
energies

Article

Sensor-Based Early Activity Recognition Inside
Buildings to Support Energy and Comfort
Management Systems

Francesca Marcello 1,†, Virginia Pilloni 1,2,*,† and Daniele Giusto 1,2

1 Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, 09123 Cagliari, Italy
2 National Telecommunication Inter University Consortium (CNIT), Research Unit of Cagliari,

09123 Cagliari, Italy
* Correspondence: virginia.pilloni@diee.unica.it
† These authors contributed equally to this work.

Received: 20 June 2019; Accepted: 5 July 2019; Published: 9 July 2019
����������
�������

Abstract: Building Energy and Comfort Management (BECM) systems have the potential
to considerably reduce costs related to energy consumption and improve the efficiency of resource
exploitation, by implementing strategies for resource management and control and policies
for Demand-Side Management (DSM). One of the main requirements for such systems is to be
able to adapt their management decisions to the users’ specific habits and preferences, even when
they change over time. This feature is fundamental to prevent users’ disaffection and the gradual
abandonment of the system. In this paper, a sensor-based system for analysis of user habits and
early detection and prediction of user activities is presented. To improve the resulting accuracy,
the system incorporates statistics related to other relevant external conditions that have been observed
to be correlated (e.g., time of the day). Performance evaluation on a real use case proves that the
proposed system enables early recognition of activities after only 10 sensor events with an accuracy
of 81%. Furthermore, the correlation between activities can be used to predict the next activity
with an accuracy of about 60%.

Keywords: activity recognition; activity detection; activity prediction; smart building; energy and
comfort management

1. Introduction

Smart buildings are characterized by the presence of sensors, actuators, and smart devices
that give the opportunity to monitor and remotely control key equipment within buildings [1].
This is the concept behind Smart Building Energy and Comfort Management (BECM) systems [2,3].
In such an intelligent scenario, one of the major goals is to provide decision-support tools that support
users in making cost-effective decisions in terms of energy consumption [4]. As a matter of fact,
domestic electricity usage accounts for about 40% of the global energy consumption and contributes
over 30% of total greenhouse gas emissions [5]. Nevertheless, user comfort is crucial when policies
of Demand-Side Management (DSM) are put in place [6]. Indeed, a system that optimizes energy
consumption without considering user preferences and habits about appliance usage quickly leads
to user disaffection from the system and abandonment of it. Currently, most of the literature considers
user comfort as a set of hard constraints on appliance usage, which are a priori set considering general
statistics [7,8]. This approach neglects the fact that users are likely not only to have different subjective
requirements with respect to the others, but they also dynamically change over time.

In this paper, user preferences and habits about appliance usage are inferred by monitoring
them using sensors deployed inside the reference buildings. The first phase consists of analyzing
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the correlation between the information gathered from sensors and users’ activities. The approach
proposed in this paper is based on the classifier presented by Krishnan and Cook in [9], which
recognizes activities based on sequences of sensor events. Nevertheless, as it will be better explained
in the following, in order to improve accuracy, the classifier included in the proposed framework is
enhanced with other significant information provided by statistics related to the monitored events.
Accordingly, a profile specific to the monitored user is created, which enables early recognition
of activities after only 10 sensor events with an accuracy of 81%. Furthermore, the correlation between
activities can be used to predict the next activity with an accuracy of about 60%.

The main contributions provided by this paper can be summarized as follows:

• an analysis is performed to study the correlation not only between users’ activities and sensor
events, but also between sensor events and other components that describe the context, and the
mutual correlation of activities;

• an activity recognition algorithm is proposed. The correlation between sensor events
and components describing the context is used in the classifier to improve the accuracy
of the activity recognition algorithm;

• based on the results of the activity recognition algorithm and statistics about mutual correlation
of activities, subsequent activities can be predicted;

• a framework that uses activity recognition and prediction as the main component of a BECM
system is described.

The remainder of the paper is organized as follows. Section 2 presents past works and the required
background. In Section 3 an overview of the considered system model is provided. Section 4
presents in detail the activity recognition algorithm that enables the early detection and prediction
of users’ activities. Section 5 describes the reference use case considered to test the performance
of the system. Finally, in Section 6 a performance analysis is provided, and conclusions and final
remarks are drawn in Section 7.

2. Background

2.1. Smart Building Energy and Comfort Management Systems

Smart technologies can be used in all kinds of different buildings (i.e., residential, office, and retail
sectors) to improve the comfort and the safety of people in their home, concerning various topic,
from healthcare and providing living assistance, to environmental monitoring and ensuring energy
saving. Accordingly, BECM systems have the objective of combining power consumption minimization
while preserving user comfort [2,10]. This issue has been addressed by researchers from many different
perspectives. In [11] a system for intelligent energy management in buildings is proposed. It presents
semantic modeling that integrates all the entities that constitute the environment of a Smart Building
exploiting Internet of Thing (IoT) paradigm. The IoT-based system integrates different systems
and makes use of various types of real-time data from different sources to achieve the common objective
of the intelligent management of the building. In [12] a tool that provides effective automation and
control of heating/cooling, ventilation/air conditioning and lighting and that uses optimization
techniques to minimize energy consumption is proposed. The interactive system presented achieves
a significant decrease in the operating cost of A/C system in a tertiary sector building, while
maintaining desirable comfort taking into account two different time periods (peak hours and non-peak
hours), a number of different zones and the end-user’s preferences. The authors in [13] propose
a multi-agent control system for integrated buildings and microgrids, which exploits Renewable
Energy Sources (RES) efficiently among the agents. In [7], an algorithm for Distributed Energy
Resources (DER) management is proposed to shave peak demand and increase energy efficiency in
smart home environments. Customer comfort is considered to be a constraint on time preference ranges
to run their appliances. A similar approach was presented in [8], where user preferences are expressed
also in terms of indoor temperature and lightning. Furthermore, dynamic pricing is considered



Energies 2019, 12, 2631 3 of 18

to optimize DSM. The authors in [2], after a review of control systems for energy management and
comfort in buildings, also present the architecture of a multi-agent control system that manages the
user’s preferences for thermal and lighting comfort, indoor air quality, and energy conservation.
The system is based on a master-slave coordination mechanism to perform different tasks. In [14],
an algorithm for thermostatically controlled household loads based on price and consumption forecasts
of grid energy is presented. The optimization by means of the algorithm proposed in [14] takes into
account the trade-off between customer comfort and cost of energy, by setting minimum and maximum
boundaries for the thermal comfort. These boundaries are taken as hard constraints for a priori setting
but a background on customer comfort profiling lacks. Collotta and Pau propose a BECM system
in [15], where the management is based on a Fuzzy Logic Controller (FLC) which adaptively adjusts
appliance starting times based on users’ feedback. The issue of scheduling appliances according to user
preferences was also addressed by [4], where Quality of Experience (QoE) is measured as a function
of the interval between the preferred and proposed appliance starting time for switching controlled
loads (e.g., washing machines and clothes dryers), and as a function of the interval between the
preferred and proposed temperature for thermostatically controlled loads (e.g., Heating, Ventilation
and Air Conditioning (HVAC) and water heaters). The system takes into account both dynamic pricing
and RES production.

It is evident that user preferences and habits severely affect results of BECM systems. Indeed,
BECM systems that only consider energy cost minimization may switch appliances on/off too early
or too late. This is the case, for example, of a dishwasher that does not finish its cycle before dinnertime,
or an HVAC that is switched off earlier than what the user considers thermal comfort. For this reason,
in recent years researchers have started to observe users’ behavior, in order to infer their habits
and preferences.

2.2. Activity Recognition in Smart Buildings

As discussed in the previous subsection, BECM systems should be able to discover and predict
users’ habits and course of actions. The monitoring of activities of people in their home can
be done by analyzing data that can be gathered with different technologies. Given the rapid
development of sensor technology, wireless transmission technology, network communication
technology, cloud computing, and smart mobile devices, large amounts of digitized information have
been accumulated and the volume of data is growing rapidly with increasingly complex structures and
forms [16]. The energy big data provides a new way to analyze and understand individuals’ energy
consumption behavior, improve energy efficiency, and promote energy conservation. Integration of
big data technologies will help make the grid more efficient and it will fundamentally change the way
in which regulators, utilities, grid operators, and end-users would interact [17,18].

In many cases, cameras and wearable sensors are used to collect all the information of interest
and to understand what someone is doing [19]. These solutions present some problems because people
are often not inclined to accept those devices [20]. Some studies are based on the data that are provided
by phone accelerometer and gyroscope to understand repetitive body motions (walking, running,
sitting) [21]. This solution is not very practical in home scenarios, where residents do not always take
their phone with them. To monitor what activities people are performing in their house, non-intrusive
sensors are often preferred: typical devices that are installed in the environment are motion sensors,
door sensors or temperature and pressure sensors [22,23].

The authors in [24] propose the use of 3D depth sensors to detect user occupancy and profile their
habits. The aim of the paper is to use this information to control HVAC and lighting, according
to occupants’ usual behavior. The relation between occupancy, energy consumption and users’
comfort is also investigated in [25], where the Multi-Agent Comfort and Energy Management System
is proposed. Along with building devices, MACES also considers occupants as active participants
in the building energy reduction strategy and attempts to implement more energy conscious occupant
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planning. This occupant planning is carried out using multi-objective Markov-Decision Problems
(MDPs) to model the uncertainty of agent decisions and interactions.

An interesting approach for energy-consuming activity recognition is proposed in [26],
where social media posts are analyzed to automatically extract information and describe
energy-consuming activities.

In [27] the authors focus on the activity discovering problem, proposing an approach to build
a model under the form of Hidden Markov Model (HMM), from a training database of observed events
emitted by binary sensors, without the knowledge of actions really performed during the learning
period. The discovering problem is presented also in [28,29], where a Discontinuous Varied-Order
Sequential Miner (DVSM) algorithm is used to discover frequent activities that are continuously
recorded in a smart environment and combined with a clustering algorithm to find frequent occurrences
of activities and cluster familiar patterns together.

In [9], 4 algorithms that can identify the activities while they are being performed are proposed.
In this work, activities are recognized even if they are done in an interleaved and concurrent manner.
The models used in the proposed algorithms are a Naïve Bayes Classifier, an HMM with a time window,
a frequency-based HMM with a sliding window and a frequency-based HMM with a shifting window.
These algorithms have been later used in [30] to predict activities with the aim of controlling buildings
to reduce energy consumption.

The problem of multi-resident activity recognition based on the use of non-intrusive sensors,
along with smartphone-based sensed data, is also addressed in [31]. The approach used in this paper
aims to exploit body-worn smartphone sensors to infer person-specific context that can be correlated
with activity detected from ambient sensors. Other models for multi-resident activity recognition
based on the use of non-intrusive sensors are proposed in [32]. In this paper the authors adopted
three different directed graphical models including Poisson HMMs, coupled HMMs, and dynamic
Bayesian networks, extended from coupled HMM by adding some vertices, to identify both individual
and cooperative activities. A solution for multi-resident environments is given in [33] too, where they
perform the tracking of people and recognition of activities by using different binary sensors and RFID
to know the identity of the occupants as they enter or leave the environment.

2.3. Background on Activity Recognition

The data collected from sensors inside resident houses are analyzed using data mining
and machine learning techniques to build activity models that are used as the basis of behavioral
activity recognition. Feature extraction from the sequence of sensor events is a key step to better
modeling and then recognizing human activities. In [34] four methods used to extract features
for online recognition on streamed data are presented. With their approach, the authors can recognize
activities while new sensor events are recorded.

A comparison of classification approaches for activity recognition is provided in [35,36].
As introduced in the previous subsection, with reference to modeling and classification methods
researchers have investigated the recognition of resident activities using a variety of mechanisms,
such as naïve Bayes classifiers, Markov models, and dynamic Bayes networks.

The various models and algorithms can give different performance results depending on the
input data or on the implemented system. Usually, the results are adequately comparable, with one
model giving better results in the recognition of some specific activities or using one specific dataset,
and others giving better performance recognizing other activities or analyzing other datasets [37].
In multiple cases, in spite of its simple design and simplified assumptions, naïve Bayes classifiers often
work much better than expected, especially when a specific group of sensors can easily be identified
as characteristic of a certain activity [9].

Starting from the approach presented in [9] and from the analysis of sequences of sensor events
for activity recognition solution, in this paper a system that adds statistics information about the context
in which these activities are occurring, in order to improve their own recognition, is proposed.
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The ultimate goal of the system is to obtain a profile according to users’ habits, which allows gaining
personalized management of the whole system. Many systems in the literature propose management
strategies focused on energy consumption and consider users’ comfort, but they tend not to evaluate
user activities in every daily aspect in order to learn specific habits and behavior and guarantee
ad-hoc solutions.

3. System Model

The reference scenario considered in this paper is that of a BECM system that leverages distributed
smart home sensor networks to elaborate user profiles that are later used to manage and control
buildings. More specifically, sensors are used to make observations, report events that are detected in
the building and that can be associated with users’ actions, and learn which sets of detected events
can identify specific activities. Therefore, the BECM system can predict users’ activities based on their
previous monitored actions, and make appropriate management decisions accordingly.

A fundamental step to achieve energy cost savings is the identification of possible causes of
energy waste. The BECM system controls all energy consumption components (electric, gas, water)
inside the buildings and plans specific actions aimed at reducing waste. A large number of home
devices increase power consumption in two aspects: standby power and normal operation power.
When high energy demand is detected, the less important loads, such as standby power mode devices,
could be disconnected from the electricity grid. Around 10% of the total household power is consumed
during the standby power mode [38]. The reduction of standby power is greatly necessary to reduce
the electricity cost at home. Thanks to IoT networks, appliances such as washing machines and
dishwashers can gather information about different energy prices related to different times of the day,
thereby the system can automatically program them for the most convenient times. Air conditioning
and heating systems should be monitored to guarantee desirable temperatures in all environments
and to avoid unnecessary use. The BECM system records the inhabitants’ preferences adapting itself
to their way of life.

A system of this type must also be able to know the users’ habits, in order to make coherent
scheduling in the management of equipment and appliances, and because their activities and behavior
have a considerable impact on energy consumption.

The whole system is therefore divided into several modules, each of them with specific features
depending on the different tasks pertaining to them. Figure 1 shows the overall architecture
of the system and how the modules interact with each other.

The “Acquisition Module” is the one that gets raw data from the sensors. The data are stored
in a structured database with information about the sensors and their value, as well as the date
and time of the relative information. These data are then processed and manipulated by the “Activity
Recognition Module”. This module can be organized into two separate tasks. At first, the data are
used to understand users’ behavior and to make models of the different activities usually performed;
at a later time, the module has to recognize occurring activities based on previously created models.
All the information about resident habits and preferences is provided as the output of this module.
This information is then used by the “Energy and Comfort Management Module” to monitor and act
on appliances and devices according to a precise scheduling algorithm based on user profiles and on
activities performed. Indeed, each activity can be associated with a specific set of appliances that are
turned on or adjusted accordingly. Table 1 includes the details of the most typical home appliances,
along with their probability to be available at home in Italy [4]. Based on the activity recognition and/or
prediction results, the appliances can be scheduled to improve energy savings and/or users’ comfort [4].
The decisions taken by this last module can operate on the system automatically, via commands sent
to actuators, or they can be translated in useful advice sent to the user through some interface. All
the described modules are integrated into an intelligent device that oversees the data storage and the
control of the building, either locally or in the cloud [39,40].
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Figure 1. Integration of the activity recognition system inside a BECM system.

Table 1. Characteristic parameters of the most typical home appliances [4].

Name Power [Wh] Mean Execution Time [min] Probability to Have It

Fridge/freezer 70 Always on 100%

Lighting 40 Always on when someone is at home 100%

PC/laptop 50 150 95%

TV 30 210 100%

Game console 90 120 5%

Hair dryer 1500 15 100%

Iron 1100 20 100%

Microwave oven 1000 90 52%

Washing machine 600 130 86%

Dishwasher 400 160 34%

Clothes dryer 1300 90 8%

Electric oven 2000 15 53%

HVAC 1000 Always on when someone is at home 31%

Water heater 2000 Always on 50%

As an explanatory example, suppose that according to their profile, a user usually wakes up,
then has a coffee watching TV, and later takes a shower with the bathroom heater on. Furthermore,
suppose that the wake up activity is detected when the turn on the bedroom light event is identified
(i.e., the light sensor inside the user bedroom detects some light) after the sleep activity occurred. Since
the BECM system knows that the following activities are have a coffee, watch TV and take a shower, it can
increase the user’s comfort by: turning on the coffee machine as soon as the user wakes up, turning on
the TV right after the coffee is made, and at the same time turning on the water and bathroom heater
so that the water and room are warm when the user goes to the bathroom. Alternatively, the BECM
system can choose to switch water and bathroom heater on earlier if the energy cost is lower, based on
predictions about the usual morning routine of the user.

Figure 2 expresses the relationship between sensors, events, and activities. An event corresponds
to a change in the state of a sensor. Each sensor has several possible states, depending on the significant
values it measures; this is the case, for example, of a contact on a door, which has two different states
(e.g., OPEN, CLOSE): an event is registered whenever the contact changes its state from OPEN to
CLOSE and vice versa. On the other hand, a smart meter monitoring a washing machine can have
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multiple states: according to the measured power consumption, its related state can correspond to OFF
or to any wash cycle. Accordingly, an event is registered whenever the smart meter changes its state.

S1
S2

S3Sensors

Events

Activity

instances

Figure 2. Example of activities and relevant subdivision into actions and observations, in connection
with related sensors.

Let E = {ei} be the set of events that can be detected by sensors inside a house. An event is then
defined as the transition between possible states of the corresponding sensor monitoring that particular
situation. According to this vision, activities are composed of several events. Even though the events
that characterize an activity remain basically the same, their order may change when considering two
different observations of the same activity. For example, when preparing a meal one can open the
fridge to take the ingredients and then put a pan on the stove, or the same activity can be done in the
opposite order. For this reason, a generic activity Aj is modeled as the set of events that are usually
observed when the reference user performs it. Accordingly, an instance I jk(Aj, ts

k, te
k) of activity Aj

is defined as the array of events that are observed from the time ts
k the activity started to the time

te
k the activity finished. In the following sections, the process used to recognize the activities based

on the observed events will be described in detail.

4. Activity Recognition Algorithm

The set of events E is the basic set of information needed to understand what users are doing,
and as seen previously they are strongly connected to sensors activation. The proposed system is then
based on recognizing activities performed in smart environments from sequences of collected sensor
readings. The choice of which sensor types to use leads to different models and algorithms for solving
activity recognition problems because of different kinds of data, produced according to the type of
sensor that has to be manipulated in order to extract important information.

As seen in Section 2, the solutions for monitoring people in their home include: 1. cameras,
2. wearable sensors and 3. different kinds of ambient sensors. The first solution gives the type
of information with the highest accuracy, but it requires the heaviest process to manipulate images
and videos. Moreover, some people find problematic the idea of having cameras in their homes.
Wearable sensors give information about the physical state of a person, so it is possible to understand
simple actions, but it is harder to recognize more complex and complicated activities. Besides, there
could be problems if the users forgot to wear them. Ambient sensors produce data with a low
level of semantic information, but choosing only non-intrusive binary sensors is a better option for
experiments in real life so that there is no need for people to remember to always wear wearable
sensors or to be monitored with cameras.

The flowchart in Figure 3 expresses and clarifies all the steps of the proposed activity recognition
algorithm that are described in detail in the following lines. The algorithm is constituted by two
main phases: the training phase, during which the characteristics and statistics that describe how the
observed user performs the activities are created; the running phase, where the events are observed
and processed so that activities can be recognized by the classification module.



Energies 2019, 12, 2631 8 of 18

Considering 𝓔 = [𝑒1, 𝑒2, 𝑒3]
𝓘11 𝓐1, 𝑡1

𝑠, 𝑡1
𝑒 = 𝑒2, 𝑒1, 𝑒3, …

𝓘22 𝓐2, 𝑡2
𝑠, 𝑡2

𝑒 = 𝑒3, 𝑒1, 𝑒3, …
𝓘13(𝓐1, 𝑡3

𝑠, 𝑡3
𝑒) = 𝑒1, 𝑒2, 𝑒3, …

𝓕11 = 0.55 0.33 0.22
𝓕22 = [0.34 0.05 0.79]
𝓕13 = [0.51 0.35 0.18]

𝒎1 = mean𝑘 𝓕1𝑘 = 0.53 0.34 0.20
𝒎2 = mean𝑘 𝓕2𝑘 = [0.34 0.05 0.79]

𝑶𝑊 𝑡 = 𝑒1, 𝑒2, 𝑒1, 𝑒2, 𝑒3, 𝑒1 𝒇1
𝑊 = [0.50 0,33 0.17]

𝑆𝑗𝑧 =
σ𝑙 𝑚𝑗𝑙 ⋅ 𝑓𝑧𝑙

𝑊

σ𝑙 𝑚𝑗𝑙
2
⋅ σ𝑙 𝑓𝑧𝑙

𝑊 2

𝑆11 = 0.999 𝑆21 = 0.598

Training Phase

Classification

User is starting 𝑨𝟏

Γ1 = ҧ𝑡𝓐1

𝑠 , 𝜎𝓐1

𝑠 , ҧ𝑡𝓐1

𝑒 , 𝜎𝓐1

𝑒

Γ2 = ҧ𝑡𝓐2

𝑠 , 𝜎𝓐2

𝑠 , ҧ𝑡𝓐2

𝑒 , 𝜎𝓐2

𝑒

Check that

ҧ𝑡𝓐1

𝑠 − 𝛼 ⋅ 𝜎𝓐1

𝑠 ≤ 𝑡 ≤ ҧ𝑡𝓐1

𝑒 + 𝛼 ⋅ 𝜎𝓐1

𝑒 → OK
ҧ𝑡𝓐2

𝑠 − 𝛼 ⋅ 𝜎𝓐2

𝑠 ≤ 𝑡 ≤ ҧ𝑡𝓐2

𝑒 + 𝛼 ⋅ 𝜎𝓐2

𝑒 → OK

Running Phase

Figure 3. Flowchart of the steps for the activity recognition algorithm.

4.1. Training Phase

During the training phase, each activity instance is observed within a time window OA

included in {ts
k, te

k} and is defined by the sequence of sensor events, i.e., sensors that have
changed their state within the considered window. For each observed activity, a feature
vector F jk(I jk) = [ f1jk, f2jk, . . . , fijk, . . . ] is computed with the rates of event occurrences for each
sensor that is the number of events related to one specific sensor with respect to the total number
of events observed considering all the sensors within the time window OA. Then, for each type
of activity Aj, a model vector mj = meank(F jk) = [ f 1jk, f 2jk, . . . , f ijk] is defined such that the rates
of event occurrences of its sensors is the average rate for all the observed instances associated with the
same activity. This model vector mj is representative about the probability that a sensor is connected to
every activity. When an event associated with a sensor is counted for a certain number of times during
the observed sequence, it is possible to understand which activity is statistically more probable.

From raw data acquired by sensors, feature vectors that can be analyzed to perform classification
of activities are constructed. Every activity is strongly connected to a specific group of sensors that
change their states during a definite time span, as described in the previous section.

Furthermore, statistics Γj about relevant conditions that can be associated with the performed
activity Aj are evaluated and stored by the system. Indeed, activities are often performed within the
same time window (e.g., sleeping, preparing meals). Therefore, Γj includes the following statistics
aboutAj: the average starting and ending times ts

Aj
and te

Aj
, and their standard deviations σs

Aj
and σs

Aj
.

If there is more than one time window, statistics are generated for each observed time window.

4.2. Running Phase

After the probabilistic model is obtained, the system must recognize the activities performed
by evaluating which the most likely to be happening is. To this aim, a sensor-based windowing
implementation is considered [9]. This approach consists of dividing a sequence of incoming events
into subsequences using an observation window OW (t) starting at time t, which contains a certain
number of events equal to the sizeW of the aforesaid window. Another possible approach would have
been the time-based windowing, which consists of segmenting the incoming sequence of events using
a window of fixed temporal length [30]. This second approach is mostly used when analyzing data
coming from sensors such as gyroscope or accelerometer, because there is a constant amount of data
over time, while with binary sensors there could be moments without any sensor readings and some
stall phases. Since the proposed system uses this type of binary sensors, a sensor-based window has
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been chosen. The result is that every sensor is treated as a feature and is associated with a particular
activity based on its distribution probability to be in a sequence that is labeled with the name of that
activity. This is done by implementing a Naïve Bayes Classifier (NBC) [41]. This type of classifier
is based over the Bayes’ theorem of independence between features, so that the model is constructed
to find, for each activity Aj, the probability p that given a certain number of features, i.e., the set of
events, the class being observed is Aj:

p(Aj|E) (1)

Accordingly, for each sequence of events observed in the observation window OW , a feature
vector FW

z is computed similarly to the previous vector F jk of the training phase.
Finally, in the classification phase, the sequences of observed events are classified based on their

probability to belong to a given activity. To this, the possible activities to be associated with the
observed sequence of events are first filtered based on statistics Γj: only the activities that are usually
observed within a time window that includes the current observation window’s starting time t are
considered in the following step. Accordingly, the following condition needs to be fulfilled:

ts
Aj
− α · σs

Aj
≤ t ≤ ts

Aj
+ α · σs

Aj
(2)

where α is a weighting factor that adjusts the time window to be considered. Finally, the cosine
similarity Sjz between model vector mj and feature vector f W

z is calculated with the equation below
over the remaining activities, to evaluate which the more likely to be observed is:

Sjz =
∑i(mji · f W

zi )√
∑i(mji)2 ·

√
∑i( f W

zi )
2

(3)

The observed activity is then labeled as the activity that corresponds to the highest
cosine similarity.

5. Reference Use Case

The algorithm for modeling the activities and then discovering what the resident is doing
is implemented and tested using the Aruba real-word dataset from the CASAS smart environment
project of the Washington State University [37]. The data were collected from one smart apartment
provided with motion sensors, contact sensors in the doors or cabinets and temperature sensors.
Figure 4 shows the house plan of the apartment and the exact position of every sensor in the rooms.
The description provided by the CASAS project did not give information about the specifics of the
used sensor. Table 2 explains the number of sensors per type placed in each room. The values provided
by motion and contact sensors are Boolean, whereas the ones provided by temperature sensors are
numbers. There are two more sensors not listed in this table, one motion sensor and one contact sensor
because they are not located in a specific room, but they are linked to the entrance of the house.

To correctly evaluate the correlation between the sets of events and the observed user’s activities,
without interference from other people, a dataset with only one resident living in the home was
considered. The events decoded by these sensors are significant for recording elementary actions
that people are performing, for example, door sensors are easily associated with opening and closing
medical cabinet, food storage, or the entrance door, while with motion sensors it is possible to monitor
the presence of the resident in one room and the proximity with a specific object or piece of furniture.
The aggregation of these elementary actions defines one activity of interest.
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Figure 4. House plant of the apartment for the Aruba dataset [37].

Table 2. Number of sensors per type in every room of the apartment.

Motion Sensors Contact Sensors Temperature Sensors

Kitchen 5 1 1

Bathroom 1 2 1 -

Office 4 - 1

Dining 1 - 1

Bedroom 1 2 - -

Living 7 1 1

Bedroom 2 7 - 1

Bathroom 2 1 - -

Closet - - -

The gathered data are presented with information about the date and time of every sensor event
registered, the id of the activated sensor with its value and the beginning or end of each activity that
is monitored. The dataset has the structure presented in Table 3. In the dataset, 10 different activities
performed by the resident are noted. Table 4 shows the details of the number of times each activity
appears in the dataset, as indicated by the user. The “Relax” activity is the one that the user has denoted
as the activity occurring while staying in the living room, and it involves the set of sensors arranged
in that room, as shown in the house map (Figure 4). The “Work” activity is the one performed in the
office room and involving the specific group of sensors placed in that area. Lastly, the “Housekeeping”
activity involves a great number of all the sensors of the house, due to the intrinsic dynamism of this
type of activity. Sensors detect even the activities that are not registered, that correspond to “Other
activity” with no label in the dataset. Since they cannot be classified accurately, this has been ignored
in the proposed framework.
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Table 3. Data extracted from the Aruba dataset [37].

Date Time Sensor ID Sensor Value Activity

4 November 2010 09:56:22.785482 M018 ON

4 November 2010 09:56:23.801652 M017 ON

4 November 2010 09:56:26.467399 M019 ON

4 November 2010 09:56:27.334395 M018 OFF Meal Preparation end

4 November 2010 09:56:34.362031 M018 ON

4 November 2010 09:56:37.729204 M020 ON

4 November 2010 09:56:38.776094 M018 OFF

4 November 2010 09:56:40.172391 M020 OFF

4 November 2010 09:56:41.831135 M014 ON Eating begin

4 November 2010 09:56:56.043362 M014 OFF

4 November 2010 09:57:15.209217 M014 ON

4 November 2010 09:57:16.412611 M014 OFF

Table 4. Activities and Statistics of the Aruba dataset.

Activity Number of Occurrences

Meal Preparation (MP) 1606

Relax (Rel) 2910

Eating (Eat) 257

Work 171

Sleeping (Sleep) 401

Wash Dishes (WD) 65

Bed to Toilet (BTT) 157

Enter Home (EH) 431

Leave Home (LH) 431

Housekeeping (HK) 33

Part of the dataset has been first used to train the system, whereas another part has been used
to test it, by simulating the running phase. Most parts of the monitored activities have a long
representation in terms of sequences of events. Only three of them generally are concluded in less
than 15 sensor events, and they are the activities of “Enter Home”, “Leave Home” and “Bed to Toilet
Transition”. The others are more variable and can last longer. Because of this variability, it is difficult
to find a common size W to consider for the observation window OW . The size of this window
is essential because for the activity recognition problem the algorithm evaluates the sensors’ events
that occur within this window. Based on that, the most probable activity being performed is found
by searching for the minimum distance between the modeled feature vector and the new instances
that are happening at the moment and that has to be classified, as defined in the previous Section.

6. Performance Evaluation

To evaluate the algorithm, an assessment of the classification accuracy that shows the percentage
of correctly classified sequences of events for each class is used. The accuracy is obtained by observing
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the number of times an activity is correctly labeled, compared to all the occurrences of that activity
in the dataset. Accordingly, the accuracy for activity l is expressed by

Accuracyl =
Tl

Tl + Fl
(4)

where Tl and Fl are respectively the number of times the activity was correctly and erroneously labeled.
The test is performed considering a training time of 2 months, one week of test data from

the dataset and taking a window ofW = 10 sensor events as the sequence that must be classified.
The choice of the window is done by taking into account that there are three activities among those
indicated in Table 4 that are shorter than the others. These activities often last for several events
included between 5 and 15. Furthermore, it is preferable that activities are recognized as early
as possible so that relevant management actions can be promptly started. Nevertheless, choosing
a window that is too small could lead to errors when longer activities, which are the most numerous,
are being performed, because the algorithm frequently confuses possible activities that are similar.

6.1. Accuracy of the Activity Recognition Algorithm

To first evaluate the accuracy of the recognition algorithm by itself, the system was first run
excluding the filtering with respect to the Γj statistics, as it is proposed in [9]. With the current choices,
simulation results achieve an average accuracy of 70.43%. The results are presented in Figure 5a
where the confusion matrix with the accuracy percentages of the classification for all the activities
is presented.

(a) Classification without filter (b) Classification with filter

Figure 5. Confusion matrices of the activity recognition algorithm proposed in [9] (a), which
corresponds to a classification without the proposed filter, and of the proposed algorithm that includes
the statistics-based filter (b).

It is evident that almost half of the times there are errors discerning the “Meal Preparation”
activity from the “Wash Dishes” activity. This is due to the fact that both activities are performed
in the kitchen and involve the same sensors. The reason for the frequent errors between the “Relax”
and “Housekeeping” activities is explainable remembering how this second activity was described
in the previous Section 5. Due to the fact that in several cases the sensors involved are the ones placed
in the living room, the algorithm often confuses the two activities.

Results improve consistently when adding the filter before the cosine similarity calculation, as it
is shown in Figure 5b. Indeed, in this second case, the algorithm gave an average accuracy of 81.14%
and it is possible to observe how all the activities are better recognized. This is even more evident
in Figure 6, where the comparison of the percentage accuracy for every class between the two examined
cases is presented.
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Figure 6. Comparison between activity recognition accuracy in percentage with and without the filter.
The classification without the filter corresponds to the algorithm in [9].

6.2. Accuracy Results for Different Sizes of the Observation Window OW

Table 5 shows the accuracy results for the different sizes W of the observation window with
the indication of the 95% confidence interval for the three examined cases. Changing the size of
the observation window to 15 and 20 consecutive sensor events, the performance of the algorithm
are quite better, giving results of average accuracy equal to 87.02% and 84.09% respectively, making
the choice of the size window of 15 sensor events the preferable one. This is due to the reason
explicated before, for which longer activities are more easily observed with bigger windows while
shorter activities are usually less frequent and affect the performance less significantly. Results also
confirm that performance shrinks when considering observation windows that are longer than the
shortest activities, i.e., those that have less than 15 events as mentioned at the beginning of this Section.
The confidence interval is narrower for smaller windows than for bigger windows, because in these
cases there is a greater number of samples, due to the fact that the same instance is divided into more
parts compared to the use of a bigger window.

Table 5. Accuracy and confidential interval using different size of observation window W.

Accuracy 95% Confidence Interval

W size = 10 81.14% ±1.43%

W size = 15 87.02% ±1.56%

W size = 20 84.09% ±1.77%

6.3. Accuracy Results for Different Training Periods

In Figure 7 the different overall accuracy values obtained with increasing training days,
from 2 weeks to 3 months, are presented. The horizontal bars represent the 95% confidence interval
with values that go from ±1.95% for 2 weeks of training to ±1.68% for 3 months of training.
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Figure 7. Percentage overall accuracy for different training days.

The increase in the performance from 2 months to 3 months is not as prominent as the increasing
noticed during fewer days of training. Analyzing this result, the conclusion is that it is probably better
to have a training phase that does not last too long so that is not necessary to wait a long time period
to get results. Instead, it is more important to evaluate the need for a new training phase after a while,
in order to check if there have been changes in the habits of the user after some time. Furthermore,
the various activities under consideration are not carried out with the same frequency every day or
every week. This explains why, with a training set of a few days, the accuracy obtained is so stable and
low, due to the fact that during that time some activities have only a few samples that could be used
for making the models, making it harder to recognize those same activities later in the running phase.

6.4. Prediction Results for Subsequent Activities

The current activity can be used to predict the activities that are going to be performed in the next
future. For this purpose, an evaluation of the probability of transition from an activity in a column
to an activity in a row is reported in Table 6, whereas Table 7 shows the probabilities that the activity
“C” is happening given the fact that activities “A” and “B” occurred. In the last table, only some
of the results are presented, i.e., the ones with the greatest probability value for each combination
of the first two activities. When two consecutive activities indicated in the tables turn out to be the
same repeated activity, it is due to the fact that between these two instances of the same activities
there was a gap in which the user performed some actions that were unknown and that were part
of the “Other activity” group that was not considered during these tests as it was specified in
Section 5. The last column reports the average time duration expressed in minutes of the sequence
of the 3 activities indicated as activity “A”, “B” and “C”. This information could be useful for future
works for making prediction and consideration of possible sequences of activities over a long time.
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Table 6. Transition Probability of Activities.

BTT Eat EH HK LH MP Rel Sleep WD Work

Bed to Toilet 0.017 0 0 0 0 0 0 0.41 0 0

Eating 0 0.14 0 0.030 0.12 0.02 0.034 0.007 0.61 0.068

Enter Home 0 0.015 0 0.061 0.26 0.095 0.041 0.035 0 0.136

Housekeeping 0 0 0 0 0.042 0.0036 0.006 0 0 0.025

Leave Home 0 0 1 0 0 0 0 0 0 0

Meal Preparation 0 0.75 0 0.121 0.009 0.374 0.237 0 0 0.11

Relax 0 0.09 0 0.58 0.403 0.344 0.644 0.523 0.356 0.348

Sleeping 0.98 0 0 0 0.0035 0.14 0.003 0.042 0 0

Wash Dishes 0 0.005 0 0.091 0.017 0.003 0.0197 0 0.017 0.042

Work 0 0.01 0 0.121 0.059 0.003 0.015 0.014 0.017 0.27

Table 7. Conditional probability for a sequence of three activities.

Activity A Activity B Activity C Probability (C|A ∩ B) Duration

Bed to Toilet Sleeping Meal Preparation 0.769 249.4

Sleeping Bed to Toilet Sleeping 0.983 241.86

Sleeping Sleeping Meal Preparation 0.75 246.6

Eating Meal Preparation Eating 0.455 27.4

Eating Wash Dishes Relax 0.667 24.97

Enter Home Eating Relax 0.667 50.87

Enter Home Meal Preparation Meal Preparation 0.448 74.31

Meal Preparation Eating Relax 0.36 33.86

Meal Preparation Relax Relax 0.624 74.12

Meal Preparation Work Meal Preparation 0.462 74.31

Relax Wash Dishes Relax 0.667 74.124

Relax Meal Preparation Relax 0.462 74.31

Relax Sleeping Bed to Toilet 0.597 275.26

Relax Work Relax 0.30 253.6

Wash Dishes Relax Relax 0.781 84.5

Wash Dishes Meal Preparation Eating 0.667 24.79

Wash dishes Work Relax 0.60 59.45

Housekeeping Meal Preparation Relax 0.50 61.06

Housekeeping Relax Relax 0.462 87.12

Leave Home Enter Home Meal Preparation 0.365 247.55

Work Housekeeping Leave Home 0.624 39.7

Work Sleeping Bed to Toilet 0.75 260.7

7. Conclusions and Future Works

This paper focuses on the problem of users’ activity recognition inside Smart Buildings to support
BECM systems, by exploiting the acquisitions made by sensors deployed inside the building.
To this aim, a system that analyses the user behavior to profile it and later perform early recognition
and prediction of users’ activities is presented. The proposed system is a sensor-based activity
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recognition system that analyzing raw data from binary sensors arranged in an apartment can model
users’ activities and understand known behaviors. In addition to the data collected by sensors,
other significant information, provided by statistics Γj related to relevant external conditions that have
been observed to be correlated (e.g., time of the day), are incorporated in the system, allowing the
obtaining of better results than the simple analysis case of sensors data. The system is proved to enable
activity recognition with an accuracy of more than 80% after only 10 sensor events are registered.
Furthermore, the prediction of the following activity is achieved with an accuracy of about 60%.

It should be mentioned, however, that there are some limitations to the proposed method.
As already highlighted explaining the obtained results, there are some problems related to the fixed
size of the observation window, which hold the performance of the algorithm depending on the
activity examined. A wider window is better to recognize long activities but, on the other hand,
a longer time is required to start the assignment of an activity. Another important aspect concerns the
period of the training phase. A longer time span gives better accuracy results, with more available
samples to better model each activity, but it leads to exaggerated waiting times to first get any results.
Lastly, this approach was thought and tested only for consecutive activities performed by a single
user. Some changes must be evaluated for an extension to more than one resident and for recognize
concurrent and interleaved activities.

Future works will be focused on improving the system accuracy by including statistics of other
relevant external conditions that can be correlated, such as the weather, or the fact that it is a working
day or not. Furthermore, other devices, such as smartphones, will be included to enlarge the number
of sensors available for the analysis. The introduction of measurements coming from personal devices
is expected to provide a more thorough insight into users’ habits. Moreover, the system will be
expanded to consider cases with more residents and to recognize different contemporary actions.
Finally, the proposed system will be first tested using commercial software, to be later included on a
real BECM system scenario, so that the actual convenience on energy cost savings and the quality of
experience perceived by users can be assessed.

Author Contributions: Conceptualization, F.M., V.P.; validation: F.M.; writing–draft preparation, F.M., V.P., D.G.;
writing–review and editing, F.M., V.P., D.G.

Funding: This work was partially supported by MIUR, within the Smart Cities framework (Project
CagliariPort2020, ID: SCN 00281), by the Italian Ministry of Economic Development (MiSE, Project INSIEME,
HORIZON 2020, PON 2014/2020 POS. 395), by “Fondazione di Sardegna” within the research project
“SUM2GRIDS—Solutions by mUltidisciplinary approach for intelligent Monitoring and Management of
power distribution GRIDS”—Convenzione triennale tra la Fondazione di Sardegna e gli Atenei Sardi,
Regione Sardegna—L.R. 7/2007 annuity 2017—DGR 28/21 of 17 May 2015, within the project Design
and Implementation of a Novel Hybrid Energy Storage System for Microgrids, which is funded by the Sardinian
Regional Government (Regional Law no. 7, 7 August 2007) under the Grant Agreement no. 68 (Annuity 2015),
and within the project LEAPH – anaLytics and data Enrichment plAtform for Pharma and pHarmacy owner,
funded by the Sardinian Regional Government under the Sardinian POR FESR 2014-2020 (ID: RICERCA_1C-124).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Minoli, D.; Sohraby, K.; Occhiogrosso, B. IoT considerations, requirements, and architectures for smart
buildings—Energy optimization and next-generation building management systems. IEEE Int. Things J.
2017, 4, 269–283. [CrossRef]

2. Dounis, A.I.; Caraiscos, C. Advanced control systems engineering for energy and comfort management
in a building environment—A review. Renew. Sustain. Energy Rev. 2009, 13, 1246–1261. [CrossRef]

3. Shafie-Khah, M.; Siano, P. A stochastic home energy management system considering satisfaction cost
and response fatigue. IEEE Trans. Ind. Inf. 2017, 14, 629–638. [CrossRef]

4. Pilloni, V.; Floris, A.; Meloni, A.; Atzori, L. Smart home energy management including renewable sources:
A qoe-driven approach. IEEE Trans. Smart Grid 2016, 9, 2006–2018. [CrossRef]

5. Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review.
Appl. Energy 2014, 115, 164–173. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2017.2647881
http://dx.doi.org/10.1016/j.rser.2008.09.015
http://dx.doi.org/10.1109/TII.2017.2728803
http://dx.doi.org/10.1109/TSG.2016.2605182
http://dx.doi.org/10.1016/j.apenergy.2013.10.062


Energies 2019, 12, 2631 17 of 18

6. Shoreh, M.H.; Siano, P.; Shafie-Khah, M.; Loia, V.; Catalão, J.P. A survey of industrial applications of Demand
Response. Electr. Power Syst. Res. 2016, 141, 31–49. [CrossRef]

7. Pooranian, Z.; Abawajy, J.; Conti, M. Scheduling distributed energy resource operation and daily power
consumption for a smart building to optimize economic and environmental parameters. Energies 2018,
11, 1348. [CrossRef]

8. Rasheed, M.; Javaid, N.; Ahmad, A.; Khan, Z.; Qasim, U.; Alrajeh, N. An efficient power scheduling scheme
for residential load management in smart homes. Appl. Sci. 2015, 5, 1134–1163. [CrossRef]

9. Krishnan, N.C.; Cook, D.J. Activity recognition on streaming sensor data. Pervasive Mob. Comput. 2014,
10, 138–154. [CrossRef] [PubMed]

10. Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control
systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain.
Energy Rev. 2014, 34, 409–429. [CrossRef]

11. Marinakis, V.; Doukas, H. An advanced IoT-based system for intelligent energy management in buildings.
Sensors 2018, 18, 610. [CrossRef] [PubMed]

12. Marinakis, V.; Doukas, H.; Karakosta, C.; Psarras, J. An integrated system for buildings’ energy-efficient
automation: Application in the tertiary sector. Appl. Energy 2013, 101, 6–14. [CrossRef]

13. Wang, L.; Wang, Z.; Yang, R. Intelligent multiagent control system for energy and comfort management
in smart and sustainable buildings. IEEE Trans. Smart Grid 2012, 3, 605–617. [CrossRef]

14. Du, P.; Lu, N. Appliance commitment for household load scheduling. IEEE Trans. Smart Grid 2011, 2, 411–419.
[CrossRef]

15. Collotta, M.; Pau, G. Bluetooth for Internet of Things: A fuzzy approach to improve power management
in smart homes. Comput. Electr. Eng. 2015, 44, 137–152. [CrossRef]

16. Koseleva, N.; Ropaite, G. Big data in building energy efficiency: Understanding of big data and main
challenges. Procedia Eng. 2017, 172, 544–549. [CrossRef]

17. Stimmel, C.L. Big Data Analytics Strategies for the Smart Grid; Auerbach Publications: New York, NY,
USA, 2016.

18. Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Int.
Serv. Appl. 2015, 6, 25. [CrossRef]

19. Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical human
activity recognition using wearable sensors. Sensors 2015, 15, 31314–31338. [CrossRef]

20. Nitti, M.; Stelea, G.A.; Popescu, V.; Fadda, M. When Social Networks Meet D2D Communications: A Survey.
Sensors 2019, 19, 396. [CrossRef]

21. Lu, Y.; Wei, Y.; Liu, L.; Zhong, J.; Sun, L.; Liu, Y. Towards unsupervised physical activity recognition using
smartphone accelerometers. Multimed. Tools Appl. 2017, 76, 10701–10719. [CrossRef]

22. Liu, Y.; Nie, L.; Liu, L.; Rosenblum, D.S. From action to activity: Sensor-based activity recognition.
Neurocomputing 2016, 181, 108–115. [CrossRef]

23. Nitti, M.; Popescu, V.; Fadda, M. Using an IoT platform for trustworthy D2D communications in a real
indoor environment. IEEE Trans. Netw. Serv. Manag. 2019, 16, 234–245. [CrossRef]

24. Diraco, G.; Leone, A.; Siciliano, P. People occupancy detection and profiling with 3D depth sensors
for building energy management. Energy Build. 2015, 92, 246–266. [CrossRef]

25. Klein, L.; Kwak, J.Y.; Kavulya, G.; Jazizadeh, F.; Becerik-Gerber, B.; Varakantham, P.; Tambe, M. Coordinating
occupant behavior for building energy and comfort management using multi-agent systems. Autom. Constr.
2012, 22, 525–536. [CrossRef]

26. De Kok, R.; Mauri, A.; Bozzon, A. Automatic Processing of User-Generated Content for the Description
of Energy-Consuming Activities at Individual and Group Level. Energies 2019, 12, 15. [CrossRef]

27. Viard, K.; Fanti, M.P.; Faraut, G.; Lesage, J.J. An event-based approach for discovering activities of daily
living by hidden Markov models. In Proceedings of the 2016 15th International Conference on Ubiquitous
Computing and Communications and 2016 International Symposium on Cyberspace and Security
(IUCC-CSS), Granada, Spain, 14–16 December 2016; pp. 85–92.

28. Rohini, P.; RajKumar, R. A New Approach to Behavioral Reasoning in Smart Homes using DVSM Algorithm.
Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 4, 334–341.

29. Rashidi, P.; Cook, D.J.; Holder, L.B.; Schmitter-Edgecombe, M. Discovering activities to recognize and track
in a smart environment. IEEE Trans. Knowl. Data Eng. 2011, 23, 527–539. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.epsr.2016.07.008
http://dx.doi.org/10.3390/en11061348
http://dx.doi.org/10.3390/app5041134
http://dx.doi.org/10.1016/j.pmcj.2012.07.003
http://www.ncbi.nlm.nih.gov/pubmed/24729780
http://dx.doi.org/10.1016/j.rser.2014.03.027
http://dx.doi.org/10.3390/s18020610
http://www.ncbi.nlm.nih.gov/pubmed/29462957
http://dx.doi.org/10.1016/j.apenergy.2012.05.032
http://dx.doi.org/10.1109/TSG.2011.2178044
http://dx.doi.org/10.1109/TSG.2011.2140344
http://dx.doi.org/10.1016/j.compeleceng.2015.01.005
http://dx.doi.org/10.1016/j.proeng.2017.02.064
http://dx.doi.org/10.1186/s13174-015-0041-5
http://dx.doi.org/10.3390/s151229858
http://dx.doi.org/10.3390/s19020396
http://dx.doi.org/10.1007/s11042-015-3188-y
http://dx.doi.org/10.1016/j.neucom.2015.08.096
http://dx.doi.org/10.1109/TNSM.2018.2885043
http://dx.doi.org/10.1016/j.enbuild.2015.01.043
http://dx.doi.org/10.1016/j.autcon.2011.11.012
http://dx.doi.org/10.3390/en12010015
http://dx.doi.org/10.1109/TKDE.2010.148
http://www.ncbi.nlm.nih.gov/pubmed/21617742


Energies 2019, 12, 2631 18 of 18

30. Thomas, B.L.; Cook, D.J. Activity-aware energy-efficient automation of smart buildings. Energies 2016, 9, 624.
[CrossRef]

31. Roy, N.; Misra, A.; Cook, D. Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant
smart environments. J. Ambient Intell. Humaniz. Comput. 2016, 7, 1–19. [CrossRef]

32. Chiang, Y.T.; Hsu, K.C.; Lu, C.H.; Fu, L.C.; Hsu, J.Y.J. Interaction models for multiple-resident activity
recognition in a smart home. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3753–3758.

33. Wilson, D.H.; Atkeson, C. Simultaneous tracking and activity recognition (STAR) using many anonymous,
binary sensors. In International Conference on Pervasive Computing; Springer: Berlin/Heidelberg, Germany,
2005; pp. 62–79.

34. Yala, N.; Fergani, B.; Fleury, A. Feature extraction for human activity recognition on streaming data.
In Proceedings of the 2015 International Symposium on Innovations in Intelligent SysTems and Applications
(INISTA), Madrid, Spain, 2–4 September 2015; pp. 1–6.

35. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J. Complex human activity recognition using
smartphone and wrist-worn motion sensors. Sensors 2016, 16, 426. [CrossRef]

36. Nef, T.; Urwyler, P.; Büchler, M.; Tarnanas, I.; Stucki, R.; Cazzoli, D.; Müri, R.; Mosimann, U. Evaluation
of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data.
Sensors 2015, 15, 11725–11740. [CrossRef] [PubMed]

37. Cook, D.J. Learning setting-generalized activity models for smart spaces. IEEE Intell. Syst. 2010, 27, 32–38.
[CrossRef] [PubMed]

38. Han, J.; Choi, C.S.; Lee, I. More efficient home energy management system based on ZigBee communication
and infrared remote controls. IEEE Trans. Consum. Electron. 2011, 57, 85–89.

39. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things:
A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]

40. Josep, A.D.; Katz, R.; Konwinski, A.; Gunho, L.; Patterson, D.; Rabkin, A. A view of cloud computing.
Commun. ACM 2010, 53, 50–58.

41. Kaur, G.; Oberai, E.N. A review article on Naive Bayes classifier with various smoothing techniques. Int. J.
Comput. Sci. Mob. Comput. 2014, 3, 864–868.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en9080624
http://dx.doi.org/10.1007/s12652-015-0294-7
http://dx.doi.org/10.3390/s16040426
http://dx.doi.org/10.3390/s150511725
http://www.ncbi.nlm.nih.gov/pubmed/26007727
http://dx.doi.org/10.1109/MIS.2010.112
http://www.ncbi.nlm.nih.gov/pubmed/21461133
http://dx.doi.org/10.1016/j.future.2015.09.021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Smart Building Energy and Comfort Management Systems
	Activity Recognition in Smart Buildings
	Background on Activity Recognition

	System Model
	Activity Recognition Algorithm
	Training Phase
	Running Phase

	Reference Use Case
	Performance Evaluation
	Accuracy of the Activity Recognition Algorithm
	Accuracy Results for Different Sizes of the Observation Window OW
	Accuracy Results for Different Training Periods
	Prediction Results for Subsequent Activities

	Conclusions and Future Works
	References

