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Abstract: This work develops a deep-learning-based cooperative localization technique for high
localization accuracy and real-time operation in vehicular networks. In cooperative localization,
the noisy observation of the pairwise distance and the angle between vehicles causes nonlinear
optimization problems. To handle such a nonlinear optimization task at each vehicle, a deep neural
network (DNN) technique is to replace a cumbersome solution of nonlinear optimization along with
the saving of the computational loads. Simulation results demonstrate that the proposed technique
attains some performance gain in localization accuracy and computational complexity as compared
to existing cooperative localization techniques.

Keywords: cooperative localization; deep neural network; internet of vehicle; multilateration;
vehicular networks

1. Introduction

As vehicular networks, in which the internet of vehicle (IoV) technology is considered, have been
developed, a localization technique for accurate positioning is demanded. Most of well-known vehicle
localization techniques resort to global navigation satellite systems (GNSS). However, it is also known
that GNSS itself is not sufficient for autonomous driving for its limited accuracy and availability
in urban and indoor areas [1]. To localize the vehicle when the GNSS signal is blocked, there have
been a number of localization techniques [2,3] that mostly require the distance and angle from the
base station. In addition, several cooperative localization techniques are additionally developed [4,5].
In [4], the extended Kalman filter with the information graph is applied to carry out the location
estimation in a round robin manner with geolocation information of round trip time (RTT) from the
received signal. The sum–product algorithm [6,7] over a wireless network (SPAWN) is developed
for calculating the marginal posterior distribution of the position of a target node [5]. Although
such a Bayesian-based cooperation attains high localization accuracy, it also poses several challenges
regarding the computational complexity in calculating and representing the posterior distributions.

For solving the complexity problem, a variety of algorithms [8–11] are developed with the
assumption that the propagated probability distribution is Gaussian, but high non-linearity of
the angle measurement is not considered. Very recently, an optimization technique based on an
alternating direction multiplier method was developed [12] for further saving of computational
efforts in cooperation. In addition, the connectivity among vehicles enhances the performance of
the message-passing-based cooperative localization algorithm [13]. However, when it comes to
simultaneous consideration of computational complexity saving and performance improvement,
a number of technical challenges still remain.

During the past decade, deep learning technology has become a promising alternative to handle
complicated technical tasks in various applications [14,15]. Furthermore, the use of deep learning
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in wireless communication in vehicular networks began to appear recently [16–19]. In [16], deep
learning proves promising in MIMO, femtocell, and device-to-device (D2D) technologies with the
upcoming deployment of the 5G network. Also, a success in land detection and driving assistance in
vehicular networks has been made via a deep learning technique [18]. Along with various applications
in vehicular networks [20–22], the localization in IoV network is not an exception. A fingerprinting
technique for online positioning through received signal strength intensity (RSSI) data collection of
location information offline is applied to deep learning localization [23,24]. A method which classifies
a position matched with RSSI data using a deep neural network (DNN) is used. Deep learning is also
applied to classify the LoS/NLoS of the communication signal to improve localization accuracy [25].

In this paper, we develop the deep-neural network (DNN) technique to mitigate the computational
complexity while sustaining the localization accuracy. For training the DNN, we design geometric
measurements between two vehicles and relative locations of the vehicle as the input data and the
output data, respectively. The structural similarity between DNN and cooperative localization in that
nonlinear objective is decomposed into various sets of hidden layers [20], which enables the DNN to
tackle the non-linearity in the localization function. This work elaborates a cooperation approach of
incorporating the DNN technique with the proposed cooperative localization challenge. The DNN
enables us to solve a chronic nonlinear approximation problem, and enhance the computational
complexity. The DNN-assisted relative localization is then combined in a round robin manner to
cooperatively localize all the vehicles in the networks. We demonstrate that the proposed DNN
technique improves localization accuracy and also complexity of cooperative localization in the
vehicular network.

2. Problem Formulation

We consider a two dimensional vehicular network, where I vehicles are deployed. It is assumed
that all vehicles communicate with each other, so that all vehicles are connected via peer-to-peer
fashion. Let us also assume that the vehicle observes the distance and angle of arrival (AoA) from
its neighboring vehicles within the range of drange, and the distance and AoA measurements are
provided by the sensor on the board of the vehicle. There is no data fusion center which collects
the measurements from distributed vehicles and calculates location of each vehicle. The vehicle
gathers measurements from other vehicles, and then cooperatively estimates own location. Here, drange

indicates maximum range that the distance and angle sensing is possible. In our vehicular network,
the vehicle index i and j indicate the target and its neighbors, respectively. The location of the i-th
vehicle is denoted by xi = [xi, yi]

T, and the location of the j-th vehicle is represented in a similar
notation. The pairwise distance between the i-th and j-th vehicle is given by di,j = |xi − xj|2. The AoA
at the i-th to j-th vehicle is given by θi→j = arctan{(yj− yi)/(xj− xi)}. In addition, a set containing the
indices of neighboring vehicles connected to the i-th vehicle is denoted by Ni. The pairwise distance
at the i-th to j-th vehicle [26] that undergoes the measurement noise is denoted by zdi→j

= di,j + ndi,j

where the distance measurement noise ndi,j
is a zero-mean Gaussian random variable with standard

deviation σdi,j
= (di,j/drange)σd [27]. The distance measurement error becomes larger as the distance

between the vehicles increases. The AoA is measured by determining the direction of the propagation
of an incoming radio frequency wave. When all vehicles are connected via peer-to-peer manner,
then all vehicles observe the measurement its neighboring vehicles. Figure 1 represents the vehicular
network where 4 vehicles are deployed, and vehicle 2 observes distance and angle measurements from
neighboring vehicles. The corresponding AoA at the i-th to the j-th vehicle is given by zθi→j = θi→j + nθ ,
where the AoA measurement noise nθ is zero-mean Gaussian random variable with standard deviation
σθ . Given the distance and AoA measurements, likelihood functions p(zdi→j

|xi, xj) and p(zθi→j |xi, xj)

corresponding to measurements are easily derived as
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p(zdi→j
|xi, xj) =

1√
2πσd

2
exp

{
−
|zdi→j

− di,j|2

2σ2
d

}
,

p(zθi→j |xi, xj) =
1√

2πσθ
2

exp

{
−
|zθi→j − θi→j|2

2σ2
θ

}
,

(1)

with distance likelihood function and AoA likelihood function, the relative likelihood function between
two vehicles can be derived as

p(zi→j|xi, xj) ∝ p(zdi→j
|xi, xj)p(zθi→j |xi, xj), (2)

where zi→j is a 2 by 1 measurement vector consisting of zdi→j
and zθi→j . Although the information of

the relative location can be calculated in this way, it is inefficient to compute with likelihood functions
between the vehicles due to the noise included in the measurement causes the high complexity
issues [13].

Figure 1. Vehicular network for cooperative localization. Vehicle 2 observes distance and angle
measurement from connected vehicles.

Given all measurements z consisting of zi→j ∀i, j on all vehicle locations x = [x1, . . . , xI ] and the
prior distribution p(x) = ∏I

i=1 p(xi), the well known posterior distribution p(x|z) is factorized as

p(x|z) ∝
I

∏
i=1

p(xi)
Ni

∏
j=1

p(zi→j|xi, xj). (3)

The vehicle location is estimated by the minimum mean square error or maximum a posterior
estimator from the marginal posterior distribution. The marginal posterior distribution for the i-th
vehicle is calculated as

p(xi|z) ∝ p(xi)
∫ Ni

∏
j=1

p(xj)p(zi→j|xi, xj)d ∼ {xi}, (4)

where ∼ {xi} is defined as integration over all variables except for xi. However, the calculation of
the marginal posterior distribution has implementation issues of the high computational complexity
regarding the localization accuracy or linear/Gaussian assumption of system regarding the complexity.
Considering the non-linearity/non-convexity of the likelihood function, it is trivial that one of the
challenges in cooperative localization is a measurement update. Thus, we employ the DNN technique
to overcome complexity issue, and the measurement update step (i.e., propagating the marginalized
message) is replaced with the DNN.
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3. Deep Learning-Based Approach in Cooperative Localization

3.1. DNN Architecture

To overcome the real-time implementation problem of cooperative localization, we choose the
DNN technique for our learning model which is one of the most commonly used supervised learning
methods. Our DNN model replaces the measurement update in our vehicular network and alleviates
the complexity of the algorithm. The proposed DNN system is pre-trained with a combination set of
input and output data related to the noisy measurement model. DNN architecture provides DNN
structure (consisting of input, output, and hidden layers), a size of DNN structure [28]. Datasets are
imported in the input and output layer for training the DNN [29], and details of dataset generation
will be dealt in Section 4.1. The linear regression model is selected for each layer, and they are fully
connected. The input layer consists of two nodes which are zdi→j

and zθi→j , and the output layer

consists of two nodes which are the x and y location of x̃l
j→i, where x̃l

j→i is defined as an intermediate
location estimate.

A ReLU function [29] is utilized as a activation functions, and a linear function [28] is adopted for
output layers. The ReLU function is one of activation functions that defined as the positive part of its
argument is g(h) = max(0, h), where h is the input to a neuron. Convergence of the weight component
in the DNN depends on the optimizer function. We choose an Adam optimizer which operates to
function to control the component of weight vector [30]. The nonlinear function is represented by the
hidden layer. The number of layers is set to three, and each hidden layer has 32 nodes.

We use the dropout and regularization method to prevent the overfitting problem [31]. Overfitting
is a phenomenon in which the error of actual data is increased by over-learning the learning data.
In general, the learning data is a subset of the actual data, and is difficult to solve because it is difficult
to collect all of the actual data. Predicting coordinates through learning is less accurate due to this
problem. Since estimating the location with deep learning has such inaccuracies, we applied dropout
and regularization to predict untrained locations. For details of the parameters used in our DNN
structure, refer to Table 1. The relative measurements between vehicles consist the dataset of DNN.
The distance and AoA measurements acquired pass through the DNN, and the relative location of the
vehicle is estimated. The model, which has used in the algorithm, is described in this paragraph, and
hyperparameters in Table 1.

Table 1. Hyperparameters of deep neural network (DNN).

Parameter Value

Batch size 100
Learning rate α 0.001

The number of hidden layers 3
The number of nodes at k-th hidden layer Hk 32

The number of nodes at input layer Lin 2
The number of nodes at output layer Lout 2

Regularization strength β 0.001
Activation Function ReLU, Linear

Optimizer Adam
epoch 10

Distance measurement error σd 1 m
AoA measurement error σθ 1◦

3.2. Algorithm Structure

The following description introduces details of the cooperative localization algorithm with the
proposed DNN dealt in the previous section. To solve the formulated problem (4), we adopt the
iterative message passing intuition [12]. Figure 2 shows the scenario of the proposed algorithm which
is performed over L iterations until the updated location converges.
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Let the i-th vehicle variable initially take prior information ∼ N (x̂0
i , Σ0), where Σ0 is a diagonal

matrix with identical diagonal entries σ2
0 . At the l-th iteration, vehicle variable node receives the

message x̃l
j→i which is determined in the measurement update via DNN from neighboring factor

nodes j ∈ Ni. The message emanating from a variable node is calculated by equating all input
messages, which correspond to minimizing the sum of squared error given by

q(x̂l
i) =

‖x̂l
i − x̂0

i ‖
2

2 det |Σ0|
+ ∑

j∈Ni

‖x̂l
i − x̃l

j→i‖2

2σ2 , (5)

where σ is the square-root of the cost function for evaluating the data training in DNN. The cost
function is defined as

σ2 =
1
M ∑

m∈ΩM

|x̄m − xm|2, (6)

where xm is the m-th target data point, and x̄m is the output. M is the number of data points, and ΩM
is a set of the data point. Since the function q(x̂l

i) is convex with respect to x̂l
i , the optimal value of x̃l

i is
calculated by solving a linear equation associated with the derivative of (5) equal to zero. The resulting
x̂l

i corresponding to the location estimate of the i-th vehicle is given by

x̂l
i =δx̂l−1

i + (1− δ)


1

det |Σ0|
1

det |Σ0|
+

I − 1
σ2

x̂0
i + ∑

j∈Ni

1
σ2

1
det |Σ0|

+
I − 1

σ2

x̃l
j→i

 , (7)

where xl−1
i is the up-to-date location at the previous iteration. Here, the updated message is obtained

from a linear combination of the message at the previous iteration x̂l−1
i and the message evaluated at

the current iteration x̃l
i with coefficients δ and 1− δ, respectively. Such a damping technique reduces

the fluctuation of the updated messages at each iteration to improve the convergence of the algorithm.
In every iteration, we consider the up-to-date location x̃l

j→i since each location is sequentially updated
in a round-robin scheduling. The proposed algorithm is described in Algorithm 1.

Algorithm 1 Proposed cooperative localization via deep neural network (DNN).

1: given x̂0
i , ∀i

2: for i = 1 to I do
3: measure the relative distance zdi→j

and AoA zθi→j to j-th vehicle, ∀j ∈ Ni
4: end for
5: for l = 1 to L do
6: for i = 1 to I do
7: receive the up-to-date location of neighbor vehicles, ∀j ∈ Ni
8: obtain the intermediate location of the i-th vehicle relative to j-th vehicle x̃l

j→i with

DNN, ∀j ∈ Ni
9: update location estimate using (7).

10: end for
11: end for
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Figure 2. Deep neural network (DNN)-assisted cooperative and distributed localization
algorithm scheme.

4. Simulation and Discussions

4.1. Dataset for Training the DNN

Generating datasets were required to train the DNN. We considered vehicular networks as a
circular shaped area with a radius of 50 m in two dimensional space. As our DNN aims to obtain
the relative location given two prior locations and relative measurements between them, a quadrants
circular sector shaped area with a center at [0, 0]T (shown in Figure 3) was utilized in generating
datasets for preventing duplicated data training. We defined a dataset between vehicle i at the center
and j as Di,j = {xi, xj, zdi→j

, zθi→j}. The points at which a neighbor vehicle was relatively located

with respect to the central vehicle at [0, 0]T, is [d cos θ, d sin θ]T, where d ∈ {1 m, 2 m, . . . , 50 m}
and θ ∈ {0◦, 1◦, . . . , 90◦}. To generate the relative measurements, we have added the additive white
Gaussian noise to each distance and angle. Specifically, we assume that the error of the distance
measurement becomes larger as the distance between vehicles increases. It is based on the fact that the
SNR increases as the distance between vehicles becomes shorter to yield better time delay estimation.
Therefore, the noisy distance in the dataset is given arbitrarily as d + dNd/50 where Nd is a zero mean
Gaussian variable with the variance σ2

d . The standard deviation of the measurement noise σd and σθ

are respectively set to 1 m and 1◦, and the prior location variance set to 100 m2.

Figure 3. Location error representation of the trained DNN with respect to epochs.

The mean squared error (MSE) method was used to measure the training loss, and we chose
Adam as the optimizer. All parameters for DNN architecture were selected to decrease the training
loss. Other optimized hyperparameters for the proposed DNN are summarized in Table 1. One epoch
indicates the number of datasets for training, and was set to 4550. The data training was performed
via Tensorflow.
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4.2. Performance Evaluation of Trained DNN

In this section, we show that the proposed DNN technique was successfully applied to the
nonlinear function for the measurement update. For evaluating the trained DNN performance as
discussed in Section 4.1, the 1000 location samples were randomly generated in the circular area
with a radius of 50 m. Considering fact that our dataset has the distance increment of 1 m and the
angle increment of 1◦, thus the trained DNN is tested. To test the trained DNN, the errors of the
output layer were analyzed when the measurements at two points, randomly chosen in the test region,
were imported in the input layer. The test region is the quadrants circular sector area introduced in
Section 4.1. Figure 3 shows the analyzed error in the trained DNN. It is clearly shown that the location
errors were significantly reduced as the number of epochs increased. The center areas of the test region
were trained faster than the edge area. Hence, the edge area had a relative difficulty in learning.

Figure 4 shows the cumulative distribution function (CDF) of the location error with respect to
the different number of epoch. The location error for evaluating the trained DNN was measured by the
distance between the true location and the output location of the trained DNN. It is clearly shown that
the location errors were significantly reduced as the number of epoch increases. As the number of the
epoch increased, the DNN became closer to the learning model. For one epoch training, the CDF of the
localization error within 1 m was about 0.5. After 10 epochs training, the CDF of the localization error
within 1 m was over 0.8. From this result, it is clearly shown that our DNN was reasonably trained.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Figure 4. Localization accuracy of the proposed DNN technique.

4.3. Performance of DNN-Assisted Cooperative Localization

We compared our proposed scheme with SPAWN [5] and multilateration (MULT). SPAWN [5] is
a cooperative localization algorithm with an Bayesian approach. In SPAWN, to estimate the location of
the node, the posterior distribution (3) is calculated, and the belief for implementation is performed by
the particle filter. The location estimates by MULT is calculated as

x̂i =
1
Ni

∑
j∈Ni

[
zdi→j

cos(zθi→j), zdi→j
sin(zθi→j)

]T. (8)
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Figure 5 shows the CDF of the localization error for demonstrating the effectiveness of
DNN-assisted cooperative localization compared to SPAWN and MULT. The number of vehicles
I and iterations L were respectively set to 4 and 10. The performance was averaged by 1000 Monte
Carlo runs. In SPAWN, the number of used particles was set to 100 for each vehicle, and we chose
kernel density estimation for implementing the belief. We analyzed the amount of multiplication of
the proposed scheme with SPAWN as shown in Table 2. The computational complexity was analyzed
by the number of operations. The complexity of SPAWN CSPAWN was determined as (IG + G2)( I

2)PL,
where G is the number of grid points and P is the number of particles of each node. The ( I

2) is
defined as the a pair-combination of I vehicles. For the proposed algorithm, the complexity Cproposed

is represented as (LinH1 + H1H2 + H2H3 + H3Lout)(
I
2)L, where Lin and Lout are the number of nodes

at both input and output layers, respectively. Hk is the number of nodes at k-th hidden layer. The
location of vehicles was not a determined value in the network, therefore the x-axis of the Figure 5 is
considered to be a relative localization error. The average localization error for the proposed model
was 0.8937 m, MULT is 1.4289 m, and SPAWN was 0.8926 m. It is clearly shown that our proposed
DNN-assisted cooperative localization has significant gain in the computational complexity while
sustaining the localization accuracy.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Figure 5. Localization accuracy of the DNN-assisted cooperative localization scheme.

Table 2. Computational complexity of DNN-assisted cooperative localization compared to SPAWN.

Number of Vehicles I 4 5 6 7 8 9

DNN 1.306 × 105 2.176 × 105 3.264 × 105 4.570 × 105 6.093 × 105 7.834 × 105

SPAWN 7.505 ×10 10 1.251 ×10 11 1.877 × 1011 2.628 × 1011 3.505 × 1011 4.507 × 1011

5. Conclusions

In this paper, we propose DNN-assisted cooperative localization in vehicular networks.
We elaborate the cooperation procedure to the incorporate DNN in the proposed cooperative
localization scheme. By using DNN, we were able to solve a chronic nonlinear approximation problem,
and enhance the computational complexity. The greatest advantage of the proposed scheme with
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DNN is that the cooperative localization becomes much simpler and faster after proper learning
with a minimal performance degradation. We expect the proposed scheme will be able to assist the
autonomous or self driving vehicles in the future IoV environment.
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