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Abstract: Low frequency oscillations (LFOs) in power systems usually fall into two types, i.e.,
forced oscillations and natural oscillations. Waveforms of the two are similar, but the suppression
methods are different. Therefore, it is important to accurately identify LFO type. In this paper,
a method for discriminating LFO type based on multi-dimensional features and a feature selection
algorithm combining ReliefF and minimum redundancy maximum relevance algorithm (mRMR)
is proposed. Firstly, 53 features are constructed from six aspects—time domain, frequency domain,
energy, correlation, complexity, and modal analysis—which comprehensively characterize the
multidimensional features of LFO. Then, the optimal feature subset with greater relevance and
less redundancy is extracted by ReliefF-mRMR. In order to improve the classification performance,
a modified Support Vector Machine (SVM) with Genetic Algorithm (GA) optimizing the key
parameters is adopted, which is conducted in MATLAB. Finally, in 179-bus system, the samples of
LFOs are generated by the Power System Analysis Toolbox (PSAT) and the accuracy of the LFO type
identification model is verified. In ISO New England and East China power grid, it is proven that the
proposed method can accurately identify LFO type considering the influences of noise, oscillation
mode, and data incompletion. Hence, it has good robustness, noise immunity, and practicability.

Keywords: low frequency oscillations; multidimensional features; type identification; ReliefF; mRMR;
GA-SVM

1. Introduction

As the scale of the interconnected power grid continues expanding, the risk of LFOs in power
system is increasing. There are two main types of LFO, one is natural oscillations caused by insufficient
damping of power system, and the other is forced oscillations resulted from continuous periodic
disturbance in power system [1–4]. The two types of oscillations need different countermeasures
because of their different generation mechanisms. Generally, natural oscillations need to be suppressed
by increasing the damping of power system, while forced oscillations require timely removal of the
continuous periodic disturbance sources. However, natural oscillations and forced oscillations are
usually difficult to discriminate due to the similarity of waveforms. Therefore, the research on LFO
type identification is attracting much more attention [3–5].

There are mainly three kinds of methods for discriminating the type of LFO. The first kind of
method discriminates between forced oscillations and natural oscillations by identifying the envelope
of LFO waveform [5,6]. The envelope of LFO is adopted to train the SVM in [5] and the classification is
realized. In [6], a method to identify LFO type based on the fitting error of envelope of initial period of
oscillation waveform is proposed. However, approaches based on envelope of LFO waveform require
the initial period of oscillation data, which sometimes is unavailable in actual event. In addition,
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the second kind of method identifies from the aspect of spectrum of LFO signal. Criteria to identify
type of LFO have been established according to the differences in response components of two types
of LFO [7]. However, there has been research shown that natural oscillations may also contain
more than two frequency response components, which renders this method ineffective under some
circumstances [8]. The statistics difference of the two types of oscillation mechanism has been found,
and based on this, a method for discriminating LFO type with kurtosis and energy spectral density is
proposed [9]. Besides, because the noise response under the undamped natural case is significantly
different than under the forced case, a method for discriminating the type of oscillation based on the
frequency domain noise response is proposed [10]. Moreover, in terms of oscillation energy, some
studies utilize decomposition of energy supply on generator port to identify LFO type, but they do not
take the noise of measurement into consideration, which could influence the accuracy [11].

Due to the complexity of LFO waveform and the diversity of the disturbances of LFOs, current
methods which identify the type of LFO by single feature are prone to misjudgment resulting from
the insufficiency or unnecessariness of the discriminant criterion [8]. Therefore, this paper proposes
an LFO type identification method based on multi-dimensional features and ReliefF-mRMR. Firstly,
the multi-dimensional feature index set is constructed to comprehensively describe the characteristics
of LFO. Then, ReliefF is utilized to select features by calculating the identification ability of single
feature and mRMR is used to reduce the feature set redundancy by evaluating the identification ability
of feature subset. Therefore, a feature subset which can best reflect the distinguishing characteristics
of the two types of LFO is obtained. Finally, GA-SVM with better classification performance is used
to obtain LFO type identification model with high accuracy. The contribution of this paper and the
advantages of the proposed method are as follows:

• This paper firstly constructs multi-dimensional features from the aspects of time domain, frequency
domain, energy, correlation, complexity, and modal analysis to fully characterize the LFOs.
Furthermore, it combines ReliefF and mRMR to express the most significant oscillation information
with fewest features.

• The method uses GA to optimize the parameters of SVM in order to obtain better training model,
which has higher accuracy than that obtained with traditional fixed parameter SVM.

• The proposed method based on GA-SVM and multi-dimensional features overcomes the
shortcoming of the single-feature-based methods which might possibly face the problem of
neglecting crucial LFO information, so that the proposed method is more robust and has good
generalization ability.

Beyond these technical contributions above, this paper also improves the practicability of the
method by considering various cases happened in LFOs event in actual system. In addition to
considering the effect of noise, some cases of damping ratio close to zero are also added into LFOs
samples set to enhance the accuracy of identification model. For the situations of incomplete data and
damping ratio close to zero, which may cause misjudgments by adopting the previous methods, it is
verified that the LFO type of these cases could also be identified based on the proposed method. In
ISO New England and East China power grid, the method can accurately identify the type of LFO.
Therefore, the proposed method has good robustness, noise immunity, and practicability under various
cases, even in cases where previous methods are difficult to identify.

The rest of the paper is organized as follows. Section 2 constructs the multi-dimensional features
from six aspects to fully describe LFOs. Section 3 combines the ReliefF and mRMR to introduce a better
feature selection method. Based on the multi-dimensional features and ReliefF-mRMR, a method
to identify the type of LFO is proposed in Section 4. The method is validated by applying it to the
simulation system and actual system in Section 5. Section 6 draws the conclusion and discusses future
research directions.
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2. LFO Features Analysis and Multi-Dimensional Feature Construction

2.1. Time Domain and Frequency Domain Features Analysis and Construction

To fully describe LFOs, it is difficult to reflect all the characteristics of LFO within a very limited
time period. Nevertheless, complete LFO data contains too much redundant information. Therefore,
it is necessary to construct time and frequency domain features to characterize the waveform features
of LFO.

Several typical time and frequency domain indexes are constructed as candidate features, including
statistical features such as mean, standard deviation, square root amplitude, high-order statistic twist,
and kurtosis. Besides, typical waveform description indexes—such as waveform index, pulse index,
etc.—are also adopted as the candidate features. Table 1 shows the time domain feature indexes, and
Table 2 shows the frequency domain feature indexes.

Table 1. Time domain feature indexes.

Expression Meaning

T1 =
∑N

n=1 x(n)
N

Mean

T2 =

√∑N
n=1 (x(n)−T1)

2

N−1
Standard deviation

T3 =

(∑N
n=1

√
|x(n)|

N

)2
Square root amplitude

T4 =

√∑N
n=1 x(n)2

N
Root mean square value (effective value)

T5 = max
∣∣∣x(n)∣∣∣ Peak

T6 =
∑N

n=1 (x(n)−T1)
3

(N−1)T2
3 Twist index (skewed indicator)

T7 =
∑N

n=1 (x(n)−T1)
4

(N−1)T2
4 Kurtosis index

T8 = T5
T4

Crest factor
T9 = T5

T3
Margin index

T10 = T4
1
N
∑N

n=1|x(n)|
Waveform index

T11 = T5
1
N
∑N

n=1|x(n)|
Pulse index

where x(n) is the signal sequence (n = 1, 2, . . . , N), and N is the number of sampling points.
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Table 2. Frequency domain feature indexes.

Expression Meaning

F1 =
∑K

k=1 s(k)
K

Center frequency

F2 =
∑K

k=1(s(k)−F1)
2

K−1
variance

F3 =
∑K

k=1(s(k)−F1)
3

K(
√

F2)
3 Skewness

F4 =
∑K

k=1(s(k)−F1)
4

KF2
2

Kurtosis

F5 =
∑K

k=1 fks(k)∑K
k=1 s(k)

Frequency center

F6 =

√∑K
k=1 ( fk−F5)

2s(k)
K

Frequency standard deviation

F7 =

√∑K
k=1 fk2s(k)∑K

k=1 s(k)
Root mean square frequency

F8 =
∑K

k=1 fk2s(k)√∑K
k=1 s(k)

∑K
k=1 fk4s(k)

Waveform stability factor

F9 = F6
F5

Coefficient of variation

F10 =
∑K

k=1 ( fk−F5)
3s(k)

KF6
3

Twist

F11 =
∑K

k=1 ( fk−F5)
4s(k)

KF6
4

Kurtosis

F12 =
∑K

k=1 ( fk−F5)
1/2s(k)

K
√

F6
Root mean square ratio

where s(k) is the spectrum of the signal (k = 1, 2, ..., K), K is the number of spectral lines, and fk is the frequency of the
k-th spectral line.

2.2. Energy, Correlation, Complexity, Modal Features Analysis, and Construction

2.2.1. Energy Index

The process of LFO is usually accompanied with energy conversion and transmission. The basic
concept of generator system energy is established and energy functions under different conditions
are obtained [12–16]. Since then, the energy functions have been used widely to study the two kinds
of LFO [17,18]. The research has shown that system damping can be increased according to rate
of transient energy dissipation, which can effectively prevent occurrence of natural oscillations [19].
The method of energy function is firstly used in locating disturbance source of forced oscillations [20].
It can be seen that the energy function can reflect LFO information to some extent. This paper adopts
the expression in [20] to calculate the energy function:

EGi =

∫
∆PGi2π∆ fidt +

∫
∆QGid(∆ ln Ui) (1)

where the EGi is the LFO energy function of the i-th generator. ∆PGi is the deviation from steady-state
value of the i-th generator active power. ∆fi is the frequency offset of the i-th generator. ∆QGi is the
deviation from steady-state value of the i-th generator reactive power. ∆lnUi is the natural logarithm
deviation from steady-state value of the i-th generator bus voltage. This energy of a generator can
be divided into kinetic energy, potential energy, and the energy dissipation or production. Since the
minima of potential energy is zero in linearized system, the sum of potential energy and the energy
dissipation or production reaches its minima when potential energy reaches zero. Besides, the kinetic
energy can be calculated from the angular velocity of the rotor and generator parameters. Therefore,
the energy function can reflect the monotonically change related to energy dissipation or production.
The dissipating energy has a positive effect on the damping of oscillations, and the generator producing
energy can be considered as the oscillation source. Thus, this energy function is of great significance to
the analysis of LFO.
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The time domain indexes, frequency domain indexes of the energy function, and energy
spatio-temporal entropy are calculated as energy indexes. The energy spatio-temporal entropy
reflects the spatio-temporal distribution of power system energy, which can be expressed as [21]

SOE = −
N∑

i=1

(
EGi
EΣ

)
ln

(
EGi
EΣ

)
(2)

where the SOE is the energy spatio-temporal entropy. EΣ is the sum of the system oscillation energy.
N is the total number of generators.

2.2.2. Correlation Index

The LFO correlation index includes two parts: cross-correlation and autocorrelation.
The cross-correlation embodies the similarity of two types of LFO signals at different time, and can
reflect the periodic features between different signals. Autocorrelation is a special case of the
cross-correlation function, which reflects the degree of correlation between the same signal at different
time. The correlation function can preserve periodic features of LFO signal and the differences
of features. It has already been widely used in mechanical vibration fault diagnosis and image
recognition [22,23].

The cross-correlation function can be described as

R12(τ) =

∫ +∞

−∞

f1(t) f2(t + τ)dt (3)

where f 1(t), f 2(t) represent the signals varies with time.
The autocorrelation function can be described as

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2 (4)

where Xt, Xt+τ are the signals varies with time, µ is the expectation of signal, σ is the standard deviation
of signal.

In this paper, the maximum values of cross-correlation and autocorrelation when the delay is not
0 are taken as the correlation indexes. In addition, the bus with the greatest voltage fluctuation is
selected as the reference bus for the calculation of the cross-correlation.

2.2.3. Complexity Index

This paper adopts sample entropy to reflect the complexity of LFO signal. The sample entropy
measures the time complexity of signal by measuring the amplitude of each signal mode. Furthermore,
it does not depend on signal length and its parameters have the same influence on it regardless of the
parameter variation. Hence it has a wide range of applications in diagnosing mechanical faults [24].
Due to the large scale of power system and the diversity of disturbances, multiple modes could exist
in both forced and natural oscillations. The complexity of LFO modality can be reflected via sample
entropy of LFO signal. Sample entropy can be calculated as following steps:

1. Let u represent an LFO signal. Define the vector length parameter m and the parameter r which
reflects the similarity between the vectors, and construct the m-dimensional vector: Xm(1), Xm(2),
..., Xm(N – m + 1),where Xm(i) = [ui(1), ui(2), ..., ui(N – m + 1)].

2. For 1 ≤ i ≤ N − m+1, calculate
Bim(r) = Ci/(N − m), (I , j) (5)

where Ci is the number of Xm(j) which satisfies max|ui(a) – uj(a)| ≤ r. ui(a) is the i-th element of
Xm(i). The average value of Bim(r) is Bm(r).
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3. Take k = m + 1 and repeat steps 1 and 2 to calculate Bk(r). Sample entropy of LFO is

SE = −ln[Bk(r)/Bm(r)] (6)

where SE is the sample entropy. Bk(r) is the average value of Bik(r).

2.2.4. Modal Index

To describe the modal features of LFO, frequency and damping ratio of LFO signal are taken as
modal indexes, which are extracted by total least squares-estimating signal parameters via rotational
invariance techniques (TLS-ESPRIT) in this paper. TLS-ESPRIT is a signal analysis method based on
subspace technology, which decomposes a signal into signal subspace and noise subspace, and then
estimates signal parameters through signal space. It has good noise immunity and high parameter
identification accuracy and hence could estimate the modal indexes of LFO with high accuracy
considering the measurement noise.

In total, 53 indexes of time domain, frequency domain, energy, correlation, complexity, and modal
analysis are constructed, which characterize the important features of LFO from multiple dimensions.

3. Feature Selection of LFO Type Identification Based on ReliefF-mRMR

Section 2 constructs a multidimensional feature set that fully characterizes LFOs, but it may
contain redundant features that are less correlated with oscillation type. Moreover, model trained with
too many features could lead to over-fitting, which results in low identification accuracy. Therefore,
to obtain feature indexes with strong identification ability, this paper selects features from the aspect
of the importance of single feature as well as the aspect of non-redundancy of the whole feature
subset. Firstly, ReliefF is adopted to filter the LFO feature set by calculating the identification ability
of single feature. Then, to further reduce the dimension of feature subset, mRMR is used to reduce
redundancy of selected feature indexes by evaluating the identification ability of feature subset. Based
on the above steps, this paper utilizes a hybrid feature selection algorithm (ReliefF-mRMR) to select
features of LFO index set, which combines the high efficiency of ReliefF and the ability to reduce
feature redundancy of mRMR. ReilefF can quickly and accurately evaluate the performance of features
but cannot explicitly reduce the redundancy. mRMR can reduce redundancy in data and can select a
feature set with the highest relevance with the category, but it is computationally expensive. Compared
with the commonly used Pearson correlation coefficient, ReilefF-mRMR can discover the non-linear
relationship and reduce redundant information in data, which can achieve a good performance in LFO
type identification.

3.1. Evaluation of Identification Ability of Single Feature Based on ReliefF

ReliefF is a feature selection algorithm based on feature weights. The features are sorted by LFO
type identification ability. Therefore, features with stronger identification ability are selected. ReliefF is
simple in calculation and high in efficiency, so it is suitable for screening multidimensional features.
The steps of ReliefF are as follows:

1. Set training set D, sampling number m, nearest neighboring sample number k, the number of
selected feature M, and set each initial feature weight to 0.

2. Select a sample X from training set D randomly and select k nearest neighbor samples from the
same category of X and the different category of X respectively.

3. Update the weight according to (7)

Wi(n) = Wi−1(n) −
k∑

j=1

(Xi(n) −H j(n))
2

mk
+

k∑
j=1

(Xi(n) −M j(n))
2

mk
(7)
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where Wi(n) is the weighting factor of the n-th feature updated at the i-th time, and Xi(n) is the
n-th feature index of the i-th random selection sample. Hj(n) is the n-th feature index of the Xi(n)
the j-th same category nearest neighbor sample, and Mj(n) is the n-th feature index of the Xi(n)
j-th different category nearest neighbor. When a feature has a crucial impact on classification, the
same kind of samples are very similar in this feature, while the different kind of samples differ
greatly in this feature. Therefore, the second item is the smaller and the third item is the larger on
the right side of the Equation (7), so the feature has a larger weight [25].

4. Judge whether the sampling is completed. If not, return to step 2.
5. Obtain the feature weight vector W(n) and select the largest M weight features as the candidate

features.

3.2. Evaluation of Identification Ability of Feature Subset Based on mRMR

Since ReliefF only evaluates the sample identification abilities of each individual feature in feature
subset, the identification ability of entire feature subset is not assessed. However, there could be
information overlapping among these features. mRMR is a filtering feature selection algorithm based
on mutual information. According to mutual information between features and features as well as
between features and categories, the redundancy of feature subset is evaluated, which brings about
strong independence of each selected feature. Therefore, it is possible to select a feature subset that has
stronger LFO type identification ability via screening the features by mRMR. The mutual information
is calculated as

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(8)

where p(x) is the marginal distribution of the random variable X. p(y) is the marginal distribution of the
random variable Y. p(x,y) is joint distribution of random variables (X,Y). x is feature variable. y is the
category label variable. It can be seen that when variables are independent or completely independent
with each other, the mutual information is equal to 0. When the degree of correlation between variables
is high, the value of mutual information will also be large, which means that there is more common
information in two variables [26].

The mRMR evaluation function is

J = max[I(X̃i; Y) −
1
|S|

∑
X̃S∈S

I(X̃i; X̃s)] (9)

where I(X̃i; Y) is the mutual information of i-th feature index and category label, I(X̃i; X̃s) is the mutual
information of i-th feature index and feature indexes of existing feature subset, X̃i is i-th feature index,
X̃S are feature indexes of existing feature subset, S is the existing feature index set, and |S| is the number
of elements of the existing feature subset. The first item of the Equation (9) represents correlation
between features and categories, and the second equation shows redundancy between features [27].

3.3. Method for Selecting the Features of LFO Type Identification Based on ReliefF-mRMR

Although ReliefF is simple and efficient, the selected feature subset may be redundant. mRMR
algorithm can reduce feature subset redundancy, but it is computationally inefficient in the face of
high-dimensional features. Accordingly, ReliefF-mRMR is adopted to select subset features. Firstly,
ReliefF selects out M features from entire feature set. Then, mRMR screens out q minimum redundancy
maximum relevance features from the features selected by ReliefF. The flow chart of LFO feature subset
selection is shown in Figure 1.
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4. LFO Type Identification Method Based on Multidimensional Features and ReliefF-mRMR

It is difficult for traditional approaches to identify LFO type by the multidimensional feature
subset because they are hard to mine valuable information in mass data. However, SVM has a good
generalization ability and can find nonlinear relationships in data, so it has a unique strength for
exploring deep relationships between LFO features and types which have not been discovered or are
hard to find. Even so, the classification accuracy may not be high in some cases for traditional fixed
parameters SVM. In this paper, GA-SVM is adopted, in which genetic algorithm is utilized to optimize
SVM parameters, so that training model has a higher classification accuracy. Therefore, the model
trained by GA-SVM could discriminate LFO type reliably.

4.1. Principle of GA-SVM

SVM was first proposed by Vapnik in 1963 [28]. It is a supervised learning classifier which is
suitable for small samples. Its goal is to find a hyperplane that maximizes the interval between different
categories to classify sample data. In order to obtain a high reliable and accurate LFO type identification
model, a modified parameter GA-SVM is adopted to train feature subset, which can map linearly
inseparable data in low-dimensional space to high-dimensional space by kernel function, making
data linearly separable in high-dimensional space. SVM parameters play key roles in classification,
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but there are no specific approaches of setting traditional SVM parameters. Nevertheless, GA-SVM
can overcome the shortcomings of traditional SVM by adopting genetic algorithm to optimize the
penalty factor and kernel function parameters, and then a model with the optimal classification ability
can be obtained. The genetic algorithm is an artificial intelligence heuristic algorithm that solves the
optimization problem. It can effectively avoid falling into local optimum and find global optimal
solution through individual evaluation, selection, crossover, mutation, and other operations. Therefore,
GA-SVM has a better classification ability than traditional fixed-parameter SVM, and the model trained
by GA-SVM also has a higher accuracy.

The hyperplane of SVM can be expressed as

f (x) = wTx + b (10)

where w is the normal vector of hyperplane, x is eigenvector, and b is the offset between the origin and
the hyperplane.

The Gaussian radial basis function (RBF) kernel adopted in this paper is a kind of kernel function
with good performance, and the effect of RBF on most classification problems is good. The formula of
the Gaussian radial basis kernel function is

k(x, x′) = exp(−
‖x− x′‖

2σ2 ) (11)

where x and x’ are eigenvectors of different samples, ||x-x’|| is the distance between two samples, and
σis the width parameter of the Gaussian radial basis kernel function.

4.2. Flow of LFO Type Identification Method Based on Multidimensional Features and ReliefF-mRMR

According to Sections 3 and 4, we can get the flow of the LFO type identification method.
The schematic diagram is shown in Figure 2. The specific steps are as follows:

1. Obtain actual event samples or simulation samples considering various influencing factors such as
disturbance source characteristics, power system operating conditions, damping level, noise, etc.

2. Calculate feature index set of samples including time domain, frequency domain, energy,
correlation, complexity, and modal analysis.

3. Obtain feature subset with ReliefF-mRMR.
4. Train LFO type identification model for feature subset with GA-SVM.
5. Input feature index set of unknown type LFO data into identification model to identify LFO type.
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5. Case Study and Analysis

In this section, considering measurement noise, incomplete recording data, and system damping
ratio close to 0, the proposed method is verified in 179-bus system. The simulation model contains 179
buses, 29 generators, and 263 branches including transformers. The rotor motion of each generator is
reflected by a classical second-order differential model. The damping parameters of all generators are
initially set to 4 and all loads are modeled as a constant load. 28 natural oscillatory modes exist in this
system, which range from 0.26~1.88 Hz [29,30]. The method has also proved to be effective with the
actual event data happened in ISO New England and East China power system.

5.1. Sample Construction and Model Training

The Power System Analysis Toolbox (PSAT) is used to carry out batch simulation of natural
oscillations and forced oscillations, and the simulation time is set to 18 s.

Natural oscillations samples are constructed by adjusting damping parameter of different
generators and applying three-phase short-circuit faults at different locations. Table 3 shows the
detailed cases description of natural oscillations samples which are created in the modified WECC
179-bus power system. In each case, buses with generators whose damping parameter are modified,
are shown in the second column, and the damping parameter of these generators are shown in the
third column. ‘NO’ means natural oscillations. In each case of Table 3, a three-phase short circuit that
lasts 0.05 s is applied on fault bus, so samples of natural oscillations can be constructed. A series of
samples in one case is obtained by increasing the load level from 95% to 105% rated load gradually,
and the load changes 0.5% rated load in each step. For natural oscillations events, damping ratios
of power system could be negative, close to zero or positive. The cases where damping ratios are
close to zero are difficult to identify the type of LFO, because their waveforms are similar to forced
oscillations waveforms. In order to improve identification ability of training model in these conditions,
the samples in this special case, need to be included into natural oscillations samples. Based on this,
NO8–NO15 are the cases with the damping ratio close to zero.
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Table 3. Cases of natural oscillations.

Case Number Buses of Generators with
Modified Parameter Damping Parameter Fault Bus

NO1 6, 11 2, −6 30
NO2 6, 11 5, −9 6
NO3 6, 11 3, −8 30
NO4 45, 159 −2, −0.5 159
NO5 45, 159 −0.5, −0.5 159
NO6 45, 159, 36 −2.5, 1, −1 159
NO7 11 −10 79
NO8 35, 65 0.5, −1.5 79
NO9 45, 159 −2, 1 159
NO10 6, 11 1.5, −6 30
NO11 6, 11 5, −8 6
NO12 6, 11 3, −7 30
NO13 45, 159 −0.2, −0.2 159
NO14 45, 159, 36 −2.5, 1.3, −0.6 159
NO15 11 −7.5 79

Forced oscillations samples are constructed by applying periodic disturbances to prime mover
torques and excitation system inputs of 29 different generators in the system. Table 4 shows the details
of the disturbances applied to the generators. The amplitude is the ratio of disturbance to the initial
output power of generators. For each generator, the disturbances in Table 4 are applied to torques of
prime movers and inputs of excitation systems, and disturbance amplitude step and frequency step are
0.05 and 0.02, respectively. Let the loads vary from 95% to 105% rated load, so the forced oscillations
samples are generated by changing the load level when a disturbance is applied to the system.

Table 4. Disturbances of forced oscillations.

Inputs of Disturbance Wave Form Amplitude Frequency (Hz)

Prime mover torque Sine and square 0.1–0.5 0.2–2.5
Excitation system inputs Sine and square 0.05–0.25 0.2–2.5

In order to imitate the obtained PMU data in actual system, measurement noise of which the
signal to noise ratio is 50 is applied to both the natural oscillations samples and the forced oscillations
samples. Besides, the data sampling frequency is set to 30 Hz, which is widely adopted by the PMUs in
actual system [31,32]. The apparent power base of the per unit (pu) is 100 MVA and the generator with
the greatest active power fluctuation are selected to calculate the feature index sets, in which the sample
entropy parameter m is set to 2, and r is set to 0.15 times the time series standard deviation. The nearest
neighbor parameter k of ReliefF algorithm is set to 10, and the number of features mRMR selected
q is 5. In order to demonstrate the advantages of ReliefF-mRMR, four methods are used for feature
selection, which are ReliefF-mRMR, mRMR, ReilefF, and Pearson correlation coefficient, respectively.
Table 5 shows the features selected by the four methods and the identification accuracy of LFO type by
training these features with SVM without parameter optimization. The penalty factor ct of traditional
SVM is set to 1 and the RBF kernel parameter gt is set to 1.8, 7.3, 28, respectively [33,34]. Then the
model with highest accuracy is selected. The reason why SVM without parameter optimization is used
here is to highlight the advantages of ReliefF-mRMR, and the features selected by this method have
better robustness. The number of selected features is set to 5 and 5-fold cross validation is used to
verify the accuracy of four feature selection methods. As can be seen from Table 5, ReliefF-mRMR
has the highest accuracy among the four methods, so ReliefF-mRMR is chosen as the feature selection
method in this paper. The selected feature subset with ReliefF-mRMR includes kurtosis index of time
domain, waveform index of energy function, cross-correlation index, variance of frequency domain,
and skewness of frequency domain.
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Table 5. Identification accuracy of different feature selection methods.

Feature Selection Algorithm Accuracy

ReilefF-mRMR 98.0%
mRMR 95.6%
ReilefF 97.1%

Pearson correlation coefficient 96.9%

In order to obtain higher accuracy identification model, GA-SVM is adopted to train the training
group feature subset. The samples are divided into two groups, and proportions of the test group and
training group to the total samples are 85% and 15%, respectively. Set maximum evolution generation
to 100 and population to 20. The training model is utilized to identify the LFO type of test group.
The accuracy of training model reaches 100%, and the optimized penalty factor co of SVM is 75.1959
and the optimized RBF kernel parameter go is 0.014305. The fitness curve is shown in Figure 3.Energies 2019, 12, x FOR PEER REVIEW 12 of 18 
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5.2. Validation

In this section, the effectiveness of the method is verified for the case that recorded data is
incomplete and natural oscillations damping ratio is close to zero.

(a) Recorded data is incomplete

In actual events, the initial period of oscillation may not be recorded which leads to the incompletion
of recorded data. Therefore, both the initial period and steady period of LFO wave are tested and the
accuracy of the training models are verified.

Batch simulation of two types of oscillations are carried out in the 179-bus system. Typical natural
oscillations are shown in Figure 4 and typical forced oscillations are shown in Figure 5. The data of
0–8 s is taken as the initial period waveform and the data of 10–18 s is taken as steady period waveform.
The oscillations of 0–8 s are termed as ‘initial oscillations’ and the oscillations of 10–18 s are termed as
‘steady oscillations’ in this paper. The reason for this is that the initial period of oscillations contains
many components with small time constants, which will attenuate quickly. After these components
attenuate, the remained components will sustain for longer time, which are hence considered as the
steady oscillations. The training group are trained by SVM without parameter optimization and
GA-SVM, respectively. The model accuracy of the LFO type identification models is shown in Table 6.
It can be seen that GA-SVM has a higher identification accuracy for the incomplete recording data.
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Table 6. Model identification accuracy.

Type of Recorded Data Traditional SVM Accuracy GA-SVM Accuracy

Initial period 94% 100%
Steady period 92% 99%

(b) Damping ratio is close to zero

For the case where natural oscillations damping ratio is close to 0, the waveform (as shown in
Figure 6) is very similar to the forced oscillations. The feature subset of samples containing the natural
oscillations which damping ratio is close to 0 is calculated, and then the training model is utilized
to identify the oscillation type. By the test, the method successfully identifies that the oscillation in
Figure 6 is natural oscillations.
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(c) ISO New England and East China Power Grid

Unlike in small system, the waveforms of LFOs happened in actual large interconnected power
systems are often irregular due to the complexity of the power system and the diversity of disturbances.
In order to verify the practicability of the proposed method in actual power system, the method is
applied to the oscillation data of ISO New England and East China power grid. In addition, to further
improve the accuracy of LFO type identification model applied to actual power systems, oscillation
data of actual system is also added into the training group to improve the generalization ability of
the model.

An actual LFOs event shown in Figure 7 is used to validate the applicability of the method.
The LFOs happened in New England on 17 June 2016 and its type is forced oscillations [35]. It is a
near-resonance condition with a system-wide natural oscillatory mode caused by a large generator.
Its peak-to-peak magnitude reaches 27 MW and the frequency is 0.27 Hz. Figure 7 shows that the
waveform is relatively stable between 40 s and 80 s, so this period of oscillating data is chosen as
an actual sample. The proposed method is applied to the data and the discriminant result is forced
oscillations, which is consistent with the actual situation.
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Test cases of natural oscillations and forced oscillations in East China power grid are used to verify
the proposed method. A natural oscillations event in East China power grid is shown in Figure 8,
and it is the active power of ZTS generator in Zhejiang Province. These natural oscillation events
are caused by a three-phase short circuit lasting 0.04 s at bus ZTS in Zhejiang Province. According
to small signal stability analysis in East China power grid, ZTS mainly participates in an oscillation
mode that the frequency is 1.55 Hz and the damping ratio is 0.001. Besides, the frequency of the
oscillation curve in Figure 8 at the steady oscillations state is 1.55 Hz by frequency domain analysis.
Therefore, it can be considered that this LFO event is caused by the three-phase short circuit inducing
the near-zero oscillation mode. After calculating the feature indexes of the waveform and inputting
the feature indexes to the LFO identification model, the discriminant result also shows that this is a
natural oscillation event, which is consistent with the actual situation.
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which is successfully identified as natural oscillation by the proposed method.

Another forced oscillation event in East China power grid is adopted to verify the proposed
method. The forced oscillation event is caused by a sinusoidal disturbance of 0.70 Hz at SHJ generator
in Jiangsu Province, since there is an oscillation mode of 0.70 Hz between Jiangsu and Shanghai.
Large oscillations of the HXB generator in Shanghai are induced and Figure 9 shows the active power
waveform of HXB generator. The maximum oscillation amplitude is about 0.18 pu and the frequency
is 0.70 Hz. By applying the proposed method to the oscillations data, the LFO type is identified as
forced oscillation, which is in accordance with the actual situation.
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6. Conclusions and Future Work

In this paper, the multi-dimensional characteristics of oscillation data are firstly proposed to
characterize LFOs. By using ReliefF-mRMR to extract features from oscillating samples and GA-SVM
to train the recognition model, the feature subset with minimum redundancy and the model with
high identification accuracy can be obtained. In addition to consideration of measurement noise,
the training samples with damping ratio close to 0—which are difficult for identifying the type of LFO
by previous methods—are also added to enhance the identification accuracy of the oscillation type
identification model. Finally, the cases of incomplete data and damping ratio close to 0 are verified,
the results indicate that this approach has high robustness and noise immunity. The identification
accuracy of the training model is validated with the data of actual power grid. The validation results
show that the method has strong practicability.

Future studies can be also further developed for the location of oscillation sources based on
proposed method.
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