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Abstract: Electronic load (e-load) is essential equipment for power converter performance test,
where a designated load profile is executed. Electronic load is usually implemented with the analog
controller for fast tracking of the load profile reference. In this paper, a low-power low-cost electronic
load is proposed. MOSFETs (metal-oxide-semiconductor field-effect transistors) are used as the power
consumption devices, which are regulated to the active region as controlled current-sink. In order to
achieve fast transient response using the low-cost digital signal controller (DSC) PWM peripherals,
the interleaving PWM method is proposed to achieve active current ripple mitigation. To obtain the
system open-loop gain for current-sink operation, an offline digital system identification method,
followed by model reduction, is proposed by applying Pseudo-Random Binary Sequence (PRBS)
excitation. Pole-zero cancelation method is used in the control system design and later implemented
in a DSC. The prototype is built and tested, in which meaningful testing scenarios under constant
current-sink mode, pulse current sink mode, and double line-frequency current mode are verified.
The experimental results indicate that the proposed e-load can sink pre-programmed current profile
with well-attenuated ripple for static and dynamic load testing, and is applicable to fully digitalized
power testing equipment.

Keywords: electronic load; multi-phase; current mode; system identification

1. Introduction and Objectives

Electronic load (e-load) plays a key role in modern electronic systems, energy systems, and power
distribution systems design flow [1–4]. The e-load can sink power from the Unit Under Test (UUT)
following the designated load pattern for power testing purposes [5–7]. The electric power generated
by the UUT can be either sent back the grid or transferred to a dissipating load. There are two kinds
of dissipative e-load, one is the switch-mode converter-based [8–10], which is shown in Figure 1a.
A switch-mode converter sinks power from the UUT by actively controlling the input port voltage
or current profiles, the output of switching converter is connected a dummy load. This solution is
widely available in nowadays market for medium and high power test; however, designing a tightly
regulated switching converter is challenging, especially, for high-order power stages [8]; the switching
noise and converter input impedance also introduce non-ideal conditions in the testing scenario hence
complicate the testing condition [11].
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The conventional approach to electronic load control is realized by the analog circuits. The 
analog-based control can guarantee precise regulation and tracking of certain load profiles, which 
are generated by signal synthetization blocks. The digital controller, which is capable of providing 
flexible and advanced control solution, is gaining a lot of attentions nowadays. The fully loaded 
control and communication peripherals of the DSC can yield very low component-count. However, 
in electronic load application, digital control is challenging; in order to drive the MOSFET device 
into the active region, gate charge has to be controlled based on the sampled current feedback. In 
order to accomplish the same task as the analog controller, the digital values generated from the 
digital controller can be converted to the analog values using digital-to-analog converter (DAC), 
which introduce excessive cost as well as the sampling-and-hold effect. This effect is undesirable as 
it will introduce current/voltage ripples and act similarly to a switching e-load. 

In this paper, a linear electronic load using low-cost digital Pulse Width Modulation (PWM) 
peripherals is proposed. Wide Safe Operation Area (SOA) MOSFETs are regulated into the active 
region as the current sink. The interleaving PWM scheme is proposed for passive current ripple 
mitigation; through device selection, driver circuit design and layout design, 4-phase multiplexed 
current-sink is implemented with only one feedback current sensor. System identification method is 
proposed to obtain the power stage model by supplying Pseudo-Random Binary Sequence (PRBS) 
excitation under close-loop. The improved design is implemented later on with the identified model. 
The prototype is built and tested for a variety of current-sink modes for verification the effectiveness 
of the proposed design. 

Figure 1. Electronic load types (a) switching e-load (b) linear e-load.

Linear power dissipative e-load, as shown in Figure 1b, with field effect transistor (FET) generate
less voltage and current ripple during operation [12,13]; the input characteristics of a FET device,
although nonlinear, is close to a zero-order system in small signal domain, which makes fast loop
response possible. However, power level of linear e-load is limited within kilo Watt range due to the
concentrated heat spot issues of Silicon-based power devices. Therefore, the linear e-load are widely
used in low-power converter testing. A linear and switch-mode combined solution is presented in [14],
linear transistors are used to shape the transient response of the switch-mode e-load such that both
power level and transient response can be achieved.

Current-sink mode is widely used in the load test due to the fact that most of the available dc
power supplies are designed for constant voltage regulation. A well-designed e-load can profile the
static and dynamic characteristics of a power supply systems using the following basic testing methods.

• Constant current-sink. This method can test the static performance of the power supply systems,
such as power level and dc output impedance.

• Pulsed/step current-sink. This test mode, UUT output voltage response is tested under step load
current; the dynamic performance of the power supply systems can be evaluated by examining
the voltage response.

• Programmed current-sink. Programmed current sink can test the performance of the power
supply under nonlinear load excitation. This test mode is of increasing demand as the grid-tie
inverters become more prevalent and introduce disturbances back into the dc systems.

The conventional approach to electronic load control is realized by the analog circuits.
The analog-based control can guarantee precise regulation and tracking of certain load profiles,
which are generated by signal synthetization blocks. The digital controller, which is capable of
providing flexible and advanced control solution, is gaining a lot of attentions nowadays. The fully
loaded control and communication peripherals of the DSC can yield very low component-count.
However, in electronic load application, digital control is challenging; in order to drive the MOSFET
device into the active region, gate charge has to be controlled based on the sampled current feedback.
In order to accomplish the same task as the analog controller, the digital values generated from the
digital controller can be converted to the analog values using digital-to-analog converter (DAC),
which introduce excessive cost as well as the sampling-and-hold effect. This effect is undesirable as it
will introduce current/voltage ripples and act similarly to a switching e-load.

In this paper, a linear electronic load using low-cost digital Pulse Width Modulation (PWM)
peripherals is proposed. Wide Safe Operation Area (SOA) MOSFETs are regulated into the active
region as the current sink. The interleaving PWM scheme is proposed for passive current ripple
mitigation; through device selection, driver circuit design and layout design, 4-phase multiplexed
current-sink is implemented with only one feedback current sensor. System identification method is
proposed to obtain the power stage model by supplying Pseudo-Random Binary Sequence (PRBS)
excitation under close-loop. The improved design is implemented later on with the identified model.
The prototype is built and tested for a variety of current-sink modes for verification the effectiveness of
the proposed design.
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2. Digital Electronic Load System Design

2.1. System Structure

As per discussed in Section 1, if the digital controller is used in the electronic load system, the DAC
is required to convert the digital control values into analog form, which is not considered as optimal in
terms of the conversion speed and the cost. Therefore, another option is explored in this research.

PWM module is the common peripheral in off-the-shelf DSCs. PWM signal filtered by a low-pass
filter will remain its average value. Therefore, it is viable and economical to use PWM signals to
generate the gate voltage. However, attenuation effect of the filter is no way to be perfect, the gate
voltage ripple will propagate to the load current and cause load current ripple. As can be found from
the datasheet of a FET device, the input characteristics of the active region is nonlinear and concave in
shape, which means that a small deviation from the desired gate voltage will incur a large swing of
drain current. If the filtered PWM signal is used, a method of ripple mitigation has to be proposed in
order to reduce the drain current ripple.

The diagram of the proposed digital electronic load is shown in Figure 2. The power stage of
the e-load consists of 4 power MOSFET in parallel, which is individually driven by the filtered PWM
signal. In order to mitigate the current ripple induced by the remained ac components in the filtered
PWM signal, each PWM signal is 90◦ phase-shifted to each other. The four channels of drain current
are multiplexed in time domain, resulting in smaller current ripple. For load current regulation, single
current loop is designed without active power sharing among the MOSFET devices. The total drain
current is measured, conditioned and converted to the digital form; the digital control routine compares
the real time current value with the current reference profile, amplifies the error signal, and loads
the PWM with new duty cycle values. A gate driver circuit is connected in order to amplify the gate
signals to a compatible level for MOSFET gate driver; a low-pass filter is used to eliminate the PWM
ripples and generate a dc voltage to drive the MOSFETs.
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Figure 2. System structure.

2.2. Power Devices and Drivers

Semiconductor device can be used as the power sink due to its fast response to control input.
Field effect transistor device can be driven into active region by applying proper gate voltages;
while bipolar transistor devices can be driven into linear region with proper base current injection.
In the proposed design, the wide Safe Operation Area (SOA) MOSFET IXTH80N20L from IXYS is
used as the power sink device. The breakdown voltage of the device is 200 V and I25 ◦C is 80 A.
The drain-source voltage and drain current will be controlled such that the operation point of the load
locates in the SOA.

The power MOSFET has a positive temperature coefficient (PTC), therefore, it is feasible to parallel
multiple MOSFETs for high load current. Although switching at high frequency, there is no periodical
charge and discharge of MOSFET gate capacitor for full capacity, the current rating of the gate driver
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circuitry can be selected to a low value. The gate driver is implemented with discrete components as
indicated in Figure 3. To attenuate gate voltage ripple, a single-stage low pass filter (LPF) with 32 kHz
cut-off frequency is applied to filter PWM voltage ac components.
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Figure 3. MOSFET gate drive.

The dsPIC33FJ DSC is chosen for control system implementation, which includes six pairs
of complementary high-resolution PWM and 16 channels of 10-bit ADC. The PWM signals are
synchronized in 90◦ phase-shift as indicated in Figure 4. 200 kHz is selected as the switching frequency
in order to achieve better dynamic performance. Figure 5 shows the PWM signal propagation within
the gate drive circuit (GDC) referring to Figure 3, the GDC offers fast amplification of the DSC signal,
which can meet the design criterion. Figure 6 shows the ac coupled MOSFET gate voltages, as can
be clearly seen, the drive signals are multiplexed in time, which can contribute to drain current
ripple attenuation.
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2.3. Sensing and Conditioning

A wide bandwidth (80 kHz) open loop hall-effect sensor is used in the design. The output voltage
and input current relation is given in Equation (1), where VB is the sensor bias voltage and kiv is the
voltage to current ratio of the sensor.

V = VB + kiv·I (1)

The output of the hall-effect sensor is conditioned by a first-order passive RC LPF for noise
suppression. By applying small signal perturbation, the transfer function of the transducer network
can be found as

Hi(s) =
kiv

RCs + 1
(2)

where the LPF is designed using a 100 Ω resistor and 1nF ceramic capacitor, and kiv = 66 mV/A
according to the sensor data-sheet.

2.4. Model Identification and Control Loop Design

Although the device manufacturer has specified the static transfer characteristics of the MOSFET
device, the drain current varies with device temperature, gate voltage as well as the load condition.
Therefore, static mapping of the gate voltage and drain current is not possible for current sinking
operation, the close loop control has to be implemented for the e-load to work under current-mode.

The control block diagram is shown in Figure 7. The Gid is the control-to-current transfer function
of the power MOSFET, in this case, is the MOSFET input admittance. The Hi(s) is the small signal gain
of the current transducer circuit. Ci(s) is the current controller. FM is the PWM modulation gain and
LPF converts PWM signals into smoothed gate bias voltages.
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An initial design of the current control loop in s-domain is carried out. Firstly, the small signal
gain of the MOSFET Gid is obtained by differentiating the input admittance curve of the MOSFET
numerically at 75 ◦C at 9 A. Then, a PID controller [15] is used for reference tracking with kp = 1,
ki = 200, kd = 10−4, as shown in Figure 8, a cross-over frequency of 15 kHz and phase margin of 70◦ is
achieved in the theoretical design process.
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Figure 8. Frequency response of PID compensated open-loop transfer function.

The bilinear transformation is applied to discretize the designed s-domain controller. The sampling
frequency is set to 50 kHz and digital controller updates at each ADC interrupt routine.

Figure 9 shows the initial experimental results of a 4-phase e-load. As indicated in Figure 9a,
under PID close-loop control, e-load can track the current command (step from 4 A to 8 A) in 400µs
with attenuated current ripple. However, oscillation occurs after the reference change, which indicates
weak system stability. The pulsed current sink experiment is also conducted, in which the e-load acts
as the periodic current sink with ∆ILoad = 4.48 A for transient test purposes. The test waveform in
Figure 9b shows effective tracking of pulsed reference, the UUT voltage is showing expected variation
under pulsed load. However, the waveform shows a similar manner of oscillation upon reference
change, which is not desirable for the field test.
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Figure 9. Test results with PID controller (a) step response from 4 A to 8 A, (b) 60 Hz pulse current sink
mode (10 ms/div).

The parameters of the PID controller is adjusted in order to eliminate the oscillation; further test
results indicate that system response becomes more sluggish as the steady state oscillation is attenuated.
Therefore, a more precise plant model is required in order to improve the system performance.
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Pseudo-Random Binary Sequence (PRBS) has wide power spectrum, which is suitable for the
model identification [16]. In this research, the 9th order PRBS with 5% of full duty cycle is used as the
excitation signal as indicated in Equation (3)

u[n] = U[n] + ∆u·s[n] (3)

where U[n] is the output of the current controller at nth sampling time, ∆u is the amplitude of the PRBS
signal, s[n] is the binary bit generated by a 9th order PRBS generator with a period of 511.

The data probe is placed at the input and output of the plant respectively as shown in Figure 10,
in which case are the gate voltage and drain current of MOSFET. The input and output data for system
identification is plotted in Figure 11 with actual analog units. The coherence between the input and
output signal is plotted in Figure 12. In order to improve the coherence under desired system cross-over
frequency, a 10th order decimation filter is applied to the data. As indicated in the figure, decimated
signal has improved coherence at the low frequency region below 100 kHz for linear controller design,
which is sufficient for the targeted application.
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Based on the ARX model, the system identification can be carried out by using the decimated
input-output data. To decide the system model, the cross-validation method is introduced, in which
case 29th order is selected. The bode plot of the 29th order model presents strong second order
properties under the half of the switching frequency as shown in Figure 13. To facilitate the controller
design, order reduction is performed using balanced realization method. The bode plot for the reduced
order model is also presented in Figure 13, it can be observed that under 100 kHz, no significant



Energies 2019, 12, 2611 8 of 14

variation exists between the high order and low order model. Therefore, the obtained 2nd order model
can be used in the design. The transfer function of the plant can be found as in Equation (4)

Gid = k
s2 + 2ξnωns +ω2

n

s2 + 2ξdωds +ω2
d

(4)

where the parameters are listed in Table 1. As the high frequency characteristics are of less interest in
this design, further simplification is performed by eliminating the second order s-domain polynomials
on the numerator, which results in a canonical second order system with a constant gain kω2

n on
the numerator.
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Table 1. Parameters of the plant model.

K ξn ξd ωn ωd

0.56 0.4 0.22 1.1 × 106 1.8 × 105

In order to validate the identified model, the comparison between the experimental signal and the
identified model with the PRBS excitation, which is not used for identification, is carried out. Figure 14
shows good agreement between simulation results with the identified model and the experimental data.
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With the proposed controller, the compensated open-loop transfer function can be obtained.
The bode plot of the transfer function is shown in Figure 15; the crossover frequency is 15.4 kHz with
phase of 57◦.
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3. Experimental Results and Analysis

A 50 W 4-phase e-load prototype is built as shown in Figure 16, the micro-controller
dsPIC33FJ64GS606 with high resolution PWM peripheral is used. In order to prevent the thermal
runaway due to possible uneven power sharing, the MOSFET batch, the drivers’ parameters and the
PCB layout have been carefully selected, designed and finally verified based on the power device
case temperature differences. The UUT is a linear bench power supply with 30 V 10 A capability.
The experimental verification is carried out for current (sink) mode, in which the UUT is supplying
a variable dc voltage and the proposed e-load sinks current in a programmed manner. The test is
conducted under a maximum sink current of 9 A under a variable UUT output voltage around 5 V.
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The steady state test waveforms for constant current sink mode are presented in Figure 18a for
10% load (1 A) and Figure 18b for 100% load (9 A); as shown in the figure, the load current ripple is well
attenuated and load current ILoad can be controlled at the desired level, which indicates that the e-load
can perform static test without introducing excessive load disturbances. The case temperature of the
MOSFET is measured with infrared devices, which shows tolerable temperature difference with 1 ◦C.
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Figure 19 shows the constant current sink mode (ILoad = 6.5 A) regulation when input source
voltage (VLoad) is undergoing a large swing. It can be observed from the figure that the load current
keeps constant with random input voltage variations.
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Figure 20 shows the pulse current sink test results, where a pre-programmed pulse current profile
is set up in the micro-controller. This mode of operation emulates the conditions of the intermittent
load. As can be seen from Figure 20a, the load current ILoad is pulsating from 10% to full load with
a frequency of 50 Hz. Comparing to the previous results, the oscillation during the steady state is
eliminated due to more precise modeling of the plant. The output voltage of UUT (VLoad) is showing
periodical voltage variation due to its output impedance, which indicates that the regulation speed of
the UUT could not follow the load variation. 500 Hz pulse current load is also tested, the waveform is
presented in Figure 20b. The rising edge of the pulse current is shown in Figure 20c. With the designed
digital control loop, 123 µs of rise time is achieved, the load current overshoot is limited to 1%, which is
sufficient for most of the linear power supply tests. A commercial bench-mark electronic load (BK8500)
is also tested in the mean time for the same operation condition, the rise time is found to be 1.6 ms.
The proposed digital e-load is found to have a much faster response.

Finally, the nonlinear load condition is emulated. The well-known 100 Hz ripple injection scenario
from a single-phase grid-tie inverter load is emulated. Under the assumption that the UUT has a large
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output dc capacitor, a 100 Hz rectified sinusoidal current is drawn from the UUT. Figure 21 shows this
testing scenario when the load current (ILoadRMS = 3.4 A) is of rectified sinusoidal shape. As expected,
the UUT terminal voltage presents a disturbed dc voltage with 100 Hz ripple component.
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4. Conclusions

In this paper, a linear electronic load using digital pulse width modulation is proposed. To solve
the high current ripple problem in a digital PWM system, a multi-phase and double-stage LPF scheme
is used. Low-cost single current loop without additional active power sharing is designed. System
identification methods based on PRBS excitation is applied to obtain the power stage model, which is
later verified by simulation results. The control system is designed using pole-zero cancelation
technique and implemented in a digital signal controller. The experimental results on constant
current sink mode, pulse current sink mode, and inverter current sink mode show satisfactory steady
state performance and stable transient response. The proposed system can achieve commensurate
performance with benchmark e-load under current sink mode, which indicates its potential for the
fully digitalized power testing equipment in the near future.
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