
energies

Article

Pipeline Leak Detection and Location
Based on Model-Free Isolation of Abnormal
Acoustic Signals

Fang Wang 1 , Weiguo Lin 1,*, Zheng Liu 2 and Xianbo Qiu 1

1 College of Information Science and Technology, Beijing University of Chemical Technology,
Beijing 100029, China

2 Faculty of Applied Science, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
* Correspondence: linwg@mail.buct.edu.cn; Tel.: +86-135-5252-0057

Received: 21 June 2019; Accepted: 16 August 2019; Published: 18 August 2019
����������
�������

Abstract: Pipeline leaks will lead to energy waste, environmental pollution and a threat to human
safety. This paper proposes a pipeline leak detection and location method based on the model-free
isolation of abnormal (leak and operation) signals. An acoustic signal is first decomposed into
“sub-signals” according to its zero-crossing points. Then, based on the definition of signal-to-noise
ratio (SNR), the function between the SNR of sub-signal and the number of abnormal sub-signals
is established, following which the position of each abnormal sub-signal in the acoustic signal
is obtained by tracing its index. Based on this and the cross-correlation analysis, the operation
sub-signals can be filtered, which is helpful for the precise leak location. The experimental results
demonstrate the computational efficiency and lower false/missing alarm rate of the proposed method
that provides an innovative solution for pipeline leak detection.

Keywords: leak detection; signal decomposition; signal-to-noise ratio calculation; model-free;
abnormal signal isolation

1. Introduction

Pipelines are critical infrastructure to a country’s economy for oil transportation. However,
owing pipeline aging, corrosion and destruction of the third parties, pipeline leak accidents often
occur [1–5]. For the transport of certain hazardous substances (such as natural gas and hydrogen),
pipeline leaks frequently result in serious safety accidents [6,7]. Therefore, pipeline leak detection is
necessary. Accordingly, domestic and foreign scholars have conducted considerable research in this
area [8–12]. Generally, these pipeline leak detection methods using a classifier are defined as model-based,
while others are model-free-based methods.

Many studies have focused on model-based pipeline leak detection methods. In these methods,
leak diagnosis models are established by mapping the relationship between feature space and fault
space. (1) Feature extraction. From the time-domain perspective, researchers often utilize features of
mean, peak, root-mean-square, shape factor, kurtosis, absolute amplitude and relative amplitude [13,14].
From the frequency-domain perspective, according to the relationship between the cepstrum peak and
the signal energy, the cepstrum peak is employed as a feature to identify leak signals [4]. From the
time-frequency-domain perspective, time-frequency analysis methods (such as wavelet packet, empirical
mode decomposition, local mean decomposition, etc.) are often utilized to process signals, and their
coefficients combined with root-mean-square or entropy are as features [6,15,16]. (2) Diagnosis model.
Some classification methods, such as the support vector domain description (SVDD) [17,18], support
vector machine (SVM) [19,20] and Bayesian classifier [21], have been successfully applied to pipeline
leak detection [22–25].
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However, since model-based methods take the whole signal as the detection object, they can only
judge whether it is abnormal and cannot give the local information (number, amplitude, position)
of the abnormality in the signal. In practical applications, it is critical to obtain the local information
of anomalies in an acoustic signal to solve false/missing alarms caused by the operation and leak
mixing in an acoustic signal. Additionally, many model-based methods rely on leak samples. However,
actual leak samples are not available from a real pipeline transportation process. Even if they are usually
replaced by artificially simulated leaks, the number of samples is still limited and not able to cover
all the leak situations. And for these pipelines of the transportation of certain dangerous substances
such as natural gas, hydrogen and liquid chlorine, the artificially simulated leaks are usually generated
with water or air as the replacement [16,26,27], which will affect the extracted features. To address
this problem, Martini et al. [28] combined the autocorrelation function with the kurtosis to detect
water leaks. And experimental results show the validity of this method but more verification of field
water pipelines is needed. Wang et al. [14] utilized time domain statistical features of normal samples
to establish a diagnosis model based on SVDD. The test results demonstrated that this method offered
a certain extent of universality. However, this method was with an estimation of the misclassification
rate, which may cause false and missing alarms in the long term continuous operation.

Therefore, this paper proposes a pipeline leak detection and location method based on the model-free
isolation of abnormal acoustic signals. For acoustic sensor based leak detection, the operation signals
generated by station operations (such as the pressure regulating) will be identified as abnormal signals
as well in this paper. According to the bipolar characteristic of the acoustic signal, it can be decomposed
into sub-signals. In an acoustic signal, the abnormal sub-signal is as the valid signal and the normal
sub-signal as the background noise. Based on this, the functional relationship between the SNR
of sub-signal and the number of abnormal sub-signals is established. Then, the direct isolation of
abnormal signals can be realized. The proposed method reduces the dependency on samples and does
not require feature extraction and diagnosis models, which aids in reducing the occurrence of false and
missing alarms. Furthermore, the number of abnormal sub-signals and their positions in an acoustic
signal can be obtained simultaneously, which helps to improve the location precision.

The composition of this paper is: Section 2 introduces the leak detection system based on the acoustic
sensor; Sections 3 and 4 describe the model-free-based abnormal signal isolation method and the leak
precise location method, respectively; Section 5 presents experiments; and Section 6 summarize this paper.

2. Acoustic Sensor-Based Leak Detection System

The schematic configuration of the pipeline leak detection system is shown in Figure 1.
The acoustic transducer consists of a piezoelectric pressure sensor and signal conditioning circuit.
The piezoelectric pressure sensor is used to sense acoustic signals and convert them into charge signals.
The circuit mainly includes a charge amplifier, a low- and high-pass filter, two voltage amplifiers
and a voltage/current converter, as shown in Figure 2. After charge signals are processed by the
circuit, they are remotely transmitted to the remote terminal units in the form of current (4∼20 mA).
The synchronous acquisition of upstream and downstream acoustic signals can be achieved by GPS
timing. Finally, these digital acoustic signals are sent to the computer center via the Internet for leak
detection. Figure 3 shows the field installation of the acoustic transducers on pipelines.



Energies 2019, 12, 3172 3 of 18

Figure 1. System architecture for the acoustic sensor-based leak detection.

Figure 2. The configuration of the acoustic transducer.

Figure 3. Field installation of the acoustic transducers on pipelines.

3. Model-Free Isolation Principle of Abnormal Acoustic Signals

3.1. Decomposition of an Acoustic Signal

The bipolarity of the acoustic signal x makes it possible to decompose the signal into positive
and negative intervals with the zero-crossing points and each interval is regarded as a sub-signal.
An acoustic signal is denoted by:

x = [x(T), x(2T), ..., x(NT)] (1)

where N is the data length of the acoustic signal x, T is the sampling period. Based on the zero-crossing
points of x, the acoustic signal can be decomposed into M sub-signals and each sub-signal xsub(j) is:

xsub(j) = [x(Tstart(j)), ..., x(Tend(j))] (2)

where j (j = 1, 2, ..., M) is the index of the sub-signal xsub(j), Tstart(j) and Tend(j) are the starting time
and the ending time of the sub-signal xsub(j), respectively. The peak of the sub-signal xsub(j) is denoted
by Apeak(j):

Apeak(j) =

{
max {xsub(j)} s.t. ∑ xsub(j) > 0
min {xsub(j)} s.t. ∑ xsub(j) < 0

(3)

Figure 4 shows the decomposition diagram. The abnormal acoustic signal shown in Figure 5a
was filtered with the Daubechies wavelet (wavelet basis: db 9, decomposition level: 5). In the absence
of a special explanation, all acoustic signals in this study were filtered with the same setting
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of the wavelet. It is decomposed into 168 sub-signals; the 68nd sub-signal is a positive abnormal
sub-signal (Figure 5b) and the corresponding starting time, ending time and peak value are 72.74 s,
75.62 s, 0.505 V, respectively; the 73th sub-signal is a negative abnormal sub-signal (Figure 5c)
and its starting time, ending time and peak value are 77.88 s, 80.86 s and −0.503 V, respectively.
The proposed decomposition method lays a good foundation for extracting local abnormal information
in an acoustic signal.

Figure 4. Signal decomposition diagram.

Figure 5. Decomposition example of an acoustic signal.

3.2. Principle of the Model-Free Isolation Method

The peak sequence, composed of the peaks of all sub-signals in an acoustic signal, is denoted
by Apeak = [Apeak(1), Apeak(2), ..., Apeak(j), ..., Apeak(M)]. All sub-signals are sorted from large
to small according to their absolute peak value |Apeak(j)|. Then, the ordered peak sequence
is denoted by A|peak| = [|Apeak(a1)|, |Apeak(a2)|, ..., |Apeak(aj)|, ..., |Apeak(aM)|], where aj is the index
of the sub-signal xsub(aj) in the acoustic signal x and aj is an integer within the range of 1 to M.
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The most intuitive difference between the abnormal and normal signals is that the former absolute
peak is significantly larger than the latter [13,14] and the law is also suitable for abnormal and normal
sub-signals. If there are m abnormal sub-signals in an acoustic signal, the sub-signals, corresponding
to the first m peaks in the ordered peak sequence A|peak|, are abnormal sub-signals. Based on the expert
experience, the following lemmas can be summarized.

Lemma 1. From a microscopic perspective, the absolute peaks in the sequence A|peak| must be arranged
from larger to small. That is, |Apeak(a1)| > |Apeak(a2)| > ... > |Apeak(am)| > |Apeak(am+1)| >
|Apeak(am+2)| > ... > |Apeak(aM)|.

Lemma 2. From a macroscopic perspective, the absolute peak of the normal sub-signal is much smaller
than that of the abnormal sub-signal and the normal sub-signals in the acoustic signal obeys the Gaussian
distribution [14]. Therefore, the absolute peaks of normal sub-signals are approximately equal. That is,
|Apeak(a1)| > |Apeak(a2)| > ... > |Apeak(am)| � |Apeak(am+1)| ≈ |Apeak(am+2)| ≈ ... ≈ |Apeak(aM)|.

Since the actual number m of abnormal sub-signals in an acoustic signal x to be detected
is unknown, it can be assumed to be k whose value must be less than the number M of sub-signals.
In order to make all equations meaningful (introduced in the following), its range is k = 1, 2, ..., M− 2.
Based on the SNR definition [29], the abnormal sub-signal is treated as the valid signal and the normal
sub-signal as the background noise in an acoustic signal x. Then, the SNR of the sub-signal xsub(aj)

is defined as follows:

Sk(aj) = 10 log
(Apeak(aj))

2/2

σ2
k

(4)

where σk is the standard deviation of peaks of all normal sub-signals in an acoustic signal (the number
of abnormal sub-signals is k and the remaining (M − k) sub-signals are normal sub-signals)
and it is described by:

σk =

√√√√ 1
M− k

M

∑
j=k+1

(
|Apeak(aj)| −

1
M− k

M

∑
j=k+1

|Apeak(aj)|
)2

(5)

In the case of k = M or k = M − 1, Equation (5) will be meaningless or make Equation (4)
meaningless. Hence, the range of k (k = 1, 2, ..., M− 2) is reasonable. As observed in Equations (4)
and (5), the SNR Sk(aj) of the sub-signal xsub(aj) changes with the number k of abnormal
sub-signals, which indicates Sk(aj) is the function of k. Each k corresponds to an SNR sequence
Sk = [Sk(a1), Sk(a2), ..., Sk(aM)]. The following three theorems can be deduced by analyzing Lemma 1
and Equation (4).

Theorem 1. The SNR in the SNR sequence Sk = [Sk(a1), Sk(a2), ..., Sk(aM)] decreases in turn; that is,
Sk(aj) > Sk(aj+1).

Proof of Theorem 1. According to Lemma 1, the peak |Apeak(aj)| is larger than the peak |Apeak(aj+1)|;
therefore,

Sk(aj) = 10 log
(Apeak(aj))

2/2

σ2
k

> 10 log
(Apeak(aj+1))

2/2

σ2
k

= Sk(aj+1) (6)

Theorem 2. The standard deviation σk is a monotonically decreasing function of the number k of abnormal
sub-signals: σk > σk+1.
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Proof of Theorem 2. First of all, the theorem is proved from the mathematical point of view.
The average in Equation (5) is denoted by:

µk =
1

M− k

M

∑
j=k+1

|Apeak(aj)| (7)

The difference between µk and µk+1 is:

µk − µk+1 =
1

M− k

M

∑
j=k+1

|Apeak(aj)| −
1

M− k− 1

M

∑
j=k+2

|Apeak(aj)|

=
1

(M− k)(M− k− 1)

(M− k− 1)
M

∑
j=k+1

|Apeak(aj)| − (M− k)
M

∑
j=k+2

|Apeak(aj)|


=

1
(M− k)(M− k− 1)

(M− k− 1)|Apeak(ak+1)| −
M

∑
j=k+2

|Apeak(aj)|


=

1
(M− k)(M− k− 1)

M

∑
j=k+2

[
|Apeak(ak+1)| − |Apeak(aj)|

]
(8)

As the peak sequence A|peak| is ordered from large to small, there is

|Apeak(ak+1)| > |Apeak(ak+2)| > ... > |Apeak(aM)| (9)

Hence, the |Apeak(ak+1)| − |Apeak(aj)| in the Equation (8) is larger than 0. Combined with
k = 1, 2, ..., M− 2, the µk − µk+1 is larger than 0. Therefore, the µk is larger than µk+1.

Then, the difference between σ2
k and σ2

k+1 is:

σ2
k − σ2

k+1 =
1

M− k

M

∑
j=k+1

(
|Apeak(aj)| − µk

)2
− 1

M− k− 1

M

∑
j=k+2

(
|Apeak(aj)| − µk+1

)2

=

(M− k− 1)
M
∑

j=k+1

(
|Apeak(aj)| − µk

)2
− (M− k)

M
∑

j=k+2

(
|Apeak(aj)| − µk+1

)2

(M− k)(M− k− 1)

(10)

Since the µk is larger than µk+1, Equation (10) can be rewritten as:

σ2
k − σ2

k+1 =

(M− k− 1)
M
∑

j=k+1

(
|Apeak(aj)| − µk

)2
− (M− k)

M
∑

j=k+2

(
|Apeak(aj)| − µk+1

)2

(M− k)(M− k− 1)

>

(M− k− 1)
M
∑

j=k+1

(
|Apeak(aj)| − µk

)2
− (M− k)

M
∑

j=k+2

(
|Apeak(aj)| − µk

)2

(M− k)(M− k− 1)

=

(M− k− 1)
(
|Apeak(ak+1)| − µk

)2
−

M
∑

j=k+2

(
|Apeak(aj)| − µk

)2

(M− k)(M− k− 1)

=

M
∑

j=k+2

[(
|Apeak(ak+1)| − µk

)2
−
(
|Apeak(aj)| − µk

)2
]

(M− k)(M− k− 1)

> 0

(11)
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Hence σk > σk+1.
Then the theorem is proved from the physical point of view. When the number of abnormal

sub-signals is k, σk represents the standard deviation of peaks from |Apeak(ak+1)| to |Apeak(aM)|
in the ordered peak sequence A|peak|. When the number of abnormal sub-signals is k + 1, σk+1 indicates
the standard deviation from |Apeak(ak+2)| to |Apeak(aM)|. Since |Apeak(ak+1)| > |Apeak(ak+2)|,
the fluctuation of peaks used to calculate σk is greater than that of peaks for calculating σk+1;
that is, σk > σk+1.

Theorem 3. Sk+1(a1) − Sk(a1) = Sk+1(a2) − Sk(a2) = ... = Sk+1(aj) − Sk(aj) = ... = Sk+1(aM) −
Sk(aM) = ∆k, where ∆k is a positive number and denoted by an SNR increment.

∆k = 10 log
σ2

k
σ2

k+1
(12)

Proof of Theorem 3. According to the SNR definition (Equation (4)), the relationship between
the Sk+1(aj) and Sk(aj) is:

Sk+1(aj)− Sk(aj) = 10 log
(Apeak(aj))

2/2

σ2
k+1

− 10 log
(Apeak(aj))

2/2

σ2
k

= 10 log
σ2

k
σ2

k+1

= ∆k

(13)

From Theorem 2, it is known that σk is larger than σk+1. Hence, ∆k = 10 log(σ2
k /σ2

k+1) > 0.
Combined with Equation (13), Theorem 3 is proved.

When the number of abnormal sub-signals is k = 1, 2, ..., M− 2, the SNR increment sequence ∆ is:

∆ = [∆1, ∆2, ..., ∆M−3] (14)

According to Lemma 2 and Equation (5), if the actual number of abnormal sub-signals is m, then:

σm+1 ≈ σm+2 ≈ ... ≈ σM−2 (15)

Hence,
∆m+1 ≈ ∆m+2 ≈ ... ≈ ∆M−3 ≈ 0 (16)

That indicates the SNR increment of normal sub-signals tends to zero. Therefore, the actual
number m of abnormal sub-signals should satisfy:

∆m+1,...,M−3 → 0 (17)

In this paper, Equation (17) is realized by Equation (18). If m = 0, the acoustic signal is a normal
signal; otherwise, it is abnormal and has m abnormal sub-signals.

M−3

∑
k=m+1

[∆k] = 0 (18)

where [·] represents the rounding function.
Figure 6 illustrates a normal and abnormal acoustic signal. According to the decomposition

principle of an acoustic signal, the two signals are decomposed into 157 and 168 sub-signals and their
actual numbers of abnormal sub-signals are m = 0 and m = 2, respectively.
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Figure 6. Time domain waveform of normal and abnormal acoustic signals.

Their SNR distributions, varying along with the assumed number k of abnormal sub-signals,
are illustrated in Figure 7a,b, respectively and the corresponding SNR increment sequences are
illustrated in Figure 8. According to Equation (18), for the normal acoustic signal, its actual number m
of abnormal sub-signals is 0 and the signal can be judged as a normal signal. Similarly, for the abnormal
acoustic signal, it is judged as an abnormal signal and includes 2 abnormal sub-signals. Therefore,
the diagnosis results are consistent with the actual situation.

(a)

(b)

Figure 7. The signal to noise ration (SNR) sequence Sk of normal and abnormal acoustic signals varies
with the number k of abnormal sub-signals. (a) Normal acoustic signal: the actual number of abnormal
sub-signals is m = 0. (b) Abnormal acoustic signal: the actual number of abnormal sub-signals is m = 2.
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Figure 8. SNR increment sequence ∆.

3.3. Isolation of Abnormal Sub-Signals

While an acoustic signal is decomposed into M sub-signals, the index information, position
information (starting time and end time) and peak information corresponding to each sub-signal are
stored as follows:

Index : Isub = [1, 2, ..., j, ..., M]

Starting time : Tstart = [Tstart(1), Tstart(2), ..., Tstart(j), ..., Tstart(M)]

Ending time : Tend = [Tend(1), Tend(2), ..., Tend(j), ..., Tend(M)]

Peak : Apeak = [Apeak(1), Apeak(2), ..., Apeak(j), ..., Apeak(M)]

The sub-signals are sorted by the absolute peaks from large to small and the ordered peak
sequence A|peak| and its index sequence I|sub| are:

A|peak| = [|Apeak(a1)|, |Apeak(a2)|, ..., |Apeak(aj)|, ..., |Apeak(aM)|]
I|sub| = [a1, a2, ..., aj, ..., aM]

where aj is the index of the sub-signal xsub(aj). Once the actual number m of abnormal sub-signals are
known, the peaks of abnormal sub-signals are Apeak(a1) ∼ Apeak(am). Hence, the indexes of abnormal
sub-signals are a1 ∼ am. According to these stored information (Isub, Tstart, Tend) of sub-signals
and the indexes a1 ∼ am, each abnormal sub-signal can be isolated. Figure 9 shows the isolated
abnormal sub-signals.

Figure 9. Time domain waveform of abnormal sub-signals isolated from the acoustic signal.
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In summary, in the absence of feature extraction and a diagnosis model, the model-free isolation
method can directly determine whether an acoustic signal is abnormal. Furthermore, the position
of each abnormal sub-signal in the acoustic signal can be obtained, which provides the basis
for the precise location of a leak. Figure 10 illustrates the detailed process of the model-free abnormal
acoustic signal isolation method.

Figure 10. Flow chart of the model-free abnormal acoustic signal isolation method.

4. Leak Location

The classic location equation is [30]:

xL =
1
2
(L + a∆t) (19)

where xL is the distance from the leak point to the upstream acoustic sensor; a is the velocity of acoustic
signals propagating inside the pipeline; L is the length between the upstream and downstream acoustic
sensors; and ∆t is the time difference of the upstream and downstream leak signals, which can
be calculated by Equations (20)–(22) and should satisfy Equation (23).

Rxy(∆n) = lim
N→+∞

1
N

N

∑
i=1

x(i)y(i + ∆n) (20)

Rxy(∆n0) = max Rxy(∆n) (21)

∆t = T × ∆n0 (22)

− 1
a
(L + |l|) ≤ ∆t ≤ 1

a
(L + |l|) (23)

where Rxy is the cross-correlation coefficient, ∆n is the delay points, ∆n0 is the delay points
corresponding to the maximum of the cross-correlation coefficient Rxy, N is the data length of a signal,
l is the allowable location error.

4.1. Analysis of the Influence of Operation Sub-Signals on Leak Location

Figure 11 shows the abnormal acoustic signals containing both leak and operation sub-signals.
When the whole signal is the object of cross-correlation analysis, the delay points are −665 (Figure 12).
According to the sampling period T =0.02 s, the time difference ∆t is −13.3 s; combined with the total
length of the pipeline L =15.6 km, the acoustic velocity a =1179 m/s and Equation (19), it locates
at −0.0404 km from the upstream. However, the leak occurred at 6 km away from the upstream.
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Due to the influence of operation sub-signals, the leak is missing. Therefore, it is necessary to filter out
operation sub-signals in an acoustic signal.

Figure 11. Abnormal signal example with leak and operation sub-signals.

Figure 12. Cross-correlation analysis of the abnormal signals.

4.2. Leak Location Based on Filtering Operation Sub-Signals

The upstream acoustic signal is denoted by x = [x(1), x(2), ..., x(k), ..., x(N)] and the downstream
is y = [y(1), y(2), ..., y(k), ..., y(N)]. Based on the model-free isolation method (Section 3), the abnormal
sub-signals of x and y can be isolated, they are denoted by (xsub(a1), xsub(a2), ..., xsub(ai), ..., xsub(amx))
and (ysub(b1), ysub(b2), ..., ysub(bj), ..., ysub(bmy)) and their number is mx and my, respectively.

Taking abnormal sub-signals as the object, the two-two cross-correlation analysis of the same
polarity abnormal sub-signals in the upstream and downstream signals is performed. When the
upstream abnormal sub-signal xsub(ai) and the downstream abnormal sub-signal ysub(bj) are analyzed
with cross-correlation calculation, in order to make data length consistent, the participating signals are:

Xi = {Xi(k)|k = 1, 2, ..., N} , Xi(k) =

{
x(k), k× T ∈ [Tstartx(ai), Tendx(ai)]

0, others
(24)
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Yj =
{

Yj(k)|k = 1, 2, ..., N
}

, Yj(k) =

{
y(k), k× T ∈ [Tstarty(bj), Tendy(bj)]

0, others
(25)

where ai, Tstartx(ai) and Tendx(ai) are the index, starting time and ending time of the abnormal
sub-signal xsub(ai) in the upstream acoustic signal x; bj, Tstarty(bj) and Tendy(bj) are of the abnormal
sub-signal ysub(bi) in the downstream acoustic signal y.

According to Equations (20) and (21), the delay points of the abnormal sub-signal Xi and Yj are
∆nij. The maximum and minimum time difference of an acoustic signal from upstream to downstream
are Tmax and Tmin, respectively.

Tmax =
1
a
(L + |l|), Tmin =

1
a
(L− |l|) (26)

Since the operation sub-signals are generated by upstream or downstream, under the condition
of ignoring the medium flow speed, if the time difference ∆tij satisfies Equation (27), the abnormal
sub-signal xsub(ai) and ysub(bj) are operation sub-signals.

Tmin ≤ |∆tij = ∆nij × T| ≤ Tmax (27)

Finally, filtering (xsub(ai) = 0, ysub(bj) = 0) these operation sub-signals, their influence on leak
location can be eliminated.

The upstream and downstream acoustic signals (Figure 11) are processed with the model-free isolation
method described in Section 3 and the isolated abnormal sub-signals are shown in Figure 13. Table 1 shows
the time difference of abnormal sub-signals. According to the pipeline length L = 15.6 km, the propagation
velocity a = 1179 m/s, the allowable location error l = ±200 m and Equation (26), the time difference ∆t of
operation sub-signals (Figure 13) should be in the range [13.06 s, 13.40 s]∪[−13.40 s,−13.06 s]. In Table 1,
there are three pair abnormal sub-signals ((xsub(a4), ysub(b4)), (xsub(a5), ysub(b5)) and (xsub(a6), ysub(b6)))
whose time difference is within the range. Therefore, they are operation sub-signals. After these operation
signals are filtered, the remaining abnormal sub-signals are shown in Figure 14.

Figure 13. Isolated abnormal sub-signals.
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Figure 14. Abnormal sub-signals after filtering operation sub-signals.

Table 1. Time difference results of cross-correlation analysis of abnormal sub-signals.

Up/Down ysub(b1)|+ ysub(b2)|− ysub(b3)|+ ysub(b4)|+ ysub(b5)|− ysub(b6)|+
xsub(a1)|+ −3.16 s -- × × -- ×
xsub(a2)|− -- −3.16 s -- -- × --
xsub(a3)|− -- 3.98 s -- -- × --
xsub(a4)|+ × -- 11.73 s −13.38 s -- ×
xsub(a5)|− -- × -- -- −13.36 s --
xsub(a6)|+ × -- × −7.82 s -- −13.14 s
xsub(a7)|+ × -- × 10.38 s -- 5.74 s

Symbol “+” represents that the polarity of a abnormal sub-signal is positive. Symbol “−” represents that the
polarity of a abnormal sub-signal is negative. Symbol “×” represents that time difference does not satisfy
Equation (23). Symbol “--” represents that abnormal sub-signals do not belong to the same polarity and
should not be subjected to the cross-correlation analysis.

The comparison of the cross-correlation analysis of the acoustic signals, before and after operation
sub-signals are filtered, is further plotted in Figure 15. As shown, after filtering operation sub-signals,
the delay points ∆n0 has changed from −665 to −158, the time difference ∆t becomes 3.16 s, the leak
location xL is 5.937 km and the location error is 63 m. Therefore, the accurate alarm for the leak
is achieved after filtering operation sub-signals.

Figure 15. Cross-correlation curves before and after filtering operation sub-signals.
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In summary, the combination of the model-free isolation method and the filtering operation
sub-signals method realizes accurate detection and location of a pipeline leak. The specific process
of leak location is shown in Figure 16.

Figure 16. Flow chart of the leak location method based on filtering operation sub-signals.

5. Experimental Results

The validity of the proposed method was verified with the historical data of a naphtha pipeline
and a crude oil pipeline, the specific parameters of which are given in Table 2. All leaks used in this
paper were artificially generated by the cooperative unit opening a valve and only the case of a single
leak is considered. On the naphtha pipeline, the cooperative unit carried out 15 leak experiments
on 20–21 November 2013, respectively. On the crude oil pipeline, there were 6 leaks on 27 March 2011;
because of the conveying process, these leak signals contain many operation sub-signals.

Table 2. Parameters of the naphtha and crude oil pipeline.

Parameters
Value/Unit

Naphtha Crude oil

Total length 15.511 km 15.600 km
Pipeline diameter 150 mm 250 mm
Pipeline thickness 6 mm unknown

Fluid density 0.76 g· cm−3 0.86 g· cm−3

Acoustic velocity 1055 m· s−1 1179 m· s−1

Upstream pressure 2.18 MPa 2.80 MPa
Downstream pressure 0.48 MPa 0.67 MPa

Leak point to upstream 9.476 km 6.000 km
Leak aperture <4 mm, 4 mm, <8 mm, 8 mm 4 mm

Pipeline material metal
Sampling frequency 50 Hz
Sampling precision 12 bit A/D
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5.1. Field Test

Based on the proposed leak detection method, Table 3 shows the leak location results before
and after operation sub-signals are filtered. For the naphtha pipeline, the locations are the same before
and after filtering operation sub-signals since the 15 leak signals do not contain operation sub-signals
and the maximum location is 41 m. For the crude oil pipeline, after filtering operation sub-signals,
the missing alarms change from 83.33% (5/6) to 0 and the maximum location error change from 636 m
to 160 m. Therefore, it demonstrates that the leak detection method, based on the model-free isolation
of abnormal signals and the filtering operation sub-signals, is valid.

Table 3. Location results before and after filtering operation sub-signals.

Pipeline Sample
Location (km)

Before After

Naphtha

1 9.496 9.496
2 9.444 9.444
3 9.496 9.496
4 9.512 9.512
5 9.507 9.507
6 9.496 9.496
7 9.444 9.444
8 9.475 9.475
9 9.438 9.438
10 9.444 9.444
11 9.475 9.475
12 9.517 9.517
13 9.465 9.465
14 9.517 9.517
15 9.507 9.507

Crude oil

1 −0.116 5.981
2 −0.152 5.957
3 −0.069 5.946
4 −0.042 5.934
5 5.364 5.840
6 −0.140 5.946

5.2. Comparison of Methods

Based on the historical data from the naphtha pipeline (20–21 November 2013) and the crude oil
pipeline (26–27 March 2011), the WPE-based leak detection [15] and SVDD-based leak diagnosis [14]
methods were compared with the method proposed in this paper. The comparisons were made
from three perspectives: (1) the running time of one complete diagnosis with the same operating
environment (Lenovo laptop of 8 GB memory and Matlab 2013a); (2) the number of false and missing
alarms; and (3) the largest location error. The parameters used in the WPE-based and SVDD-based
diagnosis modeling methods are implemented as follows:

• WPE. Wavelet basis function: Daubechies 1 wavelet (db 1); decomposition level: 5; window width:
100; sliding step length: 10.

• SVDD.Group number: 200; feature-frequency: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7; Gaussian kernel
function: σsvdd = 0.28.

The comparison results are given in Table 4. It can be observed that: (1) the proposed method
required the shortest running time to complete a diagnosis, had no missing and false alarms and had
the smallest location error; (2) for the naphtha pipeline, the SVDD-based method did not report
missing and false alarms but it had 1 false alarm and 5 missing alarms for the crude oil pipeline;
and (3) the WPE-based method had both false and missing alarms for the two pipelines.
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Table 4. Comparison of offline test between the model-free-based (proposed), support vector domain
description (SVDD)-based and WPE-based methods on the naphtha pipeline.

Pipeline Method Running
Time (s)

Number of Alarms Largest Location
Error (m)Leak False Missing

Naphtha
Model-free 0.041 15 0 0 41

SVDD 0.083 15 0 0 64
WPE 53.187 13 4 2 64

Crude oil
Model-free 0.041 6 0 0 160

SVDD 0.083 1 1 5 636
WPE 53.187 1 3 5 636

Based on the above, it can be concluded that the proposed method could achieve pipeline
leak detection without a diagnosis model compared to existing methods, reduced the running time,
improved location accuracy and did not produce missing alarms.

6. Conclusions

A pipeline leak detection and location method based on model-free abnormal acoustic signal
isolation is proposed in this paper. By decomposing the acoustic signal into sub-signals, the functional
relationship between a sub-signal SNR and the number of abnormal sub-signals was established.
The actual number m of abnormal sub-signals can be calculated according to the SNR increment
and the position of each abnormal sub-signal in the acoustic signal can be traced by its index.
Finally, based on the cross-correlation analysis, the precise location of leaks is achieved by filtering
operation sub-signals. The proposed method does not require feature extraction or a diagnosis model
and reduce the impact of operation sub-signals on leak location and the experimental results indicated
that the method does not produce any missing and false alarms as well as provides higher location
precision compared with other methods.
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