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Abstract: The precondition of well testing interpretation is to determine the appropriate well
testing model. In numerous attempts in the past, automatic classification and identification of well
testing plots have been limited to fully connected neural networks (FCNN). Compared with FCNN,
the convolutional neural network (CNN) has a better performance in the domain of image recognition.
Utilizing the newly proposed CNN, we develop a new automatic identification approach to evaluate
the type of well testing curves. The field data in tight reservoirs such as the Ordos Basin exhibit various
well test models. With those models, the corresponding well test curves are chosen as training samples.
One-hot encoding, Xavier normal initialization, regularization technique, and Adam algorithm are
combined to optimize the established model. The evaluation results show that the CNN has a better
result when the ReLU function is used. For the learning rate and dropout rate, the optimized values
respectively are 0.005 and 0.4. Meanwhile, when the number of training samples was greater than
2000, the performance of the established CNN tended to be stable. Compared with the FCNN of
similar structure, the CNN is more suitable for classification of well testing plots. What is more, the
practical application shows that the CNN can successfully classify 21 of the 25 cases.

Keywords: convolutional neural network; well testing; tight reservoirs; pressure derivative;
automatic classification

1. Introduction

Well testing generally has two major categories: Transient rate analysis and transient pressure
analysis. For the transient pressure analysis, its main purpose is to identify the type of target reservoir
and further quantitatively determine the reservoir properties. Muskat [1] first proposed a method of
estimating the initial reservoir pressure and parameters using a buildup test plot. Due to the fact that
compressibility of the formation fluid is difficult to study, this method only can qualitatively analyze
the results. Van Everdingen and Hurst [2] used the Laplace integral method to obtain the analytical
solution of the transient diffusion equation, which gives the mathematical theoretical basis of well
testing. Based on this truth, Horner et al. [3] developed a classic “semi-log” analysis method, which
can determine the permeability, skin factor, productivity index, and other parameters. These methods
make full use of the mid and late period data in well testing, but a common disadvantage is that the
early data of the well testing is ignored.

In order to make reasonable use of the early data in well testing, Ramey et al. [4] first proposed
a “plate analysis method” of the log–log type plot. Further, Gringarten et al. [5] extended this
method to various well test models such as the dual-porosity model and fractured well model, and a
combination of different parameters were used to greatly reduce the difficulty in curve classification
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and interpretation, which indicated that the well testing interpretation was widely used around the
world. Bourdet et al. [6] found that different types of reservoirs had distinct responses in the pressure
derivative curve, so the pressure derivative curve was introduced into the “plate analysis method”.
Compared to the pressure dynamic, the application of the pressure derivative curve makes the
classification of reservoir types, and the overall curve fitting, easier. Therefore, the pressure derivative
plot is the most critical part of the large-scale application of well testing interpretation methods.

Recently, with the advancement in machine learning technology and the vast datasets in the
petroleum industry, the broad prospects of machine learning technology in the petroleum industry have
gradually been proven, and it has been applied to different aspects of the petroleum industry [7–13].

Awoleke et al. [12] combined self-organizing maps, the k-means algorithm, the competitive-
learning-based network (CLN), and the feed-forward neural network (FFNN) to predict the well water
production in Barnett shale. The expected misclassification error was about 10% for CLN and the
average prediction error was between 10% and 26% for FFNN, which depended on the quality of the
training data set.

Akbilgic et al. [14] used a neural network-based model to predict the steam-to-oil ratio in oil sands
reservoirs. Porosity, permeability, oil saturation, reservoir depth, and thickness characterized by well
logging and core data were used as data sets for the models.

With deep neural networks (DNNs), Wang et al. [11] used production data from 2919 wells in
Bakken shale reservoirs to forecast well productivity. Results show that the predicted oil production of
DNNs for both six months and 18 months was acceptable and the average proppant placed per stage
was the most important factor in affecting productivity.

In numerous research studies about machine learning in the petroleum industry, Al-Kaabi and
Lee [15] firstly used a three-layer FCNN to determine the well test interpretation model. In their work,
the pressure derivative and corresponding time were entered into the FCNN with 60 input nodes.
Additionally, different well test models were exported, and the accuracy of the prediction was verified
by two field examples. This meaningful work demonstrates meaningful guidelines for later work
on well test plot identification by neural networks. Following that, a series of researchers [16–18]
utilized a more complex network structure and data set to optimize FCNN’s recognition result of well
testing curves.

Although a large number of scholars have done some meaningful research, due to the previous
limitations of CPU performance and mathematical theory basis, there are also several shortcomings
as follows: (a) The number of training samples and input nodes in present neural network models
are relatively insufficient, which greatly restricts the generalization ability of neural network models.
(b) There is no corresponding method to overcome the over-fitting and local minimum problem, which
is the phenomenon that exists widely in the fitting process of neural network models. (c) Almost all
the current research is limited to the FCNN, and the newly proposed CNN has not been considered
in research.

Nowadays, CNN is one of the most popular methods in the field of machine learning. Compared
with FCNN, the CNN has a better performance in the domain of image recognition [19–22]. Since the
different forms of pressure derivative curves represent various reservoir types, flow regimes, and outer
boundary properties, in this paper, an automatic classification method of well testing curves is proposed
based on CNN. By summarizing the buildup test data in low permeability reservoirs, the vertically
fractured well model, dual-porosity model, and radial composite model were selected as the base
model, which were used to generate 2500 theoretical curves of five different types. To overcome the
problem of overfitting and local minimum, the regularization technique, Adam optimization algorithm,
ReLU activation function, and mini batch technique were used to optimize the established CNN.
The model input nodes were 488, which ensured that the information of the curve is completely input.
Further, we compared the training performance of CNN and FCNN. The analysis of confusion matrix
showed that the Score for CNN and FCNN on the validation set were 0.91 and 0.81 respectively, which
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means that the CNN had a better prediction result than FCNN. Finally, 25 buildup test curves from
Ordos Basin were used to verify the generalization ability of the CNN noted above.

2. Background

The Ordos Basin is the second largest sedimentary basin in China and it contains abundant oil
and gas reserves. In terms of geology, the Ordos Basin is a large-scale multicycle craton basin with
simple tectonics, which is made up of the Yimeng uplift, Weibei uplift, the Western margin thrust belt,
the Tianhuan depression, and the Jinxi flexture belt [23,24]. This Basin is a typical low-permeability
formation with an average permeability of less than 1 mD. Except for the Chang 6 reservoir with
developed horizontal bedding [25,26], the horizontal stress in most areas of the basin is greater than
the vertical stress, which means that the fractures generated by hydraulic fracturing are mainly vertical
fractures [27–30].

3. Theory

3.1. Concept of CNN

Traditional neural networks (like the FCNNs) use the matrix multiplication to describe the
connection between input nodes and output nodes. Wherein, each individual weight of the weights
matrix describes the interaction between an input unit and an output unit. For traditional neural
networks, when the number of input nodes is quite large, the number of weights will also become very
huge, and the training efficiency will drop drastically. To address this issue, the convolution method
of reducing the number of weights is needed to reduce training costs. The two main advantages of
the convolution method are weight sharing and sparse connections, which effectively improve the
situation. The calculation process of convolution method is shown in Figure 1. The filter contains the
weights to be optimized, and the forward propagation process of the filter is a process of calculating
the output data by using the inner product matrix multiplication between the weights in the filter and
the input data. In a CNN, the filter weights used by each convolutional layer (CONV layer) are the
same. The sharing of filter weights can make image content unaffected by local feature and reduce the
number of weights. Then, the data are convolved and output through the activation function.
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Figure 1. Schematic diagram of convolution in convolutional neural network (CNN) (the elements in
the matrix represent the pixel values of the input data and weights).

In addition to the CONV layer, the network often uses a pooling layer, which can adjust the output
structure of the layer and reduce the size of the model. With the pooling layer, the calculation speed
and the robustness of the model are improved. The pooling layer usually includes a max-pooling layer
and an average-pooling layer, as shown in Figure 2, which is used to output the maximum value and
the average value in the filter area. So, no weights exist in the filter of pooling layer.
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Figure 2. Schematic diagram of pooling layer calculation process (a) max-pooling layer (b)
average-pooling layer (the elements in the matrix are various pixels).

To achieve different test tasks, different layers need to be connected to form a CNN. The AlexNet
is a typical CNN proposed by Krizhevsky et al. [31], which has a simple model structure but accurate
image recognition rate. The AlexNet fully demonstrates the superior performance of CNN in dealing
with complex data. As shown in Figure 3, the structure of AlexNet is 8 layers with weights, including
5 layers of CONV layers and 3 layers of fully connected layers (FC layers). Three max-pooling layers
are utilized to adjust the output shape. Additionally, to reduce the dimension of curve probabilistic
prediction data, a flatten method is used before the FC layer. Finally, the FC layers are used to achieve
the data dimensional reduction and output the final results. In the calculation process of FC layers,
the softmax function is usually chosen to calculate the probability of the data after dimension reduction.
The picture with the highest probability is the final result of CNN. Equation (1) gives the mathematical
expression of the softmax function.

so f tmax(l) =
eal

c∑
k=1

eak

(1)

where al is the output value of the lth node of the output layer, c is the total number of sample classes.
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3.2. Model of CNN

3.2.1. Sample Obtaining

The type curve of well testing is the log–log plot, which is based on the analysis of the time,
pressure, and its derivative in the log–log coordinates. The reservoir types are determined by different
shapes of the curve, and they are very critical to well testing interpretation results. Due to the
non-uniqueness in interpretation results, it is difficult to quickly and accurately determine the reservoir
type corresponding to a large amount of interpretation data. Automatic identification of well test curve
types based on CNN can significantly reduce the workload of identification, and it provides a reliable
basis for accurate parameter inversion.

Production wells in unconventional reservoirs represented by the Ordos Basin are generally
hydraulically fractured, so the vertically fractured model is one of the commonly used well test
interpretation models in unconventional reservoirs. At the same time, due to hydraulic fracturing,
the natural fractures in the formation are activated, and the resulting considerable amounts of buildup
test data of Ordos basins are characterized by a dual-porosity model. On the other hand, large-scale
hydraulic fracturing significantly improves the permeability of the near-well region, which means
that the radial composite model is also used as the reservoir model for well test interpretation in
unconventional reservoirs. The mathematic expressions of the above well testing models are given
in the Appendices B–D. With these mathematic expressions, Figure 4 shows that the typical well test
curves for the above models can be roughly divided into the following categories. In the same reservoir
conditions, there is no doubt that the radial composite model with mobility ratio >1 and dispersion
ratio >1 in the five well test models has the greatest productivity. The reason is that this model assumes
that the area around the production well has been adequately stimulated by the hydraulic fracturing,
so an inner zone of high permeability is formed around the production well, which contributes to the
largest productivity.

In this paper, the training set included 2725 well test curves for five well test models, and 25 field
buildup test cases were used to evaluate the generalization ability of CNN. The pressure derivative-time
curve data for each training sample was used for classification. There were 545 curves of each well test
model type and Table 1 shows the range of corresponding parameters for five well test models.
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Figure 4. The typical well test curves for models used in this work. (a) Infinite-conductivity vertically
fractured model without skin factor (Model 1); (b) infinite-conductivity vertically fractured model
with skin factor (Model 2); (c) dual-porosity model with pseudo-steady state (Model 3); (d) radial
composite model with mobility ratio >1 and dispersion ratio >1 (Model 4); (e) radial composite model
with mobility ratio <1 and dispersion ratio >1 (Model 5).

Table 1. The range of model parameters of various well test models in this paper.

Model 1 2 3 4 5

Wellbore storage coefficient (m3/MPa) 0–0.25 0–0.25 0–0.25 0–0.25 0–0.25
Skin factor 0–0.05 0.05–2 0–1 0–1 0–1

Fracture half length (m) 20–80 20–80 / / /
Initial pressure (MPa) 15–35 15–35 15–35 15–35 15–35

Permeability (mD) 0.10–50 0.10–50 0.10–50 0.10–50 0.10–50
Thickness (m) 9.14 9.14 9.14 9.14 9.14

Porosity 0.10 0.10 0.10 0.10 0.10
Omega / / 0.01–0.60 / /

lambda / / 10−6–10−9 / /
Mobility ratio / / / 1–20 0–1

Dispersion ratio / / / 1–20 0–1
Composite radius (m) / / / 10–200 10–200
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Before training, improving, and evaluating the CNN model for well test plots, it was necessary to
divide the training data sets into training set, validation set, and test set. Their quantities respectively
accounted for 90.909%, 8.182%, and 0.909% of the total number of samples. The primary role of the
validation set was to compare the performance of different neural network models. The test set was
used to verify the generalization ability of the model based on the mine data. The validation set and
test set were not involved in the training process of the network. The first time they were entered
into the network was in the process of network verification. In total, 2500 of the theoretical curves
were determined as training sets, and the remaining 225 curves were chosen as the validation set.
Additionally, 25 field buildup test cases from the Ordos Basin were used as a test set. Figure 5 is a
schematic diagram of training data partition.
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3.2.2. Structure of Neural Network Model

The neural network model has strong ability of nonlinear representation, as its basic unit is a
neuron. Through the design of different numbers of neurons and different layers, various mapping
relations can be characterized.

Model Building of CNN

The CNN constructed in this paper was a five-layer deep network with weights, in which three
layers were CONV layers and two layers were FC layers, as shown in the Figure 6. There was also
the max-pooling layer and average-pooling layer between various CONV layers, which was used
to compress the input data and reduce overfitting problem. Table 2 shows the number of network
weights in the different layers and the total number of weights was 76,583. In order to minimize
the weights number of CNN, the input layer of the CNN was the data point of pressure derivative
time plot, rather than the curve picture. Since the input data point of pressure derivative time curve
was one-dimensional data with respect to time, we used the layers containing one-dimensional (1D)
filter, including CONV1D, max-pooling1D. Layers containing two-dimensional (2D) filters (such as
CONV2D, max-pooling2D, and average-pooling2D) were used to transform 1D data into 2D data
needed for convolutional calculations. In the final layer, flatten method and softmax activation function
were used to output the result of CNN.
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Table 2. The layer shape and weights number of CNN.

Layer Layer Shape (Output Shape) Weights Number

Input (2,244) 0
Conv1D (38,80) 418

Max-Pooling1D (38,38) 0
Conv2D (17,17,64) 1664

Max-Pooling2D (5,5,64) 0
Conv2D (2,2,128) 73856

Average-Pooling2D (1,1,128) 0
Flatten 128 0

FC (Output) 5 645Energies 2019, 12, x FOR PEER REVIEW 9 of 27 
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Model Building of FCNN

In contrast, a FCNN was established, which had a similar number of weights as CNN. The input
layer, hidden layer, and output layer for FCNN had 488, 106, and 5 neurons respectively. Figure 7
shows that the input layer consisted of 488 nodes that accepted the 244 data points (t, dP). Table 3
demonstrates that the FCNN had a total of 76,575 weights.Energies 2019, 12, x FOR PEER REVIEW 10 of 27 
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Table 3. The layer shape and weights number of FCNN.

Layer Layer Shape (Output Shape) Weights Number

Input 488 0
FC 106 75,795

FC (Output) 5 780

Evaluation Results for the CNN and FCNN

During the training process of the FCNN and CNN, the maximum value of the output corresponded
to the type of curves being predicted, which was recorded as ŷ. In order to optimize the weights
in models, the cross-entropy function values of the predicted and the theoretical curve type were
calculated. As shown in Equation (2), the cross-entropy function is usually recorded as the loss function
L. When the loss function value is the smallest, the ratio of the number of accurately predicted training
samples to the total number of samples (called accuracy) is the largest, which means that the network
model has the highest performance.

L(ŷ, y) = −
m∑

i=1

yi log ŷi (2)

where yi the type of the ith training samples, ŷi is the probability of ith training samples, and m is the
number of training samples. In order to obtain a robust and fast CNN, the newly proposed one-hot
encoding, Xavier normal initialized model, ReLU activation function, L2 regularization method, Adam
optimization algorithm, and mini batch technique were combined to further construct the CNN.

3.2.3. One-Hot Encoding

In the training tasks of machine learning, the variety of sources of training data led to more
complex data types. The training data can be roughly divided into type data and numerical data.
The training process of the neural network model was performed on the basis of numerical data.
Therefore, in the classification task, the type data needed to be converted into numerical data and were
further used to train the neural network model. The one-hot encoding method is a commonly used
method of encoding type data into numerical data, which encodes the type data into a binary vector
with at most one valid value. As shown in Table 4, each column represents each category in the training
sample data and the unit containing “1” represents the category to which the sample data belongs.

Table 4. The schematic diagram of one-hot encoding.

Class1 Class2 Class3 Class4 Class5

Sample1 0 1 0 0 0
Sample2 1 0 0 0 0
Sample3 0 0 1 0 0

. . . . . . . . . . . . .
Sample2724 0 0 1 0 0
Sample2725 0 0 0 0 1

3.2.4. Determination of Model Initialization

During the training process of the neural network model, proper initialization of the weights
was essential to establish a robust neural network model. The proper initialization of the weights
will cause the weights to be distributed over a reasonable range. If the initial weight value is small,
the effective information in the backpropagation process will be ignored and the training process
of neural network model maybe invalidated. When the initial weight values are large, the weight
fluctuations in the backpropagation process will increase, which may lead to the instability or even
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collapse of the model. The commonly used initialization methods of neural network model include
four categories and they are as follows: (1) Randomnormal method; (2) Randomuniform; (3) Xavier
normal; (4) Xavier uniform [32]. In this work, we compared the effects of four initialization methods
on the training results. After 100 iterations of the model, the Xavier normal initialized model had the
highest accuracy in the training set and the validation set (Figure 8).
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3.2.5. Selection of Activation Functions

The activation function of the neural network has a significant impact on the prediction effect
of the model. When no activation function is used (i.e., f (x) = x), the input of each node is a linear
function of the output result of the node in upper layer. In this case, regardless of the number of layers
in the neural network, the output result only is a linear combination of input results, and the hidden
layer does not work. Only when the neural network model uses a nonlinear activation function are
the output results no longer a linear combination of input results and it can approximate an arbitrary
function. Table 5 shows the five commonly used activation functions (i.e., linear, tanh, sigmoid, ELU,
and ReLU). As shown in Figure 9, the comparative results showed that the neural network model had
a better effect when the ReLU function was used in the middle layer.

Table 5. The mathematical expression of five commonly activation functions.

Type Equation

linear f (x) = x

tanh f (x) =
ex
− e−x

ex + e−x

sigmoid f (x) =
1

1 + ex

ELU f (x) =
{

ex
− 1
x

,
,

x < 0
x ≥ 0

ReLU f (x) = max(0, x)
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3.2.6. Regularization Technique

The overfitting is a common problem in the training process of neural network models and it
greatly reduces the generalization ability of neural network models [33]. The main reasons for the
overfitting problem are insufficient training samples and a complex structure of networks. To overcome
this problem, the dropout method and L2 regularization method are used to dynamically adjust the
network structure, which can effectively avoid the overfitting problem. (1) In the process of forward
propagation, the dropout method can make various nodes stop working in a certain probability p
(called dropout rate) and the relative importance of each node is balanced. After the introduction of the
dropout method, each node of the neural network model contributes more equally to the output results
and avoids the situation where a few high-weight nodes fully control the output results. (2) For the L2
regularization method, the sum of the squared value for weight squares is added to the loss function,
which can constrain the size of the weight values to reduce complexity of the model. Therefore,
Equation (2) is rewritten as Equation (3).

L(ŷ, y) = −
m∑

i=1

yi log ŷi + λ
n∑

j=1

w2
j (3)

where λ is the super-parameter, which is used to control the level of weight decay. n is the amount
of weights. In contrast, the results of the classification accuracy of the model with dropout method,
L2 regularization method, and without regularization method are compared. It can be seen from
Figure 10 that the model had the highest accuracy in the validation set when using the dropout method
and the accuracy in validation set was close to the that for the training set.
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3.2.7. Adam Optimization Algorithm

To obtain the minimum value of loss function of the model, the weights in the network model
need to be updated at each iteration step. Among various optimization algorithms for weight updating,
the Adam optimization algorithm proposed by Kingma and Ba, [34] has the highest performance [35,36].
Compared to the classical gradient descent method, this method can avoid the oscillation of the loss
function and the model with Adam optimization algorithm has a higher convergence speed. The Adam
optimization algorithm updates the network model weights in the form of Equation (4).

wt
j = wt−1

j −
ηt√
υt

j + ε
ωt

j (4)

where ηt is the learning rate at the tth time step, wt
j is the network weight of the jth feature of the

training sample data under the tth time step, ε is a small constant to avoid a zero denominator.
In Equation (5),

ωt
j =

β1ωt−1
j + (1− β1)gt

j

1− (β1)
t (5)

υt
j =

β2υt−1
j + (1− β2)(gt

j)
2

1− (β2)
2 (6)

where β1 and β2 are the exponential decay rates for the moment estimates, gt
j is the gradient in the jth

parameter under the tth time step. In this work, we used the parameters recommended by Kingma
and Ba, [34]: β1 = 0.9, β2 = 0.999, ω0

j = 0, υ0
j = 0 and ε = 10−8.

3.2.8. Mini Batch Technique

The premise of machine learning is that it requires a huge sample size. During each iteration of
the model, the optimization algorithm needs to fit the model to all training samples at once, so the
requirement for CPU will be enormous. In order to reduce the requirements for CPU and improve
computational efficiency, the mini batch technique was utilized as it can randomly select a small
portion of the training samples in the training set for each iteration process of the model. Meanwhile,
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the random selection of training samples also made the mini batch technology effectively avoid the
neural network model falling into local minimum problems during the training process. For the mini
batch technique, the gradient gt in Equations (5) and (6) is as follows:

gt =
1
b

b∑
k=1

gt
k (7)

gt
k =

1
s

s∑
r=1

∇L(wt−1; xir ; yir) (8)

b =
[m

s

]
(9)

where b represents the number of iterative step of the mini batch method from t − 1th time step to
tth time step. gt

k is the gradient of the kth iterative step from t-1th time step to tth time step. wt−1 is
the weights at the t-1th time step. s is the number of training samples in one mini batch. i1, . . . , is are
a random number between 1 and m. xir is the pressure derivative-time curve data of the ir training
sample. yir the type of the ir training sample. m is the total number of training samples.

4. Results and Discussions

4.1. Comparison of Classification Performance for FCNN and CNN

We used the same techniques (including regularization technique, Adam optimization algorithm,
activation functions, and initialization methods) to optimize the FCNN model. Table 6 and Figure 11
compare the errors of different models. The error of the test set verified the performance of the well
test plot classification in the field buildup test cases and demonstrated the generalization ability of
the CNN. For the FCNN, after 100 iterations, the loss function value was 0.44, and the classification
accuracy was 91.2%. In the validation set, its accuracy was 89.8%. For the CNN, the loss function and
accuracy for training set and validation set respectively were 0.19, 96.6%, and 95.6%. The comparing
results of FCNN and CNN showed that the CNN had a higher accuracy when the number of weights
of two models were close (76,583 weights and 76,575 weights).

As shown in Figures 12–14, the confusion matrix analysis is a method for judging the
classification performance of neural network model, which shows the accuracy result of classification.
Mukhanov et al. [37] used the confusion matrix to evaluate the classification result of the waterlogging
curve by the support vector machine technology. The confusion matrix separately calculates the
number of misclassification classes and the number of correct classification classes in the model. It can
be seen from Figures 12 and 13, and Tables 7 and 8 that the FCNN had different classification capabilities
for various types of well test curves in the training set and validation set. For the CNN, its classification
results of the 5 well test models were 0.98, 0.94, 0.97, 0.95, 0.98 for training set and 0.97, 0.93, 0.96,
0.93, 0.98 for validation set, which were generally better than the FCNN results. Figure 13 and Table 8
also showed that the FCNN forecasting results of class1, class3, and class5 in the validation set were
basically correct, but there was a large error for the curves of class2 and class4. For CNN, the stability
of forecasting result was high, and the prediction errors of various types of curves were almost the
same, indicating the reliability of CNN. Through the confusion matrix, the recall rate (Equation (11))
and precision rate (Equation (10)) of the model could be calculated. The precision rate represents
the number of correctly predicted samples in a class (TP) to all actually retrieved items (the sum of
TP and FP). The recall rate refers to the TP as a percentage of all items (the sum of TP and FN) that
should be retrieved. F1 value is the harmonic mean of the precision rate and recall rate. The average of
the F1 values for all training samples is determined as Score (Equation (13)). Table 8 summarizes the
performance of different network models in validation sets. It can be seen that the Score of the FCNN
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model was 0.81 and the value of CNN was 0.91, indicating that the overall performance of CNN was
better than FCNN.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2
Precison×Recall
Precison + Recall

(12)

Score =

1
c

c∑
k=1

(F1)k

2

(13)

where TP is the number of correctly predicted samples in a class. For a certain type of training sample,
FN is the difference between the number of successfully predicted training samples and the total
number of training samples, FP is the difference between the number of successfully predicted training
samples and the predicted number of samples for a certain type, c is the total number of sample classes.

Finally, the classification ability of CNN was verified on 25 field buildup test data, among which
21 samples are successfully classified. Table 9 and Figure 14 show the confusion matrix of the model in
the test set, and its Score was 0.69. Appendix A shows the data of the 25 field buildup test data.

Table 6. Model prediction accuracy.

Loss Function Accuracy (%)

CNN train set 0.19 96.6
CNN validation set / 95.6

FCNN train set 0.44 91.2
FCNN validation set / 89.8
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Table 8. The evaluation result of FCNN and CNN on validation set.

Model Index Class1 Class2 Class3 Class4 Class5 Score

FCNN
Precision (%) 97.50 78.57 97.83 76.92 100

0.81Recall (%) 86.67 73.33 100 88.89 100
F1 Score 0.92 0.76 0.99 0.82 1.00

CNN
Precision (%) 100 95.35 95.56 91.49 95.74

0.91Recall (%) 95.56 91.11 95.56 95.56 100
F1 Score 0.97 0.93 0.96 0.93 0.98

Table 9. The evaluation result of test set for CNN.

Index Model 1 Model 2 Model 3 Model 4 Model 5 Score

Recall 75 83.3 100 80 87.5
0.69Precision 100 71.4 66.7 80 100

F1 Score 0.86 0.77 0.80 0.80 0.93

4.2. Effects of Parameters on Classification Results

Sensitivity analysis is a key step in testing CNN performance and determining the impact of
input parameters on the predictive results [38–43]. In order to study the influence of a series of CNN
parameters on the prediction results and further optimize the established CNN, a sensitivity analysis
was conducted.

4.2.1. Effect of the Learning Rate

The loss function is a function of weights, and the learning rate determines the update speed of
the weights in the CNN and determines the value of the loss function. If the learning rate is too large,
it will cause the loss function to oscillate and the CNN is hard to converge. When the learning rate is a
small value, the updated value of the weights also is small and the model converges slowly. Therefore,
there is an optimized learning rate for each CNN. In order to determine the optimal learning rate,
we changed the value of the learning rate from 0.0001 to 0.03 and remaining values were constant.
Figure 15 shows that the CNN had the highest accuracy on both the validation set and the training set
when the learning rate was 0.005.Energies 2019, 12, x FOR PEER REVIEW 18 of 27 
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4.2.2. Effect of the Dropout Rate

The key point of the dropout method to prevent the overfitting problem is to make some nodes of
the CNN to stop working in a probability of dropout rate. Therefore, the value of the dropout rate
has a significant impact on the training effect of the CNN. As shown in Figure 16, as the dropout
rate increased, the accuracy of CNN on the training set continued to decrease. For the value for the
validation set, it increased firstly and then decreased when the dropout rate increased. Meanwhile,
the accuracy difference of the training set and the validation set was large in the case of small dropout
value, indicating that the overfitting phenomenon had occurred. As the dropout rate became larger,
the accuracy difference was very small, meaning that the CNN had not been well fitted to the training
data. For the CNN in this paper, the optimal value of the dropout rate was 0.4.
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4.2.3. Effect of the Number of Training Samples

The performance of CNN is strongly controlled by the number of training samples. A small
sample size can make the training process of the CNN difficult to converge. In general, CNN require a
pretty large training sample size and the negative effect is that this large sample size usually increases
the requirement for CPU. To select as few samples as possible while ensuring the best performance
of CNN, the impact of sample size on CNN learning curves was investigated. Figure 17 shows that
as the number of training samples increased, the accuracy of CNN model on the validation set also
increased. When the number of training samples was greater than 2000, the increase of the accuracy on
the validation set tended to be flat. Meanwhile, the CNN had a similar accuracy on both the training
set and the validation set. Therefore, the number of training samples was finally determined to be 2500.
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5. Conclusions

In this paper, a CNN model was developed to classify the well testing curves. In order to obtain
the best test curve classification effect, before the training, we optimized the CNN model from several
aspects such as regularization technology, activation function, and optimization algorithm. The results
show that the Xavier normal initialization worked best in the four optimization methods. Among the
five activation functions, the CNN model had the best performance when the activation function of
the convolution layer and the output layer was chosen as the ReLU function. Compared to the L2
regularization method, the dropout method had a better performance in avoiding overfitting problem.
In addition, the utilization of mini batch technique and Adam optimization algorithm made the model
not fall into local minimum and fast convergence. Further, the impacts of key parameters in the CNN
model on work performance were studied. It was found that when the learning rate was 0.005, the CNN
had the highest precision in the validation set and the training set. For the dropout rate, CNN could
better fit the training data without over-fitting phenomenon in the case of 0.4. The analysis of training
sample numbers showed that the accuracy difference between the training set and the validation set
could be ignored when the number of training samples was 2500. Finally, the classification results of
CNN and FCNN with similar structures on well testing curves were compared. For the validation set,
the Score of FCNN and CNN were 0.81 and 0.91, respectively, indicating that the CNN had a more
robust performance in the classification results of the well test curve. The 25 field cases from the Ordos
Basin showed that the trained CNN could successfully classify 21 cases and the robustness of the
model was further proved.
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Nomenclature

CNN Convolutional Neural Network
FCNN Fully Connected Neural Network
CONVlayer Convolutional Layer
FC layer Fully Connected Layer
1D One Dimensional
2D Two Dimensional
TP True Positive
FP False Positive
FN False Negative
w Network Weight
g Gradient
n Number of Network Weight
b Number of Iterative Step in Mini Batch Technique
s Number of Training Samples in Mini Batch Technique
c Number of Sample Classes
x Sample Matrix
y Real Sample Label Matrix
ŷ Predictive Sample Label Matrix
a Output Value of Neural Network
m Number of Training Samples
Greek
η Learning Rate
β1, β2 Exponential Decay Rates in Adam Algorithm
ω , υ Momentum in Adam Algorithm
ε Constant
λ L2 Regularization Parameter
Subscript
i i-th Sample
j j-th Feature
k Iteration
Superscript
t t-th Time Step
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Appendix A. Field Cases Used in This Work

Table A1. Parameter distribution of field cases used in this work.

Thickness
(m)

Porosity
(%)

Permeability
(mD)

Initial
Pressure

(MPa)

Wellbore
Storage

Coefficient

Skin
Factor

Composite
Radius (m)

Mobility
Ratio

Dispersion
Ratio

Fracture Half
Length (m) Omega Lambda Curve

Type

Case1 9.4 10.94 0.82 15.06 0.19 0.05 / / / 23.1 / / 1
Case2 9.56 13.12 0.02 13.56 0.12 −5.88 / / / 59 / / 1
Case3 13.12 9.08 7.53 14.02 2.12 0.02 / / / 112 / / 1
Case4 5.68 11.04 0.5 17.2 0.01 0.01 / / / 76 / / 1
Case5 16 11.61 0.2 14.28 0.03 0.63 / / / 11.1 / / 2
Case6 4.3 13.68 0.41 10.29 0.6 0.11 / / / 46 / / 2
Case7 13.7 12.56 0.09 26.82 0.07 0.18 / / / 16.4 / / 2
Case8 9.7 10.8 1.14 20.05 1.96 0.26 / / / 128 / / 2
Case9 13.3 11.28 0.17 12.29 0.33 0.21 / / / 56.5 / / 2

Case10 8.5 11.77 1.08 22.61 0.12 0.3 / / / 126 / / 2
Case11 9.67 10.13 1 19.13 0.01 0.02 / / / / 0.29 1.4 × 10−8 3
Case12 10.78 13.03 0.27 40.55 0.07 −0.81 / / / / 0.08 9.4 × 10−4 3
Case13 13.2 11.1 0.84 17.08 0.24 −3.77 40.6 7.36 3.61 / / / 4
Case14 5.4 12.3 0.34 13.47 0.16 −4.58 12.3 7.71 12.8 / / / 4
Case15 16.3 10.95 0.13 12.41 0.14 −3.54 31 2.32 1.4 / / / 4
Case16 11.6 13.12 0.25 16.02 0.15 −3.64 31 2 3.06 / / / 4
Case17 11.2 9.63 0.78 13.24 0.14 −2.23 13.3 9.56 8.03 / / / 4
Case18 8.2 11.25 0.25 20.87 0.15 −2.82 33.26 0.82 0 / / / 5
Case19 9.2 14.06 0.91 18.52 0.66 −1.37 52.1 0.44 0 / / / 5
Case20 27.2 13.12 0.4 24.64 0.32 −1.72 13.9 0.36 0 / / / 5
Case21 9.7 10.8 1.14 20.05 1.96 0.26 94.3 0.75 0.1 / / / 5
Case22 8.2 13.36 0.42 25.82 0.89 −3.78 59 0.51 0 / / / 5
Case23 11.2 10.31 0.1 23.21 0.26 −3.11 41 0.03 0 / / / 5
Case24 7.3 14.6 1.35 24.68 0.61 −3.56 92.2 0.72 0.01 / / / 5
Case25 7.6 12.74 0.66 23.66 1.13 −3.45 18.9 0.98 0 / / / 5
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Appendix B. Infinite-Conductivity Vertically Fractured Model

At first, a series of dimensionless variables need to be defined:

pwD =
kh∆p

1.842× 10−3qµB
(A1)

tD =
3.6kt
ϕµCtL2 (A2)

CD =
0.1592C
ϕhCtL2 (A3)

yD =
y
L

(A4)

xD =
x
L

(A5)

rD =
r
L

(A6)

where k is the permeability, ϕ is the porosity, C is the wellbore storage coefficient, L is the reference
length, Ct is the compressibility, t refers to time, µ refers to the viscosity, B is the volume factor, q refers to
the flux rate, p is the pressure, h is the formation thickness. After dimensionless treatment, the diffusion
equation in Laplace domain can be expressed as:

d2pD

dr2
D

+
1

rD

dpD
drD

= upD (A7)

where pD is the dimensionless pressure in Laplace domain, u refers to the Laplace variable, and rD is
the dimensionless distance. The initial condition is:

pD(rD, 0) = 0. (A8)

The internal boundary condition and exterior boundary respectively are:

lim
rD→0

[
rD

dpD
drD

]
= −1 (A9)

pD(∞, tD) = 0. (A10)

The general solution of Equation (A7) is shown as following:

pD =
1
u

K0
(
rD
√

u
)

(A11)

where K0 is the first class zero order Bessel function. With pressure superposition method, the pressure
solution of the infinite conductivity vertically fractured model is obtained:

pD =
1
u

1∫
−1

K0

(√
(xD − xi)

2 + y2
D

√
u
)
da (A12)
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Appendix C. Dual-Porosity Model with Pseudo-Steady State

In the dual-porosity model, the corresponding dimensionless variables are:

pwD =
k f h∆p

1.842× 10−3qµB
(A13)

tD =
3.6kt

(ϕCt) f+mµL2 (A14)

CD =
0.1592C

(ϕCt) f+mµL2 (A15)

λ = aL2 km

k f
(A16)

ω =
(ϕCt) f

(ϕCt) f (ϕCt)m
(A17)

where subscript f is the natural fracture system, subscript m refers to the matrix system, w is the
wellbore system, λ is the interporosity flow coefficient, ω refers to the storage ratio. The diffusion
equation of the pseudo-steady state in Laplace domain can be expressed as:

d2p f D

dr2
D

+
1

rD

dp f D

drD
= λ

(
p f D − pmD

)
+ωupD (A18)

(1−ω)upmD = λ
(
p f D − pmD

)
. (A19)

The initial condition is:
p f D(rD, 0) = pmD(rD, 0) = 0. (A20)

The boundary conditions are:

CDudpwD −
dp f D

drD

∣∣∣∣∣∣∣
rD=1

=
1
u

(A21)

pwD =

p f D − S
dp f D

drD


∣∣∣∣∣∣∣
rD=1

(A22)

p f D = pmD = 0
∣∣∣∣
rD→∞

(A23)

where S is the skin factor and CD is the dimensionless wellbore storage coefficient. Combining
Equations (A18) and (A19), the general solution is determined as [44–46]:

pwD =
K0

(√
f (u)u

)
+ S

√
f (u)uK1

(√
f (u)u

)
u
√

f (u)uK1
(√

f (u)u
)
+ CDu2K0

(√
f (u)u

)
+ SCDu2

√
f (u)uK1

(√
f (u)u

) . (A24)

In Equation (A24),

f (u) =
ω(1−ω) × u + λ

(1−ω) × u + λ
. (A25)
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Appendix D. Radial Composite Model

For the radial composite model, the dimensionless variables are defined as follows:

pirD =
kirh∆p

1.842× 10−3qµirB
(A26)

perD =
kerh∆p

1.842× 10−3qµerB
(A27)

pwD =
kirh∆pw f

1.842× 10−3qµirB
(A28)

tD =
3.6kirt
ϕµirCtL2 (A29)

CD =
0.159C
ϕhCtL2 (A30)

rD =
r
L

(A31)

r f D =
r f

L
(A32)

M =
(k/µ)ir

(k/µ)er
(A33)

W =
(ϕCt)ir

(ϕCt)er
(A34)

where pirD and perD are the dimensionless pressure in inner region and outer regions, r f D is the
dimensionless radius of the interface, M is the mobility ratio, W is the dispersion ratio. The diffusion
equations in Laplace domain for the inner and outer regions of the composite model can be written as:

1
rD

d
drD

(
rD

dpirD
drD

)
= upirD (A35)

1
rD

d
drD

(
rD

dperD
drD

)
=

W
M

uperD. (A36)

Correspondingly, the inner and outer boundary conditions are:

CDudpwD −
dpirD
drD

∣∣∣∣∣∣
rD=1

=
1
u

(A37)

pwD =

(
pirD − S

dpirD
drD

)∣∣∣∣∣∣
rD=1

(A38)

perD

∣∣∣
rD→∞

= 0. (A39)

There is an interface between the inner and outer regions. For this interface, the pressure and pressure
derivative meet the following requirements:

pirD = perD

∣∣∣
rD=r f D

(A40)

dpirD
drD

=
1
M

dperD
drD

∣∣∣∣∣∣
rD=r f D

. (A41)
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Therefore, the solution can be determined as:

pirD = AK0
(
rD
√

u
)
+ BI0

(
rD
√

u
)
. (A42)

To satisfy the conditions of the interface, the value of A and B can be obtained:

A = qD (A43)

B =
qDMK0

(
rirD
√

Mu/W
)
K1

(
rirD
√

u
)√

U − qDMK1
(
rirD
√

Mu/W
)
K0

(
rirD
√

u
)√

Mu/W

I0
(
rirD
√

u
)
K1

(
rirD
√

Mu/W
)√

Mu/W −MI1
(
rirD
√

u
)
K0

(
rirD
√

Mu/W
)√

u
. (A44)
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