖∞︸ ︷︷ ︸
=:b

]
(A6)
≤ ω̂

p
1 (t)

[
−
(

λmin(Q
p)− 1

m︸ ︷︷ ︸
∃m≥1 s.t. (·)≥εm>0

) ∥∥x̂p(t)
∥∥2

+ m
∥∥Pp∥∥2 ∥∥bp∥∥2 ‖yp‖2

∞︸ ︷︷ ︸
=:cm<∞

]
(A7)
≤

[
− εmεp

ω

λmax(P
p)

V
(

x̂p(t)
)
+ cm‖ω̂

p
1‖∞

]
=⇒ V

(
x̂p(t)

)
≤ V

(
x̂p(0)

)
+ cm‖ω̂

p
1‖∞

λmax(P
p)

εmεp
ω

, (A8)

where, in the last step, the Bellman-Gronwall Lemma ([46], p. 102f.) was used in its differential form
(see Lemma 5.50 and Example 5.51 in [41]). Hence, in view of (A7) and (A8), and with cy as in (14),
one can conclude that

∀ t ≥ 0 :
∥∥x̂p(t)

∥∥ (A7),(A8)
≤

√
1

λmin(P
p)

(
V
(
x̂p(0)

)
+ cm‖ω̂

p
1‖∞

λmax(P
p)

εmεp
ω

)
=: cp < ∞

and |ŷp(t)|
(14)
≤
∥∥∥cy

∥∥∥ ∥∥x̂p(t)
∥∥ ≤ ∥∥∥cy

∥∥∥ cp =: c̃p < ∞,

which completes the proof.

Appendix A.3. Boundedness and Exponential Decay of the Signal Estimation Error

It is shown that, for piecewise continuous (sinusoidal) and bounded input signals yp(·) ∈
Cpw(R≥0;R) ∩ L∞(R≥0;R), the estimation error of the parallelized SOGIs is bounded and, if the
fundamental angular frequency ω

p
1 is correctly estimated, the estimation error decays exponentially.

To present the result, an important observation must be introduced. Note that, any piecewise
continuous (sinusoidal) signal of the form yp(·) = ∑ν∈Hn

ap
ν cos

(
νω

p
1 ·+φ

p
0,ν
)

on any bounded interval
Ii := [ti, ti+1), i ∈ N0 (such that R≥0 = I0 ∪ I1 ∪ I2 ∪ . . . ) can be generated by (the output of) a properly
initialized linear internal model [47] of the following form

∀ t ∈ Ii : d
dt

=:xp(t)∈R2n︷ ︸︸ ︷xp
1 (t)
...

xp
n(t)

 = ω
p
1 Jimxp(t), xp(ti) = xp

i,0 ∈ R2n

yp(t) =
(

1, 0, 1, 0, . . . , 1, 0
)

︸ ︷︷ ︸
=c>y ∈R

2n as in (14)

xp(t)


(A9)
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where

Jim :=



0 −1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 −ν2 · · · 0 0
0 0 ν2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −νn
0 0 0 0 · · · νn 0


=


J O2×2 · · · O2×2

O2×2 ν2 J · · · O2×2
...

...
. . .

...
O2×2 O2×2 · · · νn J

 ∈ R2n×2n (A10)

with J :=
[

0 −1
1 0

]
and xp

k := (yp
k , qp

k )
>, k ∈ {1, . . . , n}, represents the k-th sub-state vector (including

original signal yp
k and its quadrature signal qp

k ) of the k-th internal model of the νk-harmonic component
(where ν1 := 1). ω

p
1 (·) can be considered as an external input to the internal model. Clearly, for any

real (finite) initial value xp
i,0 ∈ R2n for the i-th time interval Ii, all states of the internal model (A9) are

essentially bounded—that is, xp
k (·) ∈ L

∞(R≥0;R2) for all k ∈ {1, . . . , n}. Note that the values for ω
p
1 ,

φ
p
0,ν and ap

ν might change for each interval Ii. Now, the result can be stated.

Theorem A3 (Boundedness and exponential decay of the signal estimation error). Let εp
ω > 0,

p ∈ {a, b, c}, Hn as in (3), ap
ν ≥ 0, ω

p
1 > 0 and φ

p
0,ν for all ν ∈ Hn and ω̂

p
1 (·) ∈ C

pw ∩
L∞(R≥0; [εp

ω, ∞)). Consider any piecewise continuous (sinusoidal) and bounded input signals—that
is, yp(·) = ∑ν∈Hn

ap
ν cos

(
νω

p
1 · +φ

p
0,ν
)
∈ Cpw ∩ L∞(R≥0;R) on any bounded interval Ii := [ti, ti+1),

i ∈ N0 (such that R≥0 = I0 ∪ I1 ∪ I2 ∪ . . . ), generated by the internal model (A9) and assume that yp(·) is fed
to the parallelized SOGI system (13) with Ap being a Hurwitz matrix. Then, the estimation error, defined by

∀ p ∈ {a, b, c} : ep
x(t) := xp(t)− x̂p(t) (A11)

with xp(t) as in (A9) and x̂p(t) as in (13), is bounded—that is, there exists ce > 0 such that
∥∥ep

x(t)
∥∥ ≤ ce for

all t ≥ 0. Moreover, if, for some i ∈ N0, ω
p
1 = ω̂

p
1 (t) for all t ∈ Iss ⊆ Ii, then the norm of the estimation error is

exponentially decaying—that is, there exist constants cV , µV > 0 such that
∥∥ep

x(t)
∥∥ ≤ cV

∥∥ep
x(ti)

∥∥ e−µV(t−ti)

for all t ∈ Iss.

Proof. Define, for Kp
ν as in (12) with ν ∈ Hn, the gain matrix

Kp :=



kp
1 0 kp

1 0 · · · kp
1 0

0 0 0 0 · · · 0 0
ν2kp

2 0 ν2kp
2 0 · · · ν2kp

2 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

νnkp
n 0 νnkp

n 0 · · · νnkp
n 0

0 0 0 0 · · · 0 0


(12)
=


Kp

1 Kp
1 · · · Kp

1
ν2Kp

2 ν2Kp
2 · · · ν2Kp

2
...

...
. . .

...
νnKp

n νnKp
n · · · νnKp

n

 ∈ R2n×2n (A12)

and observe the following relations

bpc>y
(13),(14)

= Kp and Jim − Kp (13)
= Ap. (A13)

Then, for any interval Ii, inserting the internal model (A9) into the parallelized SOGI
system (13) yields

∀ t ∈ Ii : d
dt

(
x̂p(t)
xp(t)

)
︸ ︷︷ ︸
∈R4n

=

[
ω̂

p
1 (t)Ap ω̂

p
1 (t)K

p

O2n×2n ω
p
1 Jim

](
x̂p(t)
xp(t)

)
,

(
x̂p(ti)

xp(ti)

)
=

(
x̂p

i,0
xp

i,0

)
∈ R4n. (A14)
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Next, introduce the angular frequency error

∀ t ∈ Ii : ep
ω(t) := ω

p
1 − ω̂

p
1 (t) ⇐⇒ ω

p
1 = ep

ω(t) + ω̂
p
1 (t), (A15)

and evaluate the time derivative of the estimation error vector as follows

∀ t ∈ Ii : d
dt
(

xp(t)− x̂p(t)
)︸ ︷︷ ︸

=:ep
x(t)∈R

2n

=
[
−I2n I2n

]
d
dt

(
x̂p(t)
xp(t)

)

(A14)
= −ω̂

p
1 (t)Ap x̂p(t)−

(
ω̂

p
1 (t)K

p −ω
p
1 Jim

)
xp(t)

(A15)
= −ω̂

p
1 (t)Ap x̂p(t) + ω̂

p
1 (t)

(
Jim − Kp)xp(t) + ep

ω(t)Jimxp(t)

(A13)
= ω̂

p
1 (t)Apep

x(t) + ep
ω(t)Jimxp(t) (A16)

Now, the time derivative of the Lyapunov-like function V(ep
x(t)) = ep

x(t)
>Ppep

x(t) (with Pp as
introduced in (A5)) is given for all t ∈ Ii = [ti, ti+1), along the solution of (A16), as follows

d
dt V

(
ep

x(t)
)

= d
dt ep

x(t)
>Ppep

x(t) + ep
x(t)

>Pp d
dt ep

x(t)

(A16)
= ω̂

p
1 (t)e

p
x(t)

>((Ap)>Pp + Pp Ap)ep
x(t) + 2ep

ω(t)e
p
x(t)

>Pp Jimxp(t)

(A5)
= −ω̂

p
1 (t)e

p
x(t)

>Qpep
x(t) + 2ep

ω(t)e
p
x(t)

>Pp Jimxp(t)

(A7)
≤ −ω̂

p
1 (t)λmin(Q

p)
∥∥ep

x(t)
∥∥2

+ 2
√

ω̂
p
1 (t)

∥∥ep
x(t)

∥∥︸ ︷︷ ︸
=:a

|ep
ω(t)|√
ω̂

p
1 (t)

∥∥Pp∥∥ ‖Jim‖ ‖x
p‖∞︸ ︷︷ ︸

=:b

(A6)
≤ −ω̂

p
1 (t)

(
λmin(Q

p)− 1
m︸ ︷︷ ︸

∃m≥1 s.t. (·)≥ε′m>0

) ∥∥ep
x(t)

∥∥2
+ ep

ω(t)
2

ω̂
p
1 (t)

m
∥∥Pp∥∥2 ‖Jim‖

2 ‖xp‖2
∞︸ ︷︷ ︸

=:c′m<∞

(A7)
≤ − ε′mεp

ω

λmax(P
p)︸ ︷︷ ︸

=:µV>0

V
(
ep

x(t)
)
+ ep

ω(t)
2

ω̂
p
1 (t)

c′m

=⇒ V
(
ep

x(t)
)

≤ V
(
ep

x(ti)
)
e−µV (t−ti) + c′m

∫ t

ti

ep
ω(τ)

2

ω̂
p
1 (t)

e−µV (t−τ)dτ, (A17)

where, in the last step, the Bellman-Gronwall Lemma in its differential form (see Lemma 5.50 and
Example 5.51 in [41]) was used again. Note that ep

ω(·) ∈ L
∞(R≥0;R>0), since ω̂

p
1 (·) ∈ L

∞(R≥0;R>0)

and ω
p
1 > 0 on each interval Ii. Hence,

∀ t ∈ Ii :
∥∥ep

x(t)
∥∥2 ≤ 1

λmin(P
p)

[
V
(
ep

x(ti)
)
e−µV (t−ti) + c′m

∫ t

ti

ep
ω(τ)

2e−µV (t−τ)dτ
]
,

(A7)
≤ λmax(P

p)
λmin(P

p)

∥∥ep
x(ti)

∥∥ e−µV (t−ti) + c′m
λmin(P

p)

∫ t

ti

ep
ω(τ)

2e−µV (t−τ)dτ, (A18)

and, clearly, for all t ∈ Iss ⊂ Ii where ep
ω(t) = 0, the estimation error is exponentially decaying.

This completes the proof.

Remark A4. Note that, for ep
ω(t) = 0 for all t ≥ 0, (A18) gives asymptotic tracking—that

is, limt→∞
∥∥ep

x(t)
∥∥ = 02n which implies limt→∞ |y

p(t)− ŷp(t)| = 0.
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Appendix A.4. Derivation of Sub-Correction (Rotation) Matrices for APCp
LPF and APCp

HPF

Consider a low-pass filter (LPF) with cut-off frequency ωLPF and a high-pass filter (HPF) with
cut-off frequency ωHPF each followed by its respective sub-correction matrix CLPF and CHPF as
illustrated in Figure A2.

(
y
q

)
Σ ωLPF

∫
−

CLPF

(
yLPF
qLPF

) (
ŷLPF
q̂LPF

)

ωHPF

(a)

(
y
q

)
Σ

ωHPF
∫−

CHPF

(
yHPF
qHPF

) (
ŷHPF
q̂HPF

)

(b)

Figure A2. (a) Low-Pass Filter with APC and (b) High-Pass Filter with APC (b).

The transfer functions of the filters are given by

FLPF (s) =
yLPF(s)

y(s) =
qLPF(s)

q(s) =
ωLPF

s+ωLPF
and FHPF (s) =

yHPF(s)
y(s) =

qHPF(s)
q(s) = s

s+ωHPF
(A19)

which lead to the respective amplitude damping factors and phase lags as follows

ALPF(ω) =
ωLPF√

ω2+(ωLPF)
2
, ϕLPF(ω) = − arctan2

(
ω

ωLPF

)
and

AHPF(ω) = ω√
ω2+(ωHPF)

2
, ϕHPF(ω) = arctan2

(ωHPF
ω

)
.

 (A20)

For input signals

∀ t ≥ 0 : y(t) = a cos(ωt + ϕ) and q(t) = a sin(ωt + ϕ) , (A21)

the respective output signals of the filter x ∈ {LPF, HPF}, in steady-state, are given by

∀ t ≥ 0 : yx(t) = Ax(ω)a cos(ωt + ϕ + ϕx(ω)) and qx(t) = Ax(ω)a sin(ωt + ϕ + ϕx(ω)) . (A22)

Proposition A5. For given cut-off frequencies ωLPF > 0 of low-pass filter and ωHPF > 0 of high-pass
filter as in (A19), and filter input signal vector (y(·), q(·))> as in (A21) and filter output signal vector
(yx(·), qx(·))

> as in (A22) with arbitrary angular frequency ω > 0 and x ∈ {LPF, HPF}, there exists a
linear transformation (correction) matrix Cx ∈ R2×2 with x ∈ {LPF, HPF}, such that the amplitude-corrected
and phase-corrected signals ŷx(·) and q̂x(·) (see Figure A2) have identical phase and amplitude as the input
signals—that is, (y(t), q(t))> = (ŷx(t), q̂x(t))

> for all t ≥ 0 and x ∈ {LPF, HPF}. The correction matrices
are given by

CLPF :=

[
1 − ω

ωLPF
ω

ωLPF
1

]
and CHPF :=

[
1 ωHPF

ω

−ωHPF
ω 1

]
, respectively. (A23)

Proof. For brevity, the argument t will be dropped. Define Λ :=
[

λ1 −λ2
λ2 λ1

]
and observe that

(see Figure A2)

∀x ∈ {LPF, HPF} :

(
ŷx
q̂x

)
= Cx

(
yx
qx

)
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Setting Λ = Cx, one can rewrite the equation above as follows

∀x ∈ {LPF, HPF} :

(
ŷx
q̂x

)
= Λ

(
yx
qx

)
=

[
λ1 −λ2
λ2 λ1

](
yx
qx

)
=

[
yx −qx
qx yx

]
︸ ︷︷ ︸

=:S

(
λ1
λ2

)
. (A24)

Note that, in view of the definition of (yx, qx)
> as in (A22), the matrix is (uniformly) invertible

with inverse

S−1 = 1
y2

x+q2
x

[
yx qx
−qx yx

]
(A22)
= 1

Ax(ω)2a2

[
Ax(ω)a cos(ωt + ϕ + ϕx(ω)) Ax(ω)a sin(ωt + ϕ + ϕx(ω))

−Ax(ω)a sin(ωt + ϕ + ϕx(ω)) Ax(ω)a cos(ωt + ϕ + ϕx(ω))

]
(A25)

= 1
Ax(ω)a

[
cos(ωt + ϕ + ϕx(ω)) sin(ωt + ϕ + ϕx(ω))

− sin(ωt + ϕ + ϕx(ω)) cos(ωt + ϕ + ϕx(ω))

]
,

which allows to (uniquely) solve the following identity for λ1 and λ2, since(
y
q

)
!
=

(
ŷx
q̂x

)
(A24)
= S

(
λ1
λ2

)
=⇒

(
λ1
λ2

)
= S−1

(
y
q

)
.

More precisely, by invoking the following trigonometric identities ([43], Sections 4.3 and 4.4)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y) ,
cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

sin
(
arctan2

( y
x
))

= y√
x2+y2

, and cos
(
arctan2

( y
x
))

= x√
x2+y2

,

 (A26)

one obtains(
λ1
λ2

)
= S−1

(
y
q

)
(A26),(A21)

= 1
Ax(ω)�a

[
cos(ωt + ϕ + ϕx(ω)) sin(ωt + ϕ + ϕx(ω))

− sin(ωt + ϕ + ϕx(ω)) cos(ωt + ϕ + ϕx(ω))

](
�a cos(ωt + ϕ)

�a sin(ωt + ϕ)

)

= 1
Ax(ω)

(
cos(ωt + ϕ + ϕx(ω)) cos(ωt + ϕ) + sin(ωt + ϕ + ϕx(ω)) sin(ωt + ϕ)

− sin(ωt + ϕ + ϕx(ω)) cos(ωt + ϕ) + cos(ωt + ϕ + ϕx(ω)) sin(ωt + ϕ)

)
(A26)
= 1

Ax(ω)

(
cos(ϕx(ω))

− sin(ϕx(ω))

)

(A20)
=


1

ωLPF√
ω2+ω2

LPF

 cos
(
− arctan2

(
ω

ωLPF

))
− sin

(
− arctan2

(
ω

ωLPF

)) (A26)
=

 1
ω

ωLPF

 , for x = LPF

1
ω√

ω2+(ωHPF)
2

(
cos
(
arctan2

(ωHPF
ω

))
− sin

(
arctan2

(ωHPF
ω

))) (A26)
=

(
1

−ωHPF
ω

)
, for x = HPF.

(A27)

Inserting (A27) for x ∈ {LPF, HPF} into (A24) yields the matrices as in (A23). This completes
the proof.
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Appendix A.5. Matlab Code for Fastest Time Response

In the following, the Matlab code for gathering the gains bp which relate to the minimal largest
eigenvalue pp

max of Ap is shown; the self-implemented algorithm is based on the gradient method [45]
and minimizes the function pp

max (b) specified by

pp
max (b) := max

<(s)∈R

{
s ∈ C|det

(
sI2n − Jim + bpcy

)
= 0

}
.

function b = iterative_optimal_gains

%% Define parameters

% system order
n = 10;

% starting values
step_start = zeros(2*n,1);

% resolution
resolution = 1e-3;
step_vector = zeros(2*n,1);
step_vector(1) = resolution;

% to prevent numerical issues (should be much smaller than the resolution)
numerical_value = 0.5*resolution;

% calculate required system matrices and vectors
J = zeros(2*n);
cy = zeros(2*n,1);

nu_expected = (1:n)’;

for z = 1:2*n
for y = 1:2*n

if mod(z,2) ~= 0 && y == (z+1)
J(z,y) = - nu_expected(y/2);

elseif mod(z,2) == 0 && y == (z-1)
J(z,y) = nu_expected(z/2);

end
end
if mod(z,2) ~= 0

cy(z) = 1;
end

end

% number of directions
possible_directions = 1;
for i = 2:n

possible_directions = 2*possible_directions + 1;
end

% initialize vectors and cells
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poles_cell = cell(possible_directions,1);
b_cell = cell(possible_directions,1);
b_optimal = step_start;
for row = 1:2*n

if mod(row,2) == 0
b_optimal(row) = 0;

end
end

%% Find minimum
% initialize poles
poles_optimal = eig(J-cy*b_optimal’);

% breaking condition initialization
looping = true;

while looping
% breaking condition for each loop
count = 0;
% build new gain vectors and compute respective eigenvalues
for i = 1:possible_directions

if i == 1
b_cell{i} = b_optimal + step_vector;

else
b_cell{i} = b_cell{i-1} + step_vector;

end
for row = 1:n

if (b_cell{i}(2*row-1) - b_optimal(2*row-1)) > (resolution +
numerical_value)

b_cell{i}(2*row-1) = b_cell{i}(2*row-1) - 2*resolution;
b_cell{i}(2*row+1) = b_cell{i}(2*row+1) + resolution;

end
end
poles_cell{i} = eig(J-cy*b_cell{i}’);

end
% compare eigenvalues
for i = 1:possible_directions

if max(real(poles_cell{i})) <= max(real(poles_optimal))
count = count + 1;
b_optimal = b_cell{i};
poles_optimal = poles_cell{i};

end
end
% breaking condition test
if count == 0

break;
end

end

end
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