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Abstract: The voltage and frequency response model of microgrid is significant for its application
in the design of secondary voltage frequency controller and system stability analysis. However,
most models developed for this aspect are complex in structure due to the difficult mechanism
modeling process and are only suitable for offline identification. To solve these problems, this paper
proposes a black-box modeling method to identify the voltage and frequency response model of
microgrid online. Firstly, the microgrid system is set as a two-input, two-output black-box system
and can be modeled only by data sampled at the input and output ports. Therefore, the simplicity
of modeling steps can be guaranteed. Meanwhile, the recursive damped least squares method is
used to realize the online model identification of the microgrid system, so that the model parameters
can be adjusted with the change of the microgrid operating structure, which makes the model more
adaptable. The paper analyzes the black-box modeling process of the microgrid system in detail,
and the microgrid platform, including 100 kW rated power inverters, is employed to validate the
analysis and experimental results.
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1. Introduction

Since the microgrid technology can realize flexible and efficient applications of distributed power
generations, more and more attention has been paid to its research [1,2]. However, as the scale of
microgrid increases, its large-signal behavior becomes complex at the system level analysis. To deal
with these problems, microgrid dynamic modeling is one of the most effective methods. At present,
microgrid modeling methods mainly include two types: mechanism modeling and identification
modeling [3]. The mechanism modeling is carried out on the premise of mastering microgrid control
method and structure, and therefore the model has high precision accordingly. Using the constructed
model, the small/large signal stability analysis can be performed and the high frequency response
characteristics of microgrid system can be studied as well [4,5]. However, with the widespread
use of commercial converters, the detailed information relating to converters’ topology, parameters,
and control methods is hardly to be obtained due to the commercial confidentiality and other reasons,
which makes the mechanism modeling method extremely difficult to carry out. Compared with the
mechanism modeling, the identification modeling method only needs to sample the input and output
data to complete the identification modeling process, instead of mastering the detailed information
of microgrid structure and control method. The identified model neglects to some extent the high
frequency response characteristics, yet it is simple and convenient to use, thus increasing attention has
been paid to it.
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Identification modeling method was initially applied in the grid-connected photovoltaic (PV)
distributed generation (DG) system modeling [6], and gradually extended to distributed power
supplies and distributed power controllers [7–9]. For example, References [10,11] studied identification
modeling method of DC/DC converter, and nonlinear models were selected to describe converters’
output behaviors. In Reference [12], the black-box modeling process for a single three-phase inverter
was proposed, and the dynamic parameters of the system were obtained through the step response.
Moreover, the model also took the effects of cross-coupling into account, which further improved the
accuracy of the model. In Reference [13], the parameters of the switched reluctance generator were
identified, and the influence of nonlinear factors was considered as well, such as PI regulator and
clamping functions. Currently, most of the research on microgrid identification modeling is aimed
at the certain single converter integrated into the microgrid, such as DC/DC converter, photovoltaic
inverter, and so on. By contrast, there are few studies on black-box identification modeling of microgrid
at system level. Even for the identification modeling of the whole microgrid, the first step is to build
non-linear models of the microgrid components, and then combine them into the microgrid model
which is complex in model structure. For instance, Reference [14] described the relationships between
the input and output voltage current of each DG by multi-segment nonlinear functions and then
combined them together to build up the microgrid model. However, as the scale of the microgrid
increases, the adaptability of this method is greatly limited. Reference [15] adopted the non-linear
autoregressive method to construct the DGs integrated into the microgrid model by sampling the
voltage data at the input port and the fault current at the output port, with up to 11 parameters to
be identified.

On the other hand, most identification modeling methods are suitable for fixed microgrid structure,
and off-line identification strategies can be employed to model microgrid system [16]. Although under
some circumstances (such as similar power supply characteristics, operation mode is basically fixed,
etc.), off-line identification has certain applicability, but for the common microgrid structure, there is a
random change in power output and load switching, which makes the applicability of this method
greatly being challenged. If the online identification method is adopted in identifying microgrid model,
the real time update of the model parameters can make up for this deficiency. Nowadays, on-line
identification methods are usually adopted in asynchronous motor parameters’ identification [17,18],
while application of these methods being adopted in microgrid system modeling has not yet been
found in literatures.

Therefore, this paper proposes a novel black-box modeling method of microgrid system from a
brand-new perspective. The model can be identified only by the voltage frequency data sampled at the
point of common coupling (PCC) and the total active and reactive power references data obtained at
the input port. The main features are as follows:

1. This method has wide adaptability and is not specific to a particular structure of microgrid. When
the structure of microgrid changes randomly, this method is still applicable.

2. The internal structure of the microgrid system and the types of loads are not considered at all.
The method only pays attention to the response characteristics observed at PCC to ensure that the
model structure is simple and easy to be applied.

3. The proposed method is not confined to the analysis of relationship between power references
and the voltage frequency, it is a general idea that can be applied in analyzing other port data
of microgrid.

4. Meanwhile, this method is also applicable to all kinds of microgrid systems, such as AC
microgrids, DC microgrids, AC/DC hybrid microgrids, and microgrids with various types of
electrical equipment and loads (like rotating generators based DG, inverter connected distributed
energy resource (DER), controllable and uncontrollable loads, etc.).
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2. Topology and Modeling Requirements of Microgrid

2.1. Typical Topology of Microgrid System

The typical microgrid topology is shown in Figure 1. The system commonly comprises DGs such
as photovoltaic and wind power generations, as well as large-capacity energy storage devices that
maintain the stability of the microgrid voltage and frequency. These devices are connected to the
AC bus via the inverters. Some active and reactive loads are also included in the microgrid system.
Equipment with communication functions such as specific DGs and smart switches can be connected
to the microgrid central controller (MGCC) which can also send control instructions to DGs and smart
switches in turn. When the smart switch at PCC is disconnected, the whole microgrid system operates
in islanded mode. At this time, the microgrid can adopt a peer-to-peer control structure, and then use
the control strategy such as droop control [19] and virtual synchronous machine control [20] to form
the voltage and frequency of the microgrid.
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2.2. Modeling Requirements

When studying the coordinated control of the microgrid system, usually the first step is to model
and analyze the DGs included in the microgrid system, which is an important part before the overall
modeling of microgrid. A rule of thumb is to use the mechanism modeling method to equivalent
multiple energy storage inverters of the same type into one inverter so that the microgrid model
can be greatly simplified. However, in most microgrid systems, besides the energy storage devices,
there are various types of distributed power devices, which affect the system characteristics as well.
These factors cannot be ignored, which lead to the model being too complex. Without the information
of the internal structure of the microgrid system, the microgrid model can be equivalent to a black-box
model and identification modeling method can be adopted to model the microgrid system.

According to the black-box model of microgrid as shown in Figure 2, the parameters optimization
of secondary voltage and frequency controller can be carried out with less complexity. The black-box
model of microgrid is considered as part of the open-loop transfer function of the overall control
structure, and the corresponding root locus can be obtained according to the open-loop transfer
function. Hence, the performance of microgrid system can be analyzed and the parameters of PI
regulators can be optimized as well.
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3. Identification of Black-Box Model

3.1. The Structure of Identification Model

According to the modeling requirements discussed above, the equivalent structure of microgrid
model can be obtained as shown in Figure 3. Instead of analyzing the internal structure of the microgrid,
the black-box model can be directly constructed by sampling the active and reactive power references
data at the input ports and the frequency and voltage amplitude data at the output ports.
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In theory, if the line impedance and the output impedance of the inverters included in the
microgrid system are purely inductive, the relationship between the frequency and the active power,
as well as the relationship between the voltage and the reactive power are completely decoupled.
However, in practical microgrid systems, the line impedance and the output impedance are not purely
inductive, so the coupling term should be considered in the black-box model. Therefore, there are
4 parameters to be identified in the black-box model as shown in Equation (1):(

fPCC

EPCC

)
=

(
G f P(s) G f Q(s)
GEP(s) GEQ(s)

)(
P0total

Q0total

)
(1)

where P0total and Q0total refer to the total active and reactive power references in the microgrid
respectively, and according to the power droop coefficients of each DG, MGCC assigns the total power
reference values P0total and Q0total to each DG according to Equation (2):
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
m1P1 = m2P2 = m3P3 = · · · = miPi
n1Q1 = n2Q2 = n3Q3 = · · · = niQi

P0total = P1 + P2 + P3 + · · ·Pi
Q0total = Q1 + Q2 + Q3 + · · ·Qi

(2)

where mi and ni refer to the active and reactive power droop coefficients of ith inverter, Pi and Qi refer
to the active and reactive power references of ith inverter, and f PCC and EPCC are frequency and voltage
amplitudes of PCC. GfP(s) and GEP(s) are transfer functions of the active power reference with respect
to the frequency and the voltage amplitude of PCC respectively, GfQ(s) and GEQ(s) are the transfer
functions of the reactive power reference with respect to the frequency and the voltage amplitude
of PCC respectively. Among them, GEP(s) and GfQ(s) are added to the model specifically in order to
analyze the cross-coupling effect.

According to Equation (1), the microgrid system is regarded as a two-input and two-output
black-box model. Without involving the characteristics of a single DG, the black-box identification
model of the whole microgrid system can be obtained as shown in Figure 4.
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By changing the total active and reactive power references issued by MGCC and sampling the
voltage and frequency response data from the smart switch, the voltage and frequency response model
of microgrid can be constructed by on-line identification method.

3.2. Identification Experiments Design

Since the step experiment process is easy to realize and has good identification performance,
the step response experiment is adopted to identify the transfer function of the model. In order
to simplify the identification process of the transfer functions mentioned above, this work divides
modeled transfer functions into two groups. As shown in Figure 5, one group carries out the step
experiment by performing a step on the active power reference value, the other group carries out the
step experiment by performing a step on the reactive power reference value.

3.2.1. Active Power Reference Step

The active power reference step experiment is applied to identify GfP(s) and GEP(s). The Q0total

is set to 0, while the total active power reference is regarded as the input of the step experiment by
performing a step on P0total. At the same time, the f PCC1 and EPCC1 are sampled at PCC as the output
of the step experiment.

G f P(s) =
fPCC

P0total

∣∣∣Q0total=0

GEP(s) =
EPCC
P0total

∣∣∣Q0total=0
(3)
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3.2.2. Reactive Power Reference Step

The reactive power reference step experiment is applied to identify GfQ(s) and GEQ(s). The P0total

is set to 0, while the total reactive power reference is regarded as the input of the step experiment by
performing a step on Q0total. Meanwhile, the f PCC2 and EPCC2 are sampled at PCC as the output of the
step experiment.

G f Q(s) =
fPCC

Q0total

∣∣∣P0total=0

GEQ(s) =
EPCC

Q0total

∣∣∣P0total=0
(4)

3.3. Identification Strategy and Process

By sampling the input and output data of the microgrid system, the transfer function expressions of
the microgrid model shown in Figure 4 can be obtained through an identification algorithm. The existing
identification algorithms usually use the recursive least squares method to identify the system on-line
and keep updating the parameters in real time. However, as the covariance matrix decreases in the
recursive process, the parameters are prone to explode [21]. In order to enhance the stability of the
recursive process, a damping term can be added to suppress the parameter explosion. Therefore,
the recursive damped least squares method is used in this paper as the identification algorithm.

Moreover, in the classical control method for discrete systems, the bilinear transformation can
ensure that the continuous system and the discrete system have the same stability and the same
steady-state gain [22]. Therefore, the bilinear transformation is chosen to discretize the transfer
functions shown in Equations (2) and (3), and the recursive damped least squares method is used for
the parameter identification.

This paper takes GfP(s) as an example and analyzes the identification process in detail, other
transfer functions GEP(s), GfQ(s) and GEQ(s) can adopt the same process.

3.3.1. Data Preprocessing

The first task is to preprocess the sampled data P0total and EPCC1. It mainly includes two steps:

1. Offset removal: The black-box model of the microgrid system includes the steady-state component
and the dynamic component. But the parameters to be identified only involve the system
dynamics of the system model, thus it is necessary to remove the steady-state components, i.e.,
the steady-state values of the input and output signals (before the step is done) respectively.

2. Measurement prefiltering: Since the sampling data contains some ripple and noise caused by the
switching frequency, prefiltering input and output data should be considered before the recursive
process to avoid the identification accuracy being affected.
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3.3.2. Model Order and Initial Value Selection

Secondly, the number of coefficients of each polynomial (transfer function order) and the initial
values of parameters should be determined. The first n data to be identified (in order to reduce the
computation load, the selected data should not be too much) can be selected, and the least squares
algorithm can be used to test a certain transfer function order iteratively. By comparing the fitness
between the model output and the measured output in different orders, the order of the transfer
function GfP(s) can be determined and remains constant in the process of recursion. The fitting
performance can be calculated as follows:

fBest fit = 100%×


1−

√
N∑

k=1
(y(k) − y)2

√
N∑

k=1
(y(k) − ŷ(k))2


y =

1
N

N∑
K=1

y(k) (5)

where y(k) is the measured output of microgrid, ŷ(k) is the model output, y is the average value
of the measured output. The higher the f Best fit, the better the model can reproduce the output
characteristics of the microgrid port. Considering that the high model order affects the computing
speed significantly, so as long as the fitness meets the requirements, choosing a lower transfer function
order is recommended. Then, the order of the numerator of GfP(s) is set to 1, while that of the
denominator is 2, the corresponding expression of GfP(s) can be obtained as

G f P(s) =
fPCC(s)

P0total(s)
=

b1s + b2

s2 + a1s + a2
(6)

The transfer function can be discretized by the bilinear transformation, as shown in Equation (7):

G f P = G f P(s)
∣∣∣∣(s= Tz−1

2z+1 )
=

B1 + B2z−1 + B3z−2

1 + A1z−1 + A2z−2
(7)

where 

A1 =
(
−T2/2 + 2a2 − a1T

)
/∆

A2 =
(
T2/4 + a1T/2 + a2

)
/∆

B1 = (b2 + b1T/2)/∆
B2 = (2b2 − b1T)/∆
B3 = (b2 + b1T/2)/∆
∆ = T2/4 + a1T/2

(8)

3.3.3. Online Recursive Algorithm

Then the corresponding difference equation of Equation (7) is:

fPCC(k) = −A1 fPCC(k− 1) −A2 fPCC(k− 2) + B1P0total(k) + B2P0total(k− 1) + B3P0total(k− 2) (9)

where f PCC (k) and P0total (k) are discrete values of f PCC and P0total at time k.
Let k = 3, 4,..., m, m is the total number of samples during the time of recursive computation.

Equation (9) can be rewritten in the form of a matrix:

Fm = Hmθ (10)

where Fm = [ fPCC(3), fPCC(4), · · · , fPCC(m)]T, Hm = [ϕ3,ϕ4, · · · ,ϕm]
T, θ = [A1, A2, B1, B2, B3]

T, ϕm =

[ fPCC(m− 1), fPCC(m− 2), Ptotal(m), Ptotal(m− 1), Ptotal(m− 2)].
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The idea of the recursive damped least squares method is to revise the estimated value
_
θ

recursively so that the minimum sum of squared errors between Fm and
_
Fm = Hm

_
θm can be obtained:

J(
_
θ) = (Fm −Hm

_
θm)

T
(Fm −Hm

_
θm) = min (11)

where J(
_
θ) is the objective function. As discussed above, adding damping to the algorithm can

suppress parameter explosion, so a damping term is added on the basis of equation (11):

J(
_
θ) = (Fm −Hm

_
θm)

T
(Fm −Hm

_
θm) + µ

[_
θm −

_
θm−1

]T[_
θm −

_
θm−1

]T
(12)

where µ is the damping factor, which is related to the linearity of the identification model.
This paper adopts the adaptive damping factor method to adjust the value of µ. Firstly, the matrix

HnHT
n is employed to determine the initial value of µ:

µ0 = 0.01×mean(HnHT
n ) (13)

where the function mean is to compute the average value of the matrix. The linearity of the microgrid
black-box model can be quantitatively evaluated by the ratio of the reduction and the change of the
objective function J in the iterative process [22]:

λ =
J(
_
θm) − J(

_
θm−1)

J̃(
_
θm) − J(

_
θm−1)

(14)

where J(
_
θm) is the calculated value of the objective function J at time m, J̃(

_
θm) is the second-order

Taylor series expansion of the objective function J at time m:

J̃(
_
θm) = J(

_
θn) + J′(

_
θn)(

_
θm −

_
θn) +

J′′ (
_
θn)

2
(
_
θm −

_
θn)

2
(15)

where J′ is the first derivative of J, J′′ is the second derivative of J.
Therefore, the damping factor can be corrected using the value calculated in Equation (14):

1. Under the condition of λ < 0.3, it shows that the objective function J exhibits a linearity reduction
trend during the recursive process, µ is needed to increase in the subsequent recursive process to
ensure better frequency and voltage identification

2. Under the condition of 0.3 < λ < 0.7, it indicates that the objective function J has a small change
in linearity during the recursive process, therefore the damping factor is close to the best value
and there is no need to change it.

3. Under the condition of λ > 0.7, a smaller damping factor µ should be chosen.

In order to achieve the adaptive correction of damping factor during the identification process,
Proportional coefficient η is employed, whose value is generally between 2 and 10, as shown below:

η =
J(
_
θm) − J(

_
θm−1)

( fPCC(m) −ϕ(m) · xk) · xk
+ 2 (16)

when µ is needed to be increased, µ can be taken as

µ = µ0 · η (17)
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on the contrary, when µ is needed to be decreased, µ can be taken as

µ = µ0/η (18)

According to the extremum principle, the minimum value of J can be obtained by taking the
differentiation to the right part of Equation (12). Through combing Equations (10)–(12), the recursive
equation based on recursive damped least square method is derived as below: Pm+1 =

[
µI + HT

m−1Hm−1 +ϕT
mϕm

]−1

θ̂m+1 = θ̂m + µPm+1
[
θ̂m − θ̂m−1

]
+ Pm+1hT

m+1

[
fPCC(m) −ϕm+1θ̂m

] (19)

Ever since a set of observation data ϕm is added, Pm and θ̂m are revised once, therefore new
estimation values of parameters are derived and on-line identification of parameters are realized.
The identification procedure is shown in Figure 6. Where ε is the allowable range of precision error, N
is the total number of samples at the current moment. When the recursive algorithm compute to the
sampling moment or the parameters estimation does not change, the recursive process is terminated
until the new sampling data arrives. After obtaining the parameters of the transfer function GfP(z),
the bilinear inverse transformation can be carried out to convert the transfer function from discrete
domain to continuous domain.
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4. Experiments and Model Validation

In this paper, a series of model identification experiments are carried out on a microgrid test
platform to verify the accuracy of the proposed modeling method. The controllers of the two inverters
integrated into the microgrid use MCU (TMS320F28335, Texas Instruments, Inc, Dallas, TX, USA),
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the pulse width modulation (PWM) carrier frequency of each controller is set to 6 kHz, and the
integrated three-phase resistive load is configured to 30 kW. Both inverters operate in P-f droop control
mode. Active and reactive power droop coefficients are chosen as 4 × 10−6 and 4 × 10−4 respectively.
Under the normal operation of the experimental platform, the input and output data are sampled by the
Yokogawa recorder. All devices are connected to the AC Bus and communication lines, the structure of
the microgrid test platform is shown in Figure 7.
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4.1. Identification Experiments of GfP(s) and GEP(s)

To carry out the identification experiments of GfP(s) and GEP(s), parallel inverters and the
three-phase active load are integrated into the microgrid. After the system reaches a steady state,
the active and reactive power references are set to 0 by MGCC at first. Then the active power reference
is changed to 80 kW at 9 s, and set to 0 again at 15.7 s. During this experiment, the reactive power
reference remains at 0. Figure 8 shows the identification data P0total, EPCC1, and f PCC1 sampled by the
waveform recorder at PCC.

According to the identification process shown in Figure 6, the sampled data P0total and f PCC1 can
be used to identify the model transfer function GfP(s).

G f P(s) =
4.229 · 10−8s2

− 0.001s + 5.0184
s2 + 945.97s + 2.5172 · 105 (20)

By applying the same input on both the model and the microgrid system, the fitting performance
can be obtained as shown in Figure 9. Since only the dynamic component is analyzed, the steady-state
component contained in each measurement has to be removed. As it can be seen, the model output
matches the microgrid output properly, and f Best fit reaches 95.36.
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Similarly, using the sampled data P0total and EPCC1, the transfer function GEP(s) can be obtained:

GEP(s) =
0.06107s2 + 64.24s + 152.9

s3 + 1249s2 + 3.95 · 105s + 4.933 · 108 (21)

4.2. Identification Experiments of GfQ(s) and GEQ(s)

To carry out the identification experiments of GfQ(s) and GEQ(s), parallel inverters and the
three-phase reactive load are integrated into the microgrid. After the system reaches a steady state,
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the active and reactive power references are set to 0 by MGCC at first. Then the reactive power reference
is changed to 80 kVar at 9 s, and set to 0 again after 5.6 s. During this experiment, the active power
reference remains at 0. Figure 10 shows the identification data Q0total, EPCC2, and f PCC2 sampled by the
waveform recorder at PCC.

Energies 2019, 12, x FOR PEER REVIEW 12 of 17 

 

Similarly, using the sampled data P0total and EPCC1, the transfer function GEP(s) can be obtained: 297 
2

3 2 5 8
0.06107 64.24 152.9( )
1249 3.95 10 4.933 10EP

s sG s
s s s

+ +=
+ + ⋅ + ⋅

 (21) 

4.2. Identification Experiments of GfQ(s) and GEQ(s) 298 
To carry out the identification experiments of GfQ(s) and GEQ(s), parallel inverters and the three-phase 299 

reactive load are integrated into the microgrid. After the system reaches a steady state, the active and 300 
reactive power references are set to 0 by MGCC at first. Then the reactive power reference is changed to 301 
80 kVar at 9 s, and set to 0 again after 5.6 s. During this experiment, the active power reference remains at 302 
0. Figure 10 shows the identification data Q0total, EPCC2, and fPCC2 sampled by the waveform recorder at PCC. 303 

 304 

Figure 10. Reactive power step sampling data for identification (a) Active power references; (b) 305 
Reactive power references; (c) PCC frequency; (d) PCC voltage amplitude. 306 

According to the identification process shown in Figure 6, the sampled data Q0total and EPCC2 can 307 
be used to identify the model transfer function GEQ(s). 308 

5 2

2 6
1.0129 10 1.288 7826.65( )

2760.77 2.545 10EQ
s sG s

s s

−⋅ − +=
+ + ⋅

 (22) 

Figure 10. Reactive power step sampling data for identification (a) Active power references; (b) Reactive
power references; (c) PCC frequency; (d) PCC voltage amplitude.

According to the identification process shown in Figure 6, the sampled data Q0total and EPCC2 can
be used to identify the model transfer function GEQ(s).

GEQ(s) =
1.0129 · 10−5s2

− 1.288s + 7826.65
s2 + 2760.77s + 2.545 · 106 (22)

By applying the same excitation on both the model and the microgrid system, the fitting
performance can be obtained as shown in Figure 11. Clearly, the model output also matches the
microgrid output, and f Best fit reaches 90.72.

Similarly, using the sampled data Q0total and f PCC2, the transfer function GfQ(s) can be obtained
as follows:

G f Q(s) =
8.085 · 10−6s2 + 2.219 · 10−4s + 6.091 · 10−4

s3 + 8.47s2 + 710.6s + 5187
(23)
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4.3. Recursive Model Validation

According to the power references step experiments, the voltage frequency response model is
obtained under the certain microgrid structure. Furthermore, in order to verify the adaptability of
the recursive damped least squares method applied in the model identification, that is, the online
identification effect during the period of microgrid structure changing, several adjustments have
been made: active power droop coefficients of two inverters are changed to 4 × 10−6 and 8 × 10−6

respectively; reactive power droop coefficients are changed to 2 × 10−4 and 4 × 10−4 respectively; the PV
inverter which is supplied by Chroma solar PV array simulators is added to the microgrid structure,
and the maximum output power of the PV inverter is set to 4 kW. During the power references step
experiment, the number of inverters connected to the microgrid are changed, the active and reactive
loads are set to different parameters, as listed in Table 1.

Table 1. Experimental parameters.

Time Total Power References Active Load Reactive Load

t1 0/0 0 0
t2 0/0 12 kW 20 kVar
t3 60 kW/40 kVar 12 kW 20 kVar
t4 100 kW/60 kVar 12 kW 20 kVar
t5 60 kW/40 kVar 12 kW 20 kVar
t6 60 kW/40 kVar 8 kW 10 kVar
t7 60 kW/40 kVar (INV1 shutdown) 8 kW 10 kVar
t8 60 kW/40 kVar (INV1 start up) 8 kW 10 kVar
t9 0/0 8 kW 10 kVar
t10 0/0 0 0

The input and output data during the experiment are recorded by the waveform recorder, as shown
in Figure 12.

Meanwhile, the same experimental processes as shown in Table 1 are carried out on a corresponding
simulation model under the MATLAB/Simulink environment (2014a, The MathWorks, Inc, Natick,
MA, USA), which is constructed according to the black-box equivalent model shown in Figure 4.
Initial values of P and θ̂ can be figured out according to the transfer function parameters obtained in
Sections 3.2 and 4.1. The frequency and voltage output of the simulation model can be obtained by
using the recursive damped least squares method for online identification.

The experimental and simulation results are compared with each other, as shown in Figure 13. It can
be seen that the simulation model is able to reproduce the system responses of the microgrid system
during the experiment, especially when the frequency and voltage responses of the microgrid have step
changes, the output of the simulation model tracks the changes accurately. Hence, the identification
algorithm implemented in the simulation model is validated.
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5. Conclusions

In this paper, the black-box modeling technique of voltage frequency response model of microgrid
system has been studied. In terms of the parameter identification algorithm of the recursive damped
least squares, the model can be identified and is suitable for performing simulations of microgrid
system on system level, especially when the internal information of a microgrid cannot be accessed.
The procedure of constructing the black-box model of microgrid is analyzed emphatically. Compared
with the traditional method of mechanism modeling, this method greatly simplifies the modeling steps
and provides a general idea for microgrid system modeling.

The output data obtained from the simulation model has been compared with the measured output
under the conditions of changing the microgrid structure. Depending on the recursive algorithm,
the identification model can reproduce the frequency and voltage characteristics of the microgrid port
accurately in all cases, which indicates that the black-box identification modeling method has a wide
range of adaptability to realize on-line identification of the microgrid system.

In future, in order to improve the identification accuracy, the influence of different communication
delays on the proposed identification strategy needs to be further studied. In addition to this, how to
apply the proposed identification model to a secondary frequency and voltage regulation control
system, so as to optimize parameters of secondary voltage and frequency controllers, are also set as the
future research directions.
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