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Abstract: Biodiesel has been successfully commercialized in numerous countries. Glycerol, as
a byproduct in biodiesel production plant, has been explored recently for fuel additive production.
One of the most prospective fuel additives is solketal, which is produced from glycerol and acetone via
an acetalization reaction. This manuscript reviewed recent progress on heterogeneous catalysts used in
the exploratory stage of glycerol conversion to solketal. The effects of acidity strength, hydrophobicity,
confinement effect, and others are discussed to find the most critical parameters to design better
catalysts for solketal production. Among the heterogeneous catalysts, resins, hierarchical zeolites,
mesoporous silica materials, and clays have been explored as effective catalysts for acetalization of
glycerol. Challenges with each popular catalytic material are elaborated. Future works on glycerol
to solketal will be improved by considering the stability of the catalysts in the presence of water
as a byproduct. The presence of water and salt in the feed is certainly destructive to the activity
and the stability of the catalysts.

Keywords: fuel additives; biodiesel; glycerol; solketal; solid acid catalysts.

1. Introduction

The exploration of renewable energy to supplement limited fossil fuels in the next few years
is one the most concerned research topics. Among some renewable energy resources, biofuels are
receiving intensive attention, especially for some countries with a large production of vegetable oils
and bio-oils for biodiesel production [1–4]. Annual production and consumption of biodiesel is likely
to increase significantly in the coming few years. Numerous sources of abundant edible and potential
non-edible oils have been identified [5]. Regardless, this fact leads to increasing glycerol production as
the byproduct of biodiesel conversion [2]. Due to the chemical process of the biodiesel production,
the molar ratio of glycerol to the methyl ester is 3:1, or about 10% to 20% of the total volume of biodiesel
produced is made up of glycerol. The rapid growth of biodiesel production has contributed much to
the increasing glycerol production since it was reported that the worldwide production of glycerol
increased from 7.8 billion liters in 2006 to 36 billion liters in 2018 [6,7]. This fact revealed that glycerol
is an abundant renewable chemical feedstock in the world. The conversion of glycerol into more
valuable chemicals is the best option to create a new market for glycerol and improve the sustainability
of biodiesel production [7–14].
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This mini review paper aims to emphasize the potential exploration of catalytic materials
for the conversion of glycerol to solketal by analyzing recent papers, especially open literature
from after 2010. Rahmat et al. (2010) [15] wrote an overview of glycerol conversion to fuel
additives, with an emphasis on reaction parameters (catalyst, reactant, temperature, and reaction
time). In the range of 2009 to 2018, Cornejo et al. [16] wrote a review in 2017 on glycerol valorization
to fuel additives over different co-reactants. These included second feeds, such as formaldehyde,
acetaldehyde, butanal, and acetone, and many others. Nanda et al. [17] published a review on solketal
as a fuel additive, with an emphasis on the historical and future context. This paper also summarized
the effect of acidity, reactor models, kinetics and reactor kinetics, and the daily procedure to use glycerol
to solketal.

Many scenarios were conducted for the conversion of glycerol to different value-added chemicals,
such as propane-acrolein, 1, 3-diol, propane-1,2-diol, acetal or ketal, polyols and polyurethane foams,
glycerol carbonate, etc. [10,11,18]. Table 1 shows that among these glycerol conversions, the conversion
of glycerol to solketal by acetalization is an interesting route. Solketal is one of the glycerol acetalization
products together with glycerol acetal and glycerol formal (GlyF). Similar to other acetalization products,
solketal can be used directly as a fuel additive for the reduction of soot and gum formation [19].
Solketal addition to a gasoline blend showed better fuel properties with a higher octane number [19].
Other applications of solketal are in solvents, inks, pharmaceuticals, and paints [20].

Table 1. Different conversion routes from glycerol to value-added products.

Conversion Catalyst Results Ref

Etherification Li/clay Diglycerol isomer was also increased from 35% to 55% while
the selectivity to aa isomer was decreased from 65% to 35% [21]

Conversion glycerol
to allyl Alcohol

K/Al2O3-ZrO2-FeOX
Alkali metals supported

to ZrO2-FeOx

Improvement in conversion
With the increase of the K content in the catalyst, allyl

alcohol yield increased up to 27%-C
[22]

Allyl alcohol ZSM-5-supported iron
catalysts

The prepared catalyst performed better for allyl alcohol
production as compared to catalysts synthesized

by other methods
[23]

Conversion alcohol
to glycerol carbonate Mg3−xAl1Cux

Transesterification of glycerol to glycerol carbonate (GC)
increased to 96% of yields [24]

Acetalization glycerol
with acetone

MoPO supported
to SBA-15

A 40% MoPO/SBA-15 showed a conversion of 100%
and selectivity of 98% [25]

Acetalization of glycerol
with butanal

BEA zeolite with
the ratio Si/Al of 40

Showed conversion of 88% and selectivity 80% of five
member rings acetal (2-propyl-1,3-dioxolan-4-yl)methanol [26]

Glycerol etherification
with benzaldehyde Cationic acidic resin Achieving conversion of 93% and selectivity above 80% of

2-phenyl-1,3-di-oxan-5-ol [27]

Acetalization of glycerol
with mono-substitude

benzaldehyde
MoOx/TiO2-ZrO2 Glycerol conversion to 1,3-dioxolane (74%) within 30 min [28]

Acetalization of glycerol
with acetone

MoO3 and WO3
supported to SnO2

A 71% glycerol conversion and a 96% solketal selectivity
were achieved. [29]

As shown in Table 2 and Figure 1, different types of catalyst materials were reported for the solketal
production consisting of zeolites, clays, resins, heteropolyacids, and others. Each catalyst has both
advantages and drawbacks. A homogeneous catalyst, such as H2SO4, offers high activity, however,
these homogenous catalysts are corrosive, not recyclable, difficult to separate, and considerably more
expensive. Similarly, chloride, such as tin chloride (SnCl2), is also unwanted due to its corrosion
tendency [30]. Reusability is also an important part of studies. Reusability is a factor which is studied as
a typical sustainable principle. The basic mechanism of the metal salt catalysis is a nucleophilic attack
by the hydroxyl group of glycerol to the carbocation obtained from the protonation step, resulting in
the formation of the intermediate, followed by a water elimination step. The carbocation is produced
from the Lewis or Brønsted acid sites, which activates the ketone carbonyl group through a protonation
step (i.e., Brønsted acids) or polarization.

However, homogeneous catalysts are not considered as environmental-friendly for the reaction
system. Another challenge in the utilization of heterogeneous catalysts in solketal production is
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the byproduct (water) formed during the reaction, which induces a reversible reaction. Heterogeneous
catalysts are regenerated easily and are more easily handled. Many resin catalysts exhibited excellent
conversion of glycerol to solketal and selectivity, where the best catalytic performance was obtained by
amberlyst. However, it is not feasible for a higher scale of production due to the limitation of thermal
stability, so it is not easy to regenerate. The higher thermal stability can be found in hierarchical
zeolite. The highest conversion of glycerol to solketal of 72% and the selectivity of 72% are reached
by using H-Beta (BEA framework) under the condition of 60 ◦C, stirring at 700 rpm, 5% of catalyst,
and molar ratio of glycerol:acetone of 1:4 for H-BEA. Within the zeolite materials, MFI zeolite showed
80%, which is a lower catalytic activity in comparison with amberlyst, but with almost 100% selectivity.
The lower conversion is due to the relatively narrow channel size that affects the transport of the reactant
carried out and the shape selectivity.

Table 2. Classification of heterogeneous catalysts for solketal production.

Others Heteropolyacid Resin Meso-SiO2
Double Layer

Hydroxide and Clay Zeolites

Co/CNT Si-W (tungstosilisic) Amberlyst KIT-6 ZrO2 dolomite Zeolite X
Na-lignosulfonate HMQ-SJW Cat. Ex. Me-SBA-5J Nb, AlOx VnOx/FER MOR

SnF2 H3PW12040 Amberlyst-46 Hf-SBA-15 Nb oxy OH BEA
Ionic liquid Amberlyst-46 Mo-SBA-15 COK-S Hierarchical

Carbon KU-2-8 Sn TUD-1 MgLDH BEA, MOR
Lewatit GF101 Al-MCM-41 Montmorillonite ZSM-5 (MFI)

Sulfonic Ga-MCM-4 DeAl BEA
Amberlyst-35 Acidity BEA
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(Source: Web of Knowledge, https://www.webofknowledge.com, November 2018).

2. Glycerol-to-Solketal Over Resin Catalysts

Overall, the most important properties of solid acid catalysts for the conversion glycerol to solketal
production was the Brønsted acidity of solid acids [31]. The conversion of glycerol to solketal with resin
catalysts has been carried out [32–36]. Table 3 summarizes the conversion of glycerol to solketal over
resin catalysts. A typical resin catalyst (i.e., amberlyst) catalyzed the reaction of glycerol with acetone
to produce above 80% of the glycerol conversion. Guidi et al. [36] reported that a resin, amberlyst-36,
which was applied at different reaction temperatures from 25 to 70 ◦C, was an excellent catalyst to
convert glycerol with a conversion of 85% to 97% to solketal with a selectivity of 99%. The catalyst is
also active at lower pressures with similar reaction parameters either in pure glycerol or in an equimolar
reactant. According to some references, the high conversion was influenced not only by the surface
acidity but also by the resin structure. Moreover, the surface acidity was an important parameter that
played a crucial role in improving the selectivity and the conversion in the production of solketal.

https://www.webofknowledge.com
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Although amberlyst-46 and amberlyst-36 is a similar material, both types of resins have a different
acid capacity and structure morphology. Furthermore, all resins showed good selectivity to solketal
(>80%), and the important catalytic parameter of the resin to conversion glycerol is the acid capacity
(oversulfonated resin). With the highest acid capacity (sulfonic acid), these catalyst materials can
improve not only the selectivity to solketal production but also the conversion of raw glycerol to above
90%. Another important thing to be highlighted as a limitation of the catalyst activity is the presence
of NaCl as a poison for the surface acidity, which is possibly due to the impurities in glycerol.

Table 3. Glycerol-to-solketal over resin catalysts.

Source Catalyst Condition Conversion Selectivity
to Solketal Remark Ref

Glycerol
and Acetone Amberlyst-15 50 ◦C 92% 96% Glycerol:acetone = 1:2, 7.0 g of

amberlyst-15 in 96 min [32]

Glycerol
and Acetone Amberlyst-46 60 ◦C 84% 97% %1 (w/w) catalyst, 30 min [33]

Glycerol
and Acetone

Amberlyst
DPT-1 70 ◦C 97% 98% Glycerol:acetone = 1:2

at ambient pressure [34]

Glycerol
and Acetone

DT-851 sulfonic
acid resin 58 ◦C 95% 99%

Glycerol:acetone = 1:20, catalyst
DT-851 sulfonic acid resin dosage
is 5% (wt., calculated by glycerol),

reaction time is 2 h.

[35]

Glycerol
and acetone Amberlyst-36 25 ◦C 85%–97% 99%

At 10 barr and 25 ◦C, A36 was
a highly active catalyst allowing

good-to-excellent conversion
(85%–97%) and selectivity (99%)
when either pure or wet glycerol

was used as a reagent.

[36]

Note: glycerol to the second reactant ratio was presented as molar ratio.

3. Glycerol-to-Solketal over Mesoporous Silica

Koranyi et al. [37] reported the superiority of hafnium and zirconium modified TUD-1 as superior
catalysts for the conversion of glycerol to solketal. These two catalysts (Hf-TUD-1 and Zr-TUD-1)
were more active than Sn-MCM-41 and Al-TUD-1. The Zr and Hf-TUD-1 are examples of active
metal-modified mesoporous silica in which Hf and Zr are in the framework. Their activity was higher
than FAU(USY) and Al(TUD-1). The highest conversion of glycerol to solketal was more than 50%.
The catalytic activity was a function of (i) the number of acid sites, (ii) the presence of mesopores,
(iii) the existence of a large surface area, and (iv) the hydrophobicity of the catalyst [38]. The later,
the hydrophobicity of the catalyst, was crucial to prevent the hydrolysis of solketal [37–41]. According to
Table 4, Cs 2.5/KIT-6 catalyst was one of the best catalysts for the conversion of glycero-to-solketal [42].
KIT-6 was selected because of its large surface area (600–1000 m2/g), active sites, and accessible
pores [42].

Numerous references reported that mesoporous silica catalysts have the advantage of high
stability in the conversion of glycerol to solketal, resulting in products with a relatively large percentage
of conversion (95%) and selectivity to solketal (98%) [37,42–46]. The mesoporous structure with
an activated surface by sulfonic acid might be applied efficiently for the conversion of glycerol to fuel
additive [37,43,47]. A sulfonic acid-functionalized mesoporous polymer (MP-SO3H) contains a high
acidity surface (1.88 mmol/g). The surface acidity of catalytic materials can accelerate the formation
products of solketal via ketalization reactions as shown in Figure 2.
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Table 4. Glycerol-to-solketal over mesoporous silica.

Source Catalyst Condition Conversion Selectivity
to Solketal Remark Ref

Glycerol
and Acetone Cs 2.5/KIT-6 25 ◦C 95% in 15 min 98% Glycerol:acetone = 1:6, catalyst

loading was 5 wt.%. [42]

Glycerol and
formaldehyde

Propylsulfonic Acid
Functionalized

SBA-15 Mesoporous
Silica

90 ◦C 91.5 in 8 h 98% Glycerol:formaldehyde = 1:1.5
with 4 wt.% catalyst loading [43]

Glycerol
and Acetone

arenesulfonic
acid-functionalized

silica
70 ◦C 84% in 30 min 81% Glycerol:acetone = 1:6 [44]

methyl acetate
to glycerol

Sulfonic
acid-functionalized

mesostructured
SBA-15 silicas

170 ◦C 99.5% in 4 h 74.2%
Glycerol:methyl acetate = 1:50
and catalyst loading (7.5 wt.%

based on glycerol)
[45]

Glycerol
and acetone

A sulfonic
acid-functionalized

mesoporous
polymer (MP-SO3H)

30 ◦C 94% 98.5%
The MP-SO3H catalyst performed

better than other conventional
solid acid catalysts

[46]

Glycerol
and acetone Zr-TUD-1 80 ◦C 64%

Glycerol:acetone = 1:2, 25 mg of
catalyst, at room temperature,

for 6 h.
[37]

Glycerol
and acetone Hf-TUD-1 80 ◦C 65%

Glycerol:acetone = 1:2, 25 mg of
catalyst, at room temperature,

for 6 h.
[37]

Note: glycerol to the second reactant ratio was presented as molar ratio.
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4. Ketalization of Glycerol over Clay Minerals

Malaya et al. [17,48] studied different clay-based catalysts with different acid strengths ranging
from 0.12 to 5.7 meq/g [17]. The results show that a stronger acidity improved the conversion of
glycerol up to ca. 80%. As shown in Table 5, solketal production from glycerol used two different
sources, namely acetone or formaldehyde over solid acid catalysts [49–52]. Based on the conversion of
glycerol and selectivity to solketal, the clay catalyst which showed the optimum results was reported
by Timofeeva et al. in a batch reactor with activated catalyst by nitric acid of 0.5 M [53]. In the activated
K10 montmorillonite by acid solution, this impact causes an increasing rate of reaction with the acid
site of the material. It is well-known that the acid activation of natural montmorillonite with nitric
acid can change the structure of montmorillonite (leaching of Al3+ cations from the octahedral to
increase the surface area and microporosity of catalyst materials) [54–56]. The reaction of solketal
production is shown in Figure 3. The use of formaldehyde as the major source of solketal production
has a lower conversion value (only 83% glycerol conversion), with the K10 montmorillonite used as
a catalyst. It may be due to the formation of the hemiacetal or hemicetal via two different pathways.
The reaction between glycerol and acetone is preferred as it produces a more stable intermediate,
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hemicetal compound, with a tertiary carbenium ion [37]. While, in the reaction between glycerol with
formaldehyde, the produced hemiacetal formation is not a stable carbenium ion. Thus, the conversion
value for the glycerol-formaldehyde system is relatively small as compared to the reaction where
acetone is used as a co-reactant [57–59].

Table 5. Glycerol-to-solketal over clay minerals.

Source Catalyst Condition Conversion Selectivity
to Solketal Remark Ref

Glycerol
and acetone

Montmorilonite
modified by

HNO3

T = 25 ◦C 94% 95.4% Glycerol:acetone = 1:4, 10 mg of
catalyst, time at 10 min [53]

Glycerol and
benzaldehyde

K10
Montmorillonite T = 40 ◦C 83% 99% Glycerol:benzaldehyde dimethyl

acetal = 1:1.1 at 6 h. [17]

Glycerol
and acetone K10 clays T = 30 ◦C 87% 85%

Glycerol:acetone = 1:6,
catalyst loading was 3 wt.% of total

reactant weight, time at 120 min
[60]

Glycerol and
formaldehyde

K10
Montmorillonite T = 70 ◦C 80% - Glycerol: formaldehyde = 1:1.2 [61]

Glycerol
and acetone

K10
Montmorillonite T = 40 ◦C 69% 68%

Glycerol:acetone = 2:6, P=600 psi,
The amount of catalyst in each run

was determined by the selected
weight hourly space velocity

(WHSV) at 4 h−1

[48]

Note: glycerol to the second reactant ratio was presented as a molar ratio.
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Koranyi et al. (2012) [37] reported the effect of water as an impurity in the acetalization of glycerol.
The presence of water reduced the activity ca. 50% lower than the one with the model compound
(pure glycerol). A high number of Brønsted and Lewis sites does not correspond directly to a high
activity. Dealumination FAU and Al-TUD-1 with a high Brønsted and Lewis acidity were poor in
the acetalization of glycerol [37]. Hydrophobic catalysts, such as hafnium and TUD-1 zirconium on
TUD-1, are very prospective for glycerol to solketal. Ammaji et al. (2017) [62] also reported a similar
observation, as the Zr-SBA-15 was the most active and selective catalyst.

5. Perspective on Ketalization of Glycerol over Hierarchical Zeolites

Dmitriev et al. (2016) [63] reported that zeolite beta was the most active solid acid catalyst
as compared to amberlist-35 and cation-exchange resin (KU-2-8) [62]. The zeolite beta applied
was a commercial one from zeolyst with SiO2/Al2O3 of 25 and a zeolite beta made by Angarsk.
Kowalska et al. [64,65] studied the effect of (i) different zeolite topologies (MFI, BEA, and MOR),
(ii) Si/Al ratio from 9.2 to 25.8, and (iii) mesoporosity. Two parent MFI zeolites with different Si/Al
were applied (Si/Al = 12 and Si/Al = 27) [64]. The hierarchical zeolites were obtained by desilication
using 0.2 M NaOH and dealumination using citric acid (0.5 M) and nitric acid (0.5 M). The diffusion
limitation of the parent zeolites was considered as the highest activity of the parent MFI was significantly
lower than the one from the hierarchical MFI. A high selectivity (up to 100%) to solketal was obtained
with an acetone:glycerol ratio of 1. A higher acetone to glycerol ratio was obtained over a higher acetone
to glycerol ratio. Both desilication and dealumination are very effective in improving the catalyst
stability of zeolite based catalyst [66–68].
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Rossa et al. [69] conducted the kinetics study of acetalization of glycerol with acetone to produce
solketal with optimization of the kinetics parameters. Zeolite beta with an Si/Al of 19 was applied
to find the best parameters: (i) External mass transfer (stirring rate), (ii) temperature, (iii) catalyst
amount, and (iv) glycerol to acetone ratio. The targeted goals were glycerol conversion and solketal
selectivity. The experimental design for beta zeolite showed that the suggested reaction parameters
are: Temperature at 60 ◦C, stirring rate of 700 rpm, catalyst loading of 5%, and glycerol to acetone ratio
of 1:3. A higher acetone content will increase the conversion of glycerol [24,70]. However, an increase
of the acetone to glycerol ratio will increase the exergy destruction rate due to a reduction in the rate
of formation toward the product and a higher consumption of electrical exergy to the acetalization
reactor [20,71–80].

Hierarchical zeolite shows excellent glycerol conversion and selectivity to solketal through
acetalization reactions. The catalytic materials show a higher glycerol conversion (until more than
an 80% glycerol conversion) as compared to other porous and non-porous catalysts due to a large pore
size and easy molecular diffusivity. The enhancement of the catalytic activity of zeolites in glycerol
acetalization, through the generation of a hierarchical porosity, has been applied by different authors
as shown in Table 6. Based on the literature, the crystallite size was one of the most determining
factors in the activity of hierarchical zeolite as a catalyst [64,81–85]. The smaller the crystal size
of zeolite, the easier the diffusion of the reactant and products though the zeolite pores [73,86,87].
The pore structure of the zeolite can be changed through the dealumination and desilication processes.
The process not only can change the mesopore materials but also can increase the catalytic activity
(improving the accessibility and mass transfer on the surface) [88]. Hierarchical zeolites with different
topologies, such as ZSM-5 (MFI) [67,89,90], beta (BEA) [81,91,92], and Y (FAU) [64], have also been
used in the acetalization of glycerol, and the results show that smaller pores can produce high glycerol
conversion and selectivity to selectivity (almost 100% selective for solketal formation). However,
overall, all materials displayed very good catalytic performance when reacting equimolar mixtures of
glycerol and acetone [37,39]. From the experiments on H-beta zeolite, it was found that dealumination
resulted in a decrease of strong acid sites, thus decreasing the catalytic activity.

Table 6. Glycerol-to-solketal over hierarchical zeolite catalysts.

Source Catalyst Condition Conversion Selectivity
to Solketal Remark Ref

Glycerol
and acetone

hierarchical
(micro-mesoporous)

MFI zeolites
(pore diameter
0.51–0.55 nm)

T = 70 ◦C 80% 100%
Glycerol:acetone = 1:1, catalyst in

the amount of 1% related
to glycerol.

[64]

Glycerol
and acetone H-B-1 zeolites T = 28 ◦C

(room temperature) 86% 98.5%
Glycerol:acetone = 1:2, catalyst

amount = 5 wt.% referred to
glycerol in 1 h.

[73]

Glycerol
and acetone

Dealumination of
BEA Zeolites T = 30 ◦C 80% 100% Glycerol:acetone = 1:1, t = 30 min,

catalyst loading was 0.5 g [72]

Glycerol
and acetone

H-Zeolite (pore size
4.10 nm) T = 70 ◦C 75% 92% Glycerol:acetone = 1:3 were used

with 0.05 g of catalyst for 2 h [65]

Glycerol
and acetone H-BEA Zeolite T = 60 ◦C 70% 97.9%

Glycerol:acetone = 1:4, catalyst
amount was loading at 5 wt.%

for 1 h.
[69]

6. Solketal Synthesis over Carbon/Activated Carbon-Based Catalyst

Considering the abundant source of biomass as carbon and activated-carbon precursor, activated
carbons were functionalized with acid groups for solketal synthesis [93,94]. Some papers showed
the excellent performance of activated carbon for catalyzing the conversion of glycerol to solketal
(Table 7) and some of these exhibited a high activity and selectivity under green conditions (solvent-free
conditions at a mild temperature). The high surface area of activated carbon preserves the higher
surface acid sites by some modification, including acid, metal, and composite modifications [24,95–97].
Therefore, they are promising candidates as heterogeneous catalysts for the acetalization of acetone with
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glycerol. From the utilization of acid functionalized activated carbon, the superior catalytic activity of
the four acid-treated carbons was underlined as compared to the untreated activated carbon, confirming
the importance of the higher number and strength of acid sites generated by the acid treatments.
The catalysts were prepared by HNO3 and H2SO4 treatment to activated carbon. The catalytic
activity of the catalyst showed excellent performance due to the high conversion and selectivity
at room temperature.

Table 7. Glycerol-to-solketal over carbon/activated carbon-based catalyst.

Source Catalyst Condition Conversion Selectivity
to Solketal Remark Ref

acetone
and glycerol

acid
functionalized

activated carbon

Room
temperature,

glycerol to acetone
molar ratio of 1:4

97% 96%

The highest number and strength
of acid sites generated by the acid
treatments onto activated carbon
gave better yield and selectivity

[39]

glycerol with
benzaldehyde at Graphene 100 ◦C and 120 ◦C 97%

Graphene catalyst produced 76%
yield at 100 ◦C and 85% yield

at 120 ◦C, selectivity 100%
[98]

acetone
and glycerol

sulfonated
carbon-silica-meso

composite
materials

acetone
and glycerol

molar ratio of 1:6,
re- fluxed at 70 ◦C

82% 99% [99]

acetone
and glycerol

acidic
carbon-based

catalysts
80% 95% [93]

acetone
and glycerol

Ni-Zr supported
on mesoporous

activated carbon

Room
Temperature

glycerol/acetone
ratio of 1:10

75% 100%
Conversion and selectivity are

affected by glycerol/acetone ratio
and temperature

[100]

From the acid-modified carbon catalyst, it was found that the presence of acid groups, mainly
sulfonic groups, was the key factor for the improved catalytic performance. A similar pattern also
appeared from the Ni-Zr support on the activated carbon [100], in which the active metal contributes
by enhancing the catalyst acidity. Another factor affecting the catalytic activity was the higher total
acid density, the large mesopore of the carbon structure, and the activity of the metals.

7. Perspective and Conclusions

This mini review highlighted the recent development on solid catalysts for the conversion of
glycerol-to-solketal. The product is an additive for fuels, which are very useful to reduce GHGs
and to improve the economic viability of biodiesel business [6,8,16,20,34,101–105]. Tailor-made
heterogeneous catalyst for an optimal conversion of glycerol is developed and required. Five major
heterogeneous catalysts were emphasized in this study: Resins, mesoporous silica, zeolites, clays,
and activated carbons. The stability of catalysts is one of the main hurdles for the commercialization
of glycerol to solketal. Even though the reaction temperature was considered as mild, the stability
of most of the solid catalysts decayed in the presence of water as a byproduct and other impurities
(NaCl, methanol) from the glycerol source. The deactivation rate is even higher when the raw glycerol
(contaminated with water) was fed to the reactor [106–109]. Therefore, the viability of the commercial
plant depends on (i) the source of feeds [110], (ii) availability of glycerol and other feeds, and (iii) cost
of glycerol as the feed. In general, at least three main challenges were identified:

a. The presence of water and impurities in the feed.
b. The shift from the batch reactor to the fixed bed reactor.
c. The presence of equilibrium offers other difficulties as higher acetone demand is expected.

However, higher acetone to glycerol will lead to destructive instruments.

Acidity is agreed as an important properties of zeolite catalysts for glycerol to solketal.
Strong acidity and medium hydrophobicity were expected in the design of the reactor. Based on
some limitations of the catalyst performance, the utilization of raw glycerol directly will reduce
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the stability of the catalyst. This review described how a better material should be designed for
the optimum conversion of glycerol (and generally polyol) to solketal. Hydrophobic catalysts, such as
hafnium/TUD-1 and zirconium/TUD-1, are very prospective for glycerol to solketal. Extended works
on low aluminum mesoporous silica materials are expected in the coming years.
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