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Abstract: With the increasing rate of wind power installed capacity, voltage state assessment with
large-scale wind power integration is of great significance. In this paper, a vine-copula based
voltage state assessment method with large-scale wind power integration is proposed. Firstly, the
nonparametric kernel density estimation is used to fit the wind speed distribution, and vine-copula
is used to construct the wind speed joint distribution model of multiple regions. In order to obtain
voltage distribution characteristics, probabilistic load flow based on the semi-invariant method and
wind speed independent transformation based on the Rosenblatt transformation are described. On
this basis, a voltage state assessment index is established for the more comprehensive evaluation of
voltage characteristics, and a voltage state assessment procedure is proposed. Taking actual wind
speed as an example, the case study of the IEEE 24-node power system and the east Inner Mongolia
power system for voltage state assessment with large-scale wind power integration are studied. The
simulation results verify the effectiveness of the proposed voltage state assessment method.

Keywords: voltage state assessment; large-scale wind power integration; vine-copula; probabilistic
load flow; east Inner Mongolia power system

1. Introduction

In recent years, the growth rate of wind power installed capacity has been rapid [1]. However, the
consumption of wind power has restricted its development seriously [2]. Both the randomness and
volatility of wind power have a great impact on the operation of a system [3], especially with respect
to the problem of voltage beyond limits. In addition, there is a complex correlation of wind speed
in different regions, especially a positive correlation [4,5], which causes serious voltage fluctuation
problems. Therefore, the study of voltage state assessment with large-scale wind power integration
is of great significance, and we must consider the uncertainty and correlation of wind speed in
different regions.

In this paper, we firstly apply the vine-copula function to the voltage state assessment method
with large-scale wind power integration. Therefore, the characteristics of the vine-copula function are
discussed in the introduction.

The vine-copula function is an improved algorithm of the copula function. The copula function
is an effective tool for constructing a joint probability distribution of multi-dimensional random
variables [6]. It is actually a function that connects the joint distribution function of variables with their
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respective edge distribution functions. The related theory could be traced back to 1959, when Sklar
linked the multivariate edge distribution using the copula function. In the 1990s, the copula function
was used in the financial field [7], and in recent years the copula function has been applied to the study
of power systems such as the probabilistic optimal power flow [8], probabilistic power flow [9] and
risk assessment [10].

However, the traditional copula model could only describe the nonlinearity, asymmetry and
tail correlation between two random variables, and building higher-dimensional copula is generally
recognised as a difficult problem. Limited by this reason, vine-copula was proposed by Kjersti Aas [11].
In [11], a pair-copula decomposition is used in the vine-copula function, which is represented a more
flexible and intuitive way of extending bivariate copula to higher dimensions. Multivariate data
exhibiting complex patterns of dependence in the tails could be modelled using the vine-copula
function. This function allows inference on the parameters of the pair-copulae on various levels of
the construction. This construction is hierarchical in nature, the various levels standing for growing
conditioning sets, incorporating more variables.

The paper is organized as follows. A literature review is presented in Section 2. The output power
model of a wind farm, the wind speed distribution model of a region and wind speed joint distribution
model of multiple regions are presented in Section 3. In Section 4, a probabilistic load flow based
on the semi-invariant method and wind speed independent transformation based on the Rosenblatt
transformation are described first. Then, a voltage state assessment index is established, and a voltage
state assessment procedure is proposed. Section 5 provides the case study of IEEE 24-node power
system and the east Inner Mongolia power system for voltage state assessment with large-scale wind
power integration, the simulation results are presented to verify the effectiveness of the proposed
voltage state assessment method.

2. Literature Review

The voltage state assessment method with large-scale wind power integration can be divided into
two processes, namely: (1) modelling correlated random variables; and (2) voltage stability assessment
using the above model. In the literature review section, we review the existing studies in the context of
these two aspects.

In the field of modelling correlated random variables, scholars have developed a great amount of
work. Until now, common models have included the edge distribution model based on the correlation
coefficient, and the joint distribution model based on the copula function. In the study of the edge
distribution model based on the correlation coefficient, Yang H. et al. [12] propose a third-order
polynomial normal transformation method to transform multivariate non-normal dependent random
variables to standard normal independent ones. Zou B. et al. [13] propose a ninth-order polynomial
normal transformation. These two correlation models are based on the linear correlation coefficient,
which is not suitable for describing a nonlinear correlated relationship. The complete representation
of random variable correlation characteristics is the joint probability distribution [8]. Besides, the
acquisition of correlation coefficient is based on practical experience, and the credibility is not high.
Furthermore, the model only uses the correlation coefficient as the description of random variables’
correlation. In actual conditions, the correlation between the wind speeds in different regions is
complex and changeable; thus it is difficult to completely describe the relationship between wind
speeds in multiple regions using this model.

The joint distribution model based on the copula function does not require a correlation coefficient
matrix of random variables in advance, but uses the copula function as the link to describe the
correlated relationship between random variables completely [14]. Xie Z. et al. [8] use copula to deal
with correlations of wind speed. Widen J. et al. [9] use a Gaussian copula to deal with correlated
samplings for an arbitrary set of distributed PV systems. These copula-based joint distribution models
are especially suited for describing correlated relationship with two random variables. If the number
of random variables exceed three, there would be a dimension disaster, and copula functions cannot
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describe a correlated relationship with high accuracy. For example, if the dimension is d, and there
are n data dots in each dimension, then a copula based joint distribution would be generated using
n? data dots; when 1 exceeds 1000 in general, when d > 3, the data amount would be too huge for
computation. In recent years, the vine-copula function is introduced to establish a joint distribution
model of high-dimensional random variables, and some scholars use it to calculate probabilistic or
probabilistic optimal power flow. Thesis [15] proposes an improved point estimate method based on
pair-copula and probability integral transformation for probabilistic power flow calculation. However,
this method could only calculate the expectation and variance of the power flow results, but cannot
obtain its distribution characteristics, so this method is hard to use for voltage state assessment.

Voltage stability is of great significance to the safe operation of a power system, and voltage state
assessment is a hot topic of research and discussion. Thesis [16] proposes a static voltage stability index
for evaluating the severity of the loading situation, which is used for predicting voltage instability at
a definite load value. Thesis [17] proposes a curve based voltage stability assessment method, and
implements a visualization framework for assessing voltage stability margins. Thesis [18] studies
the effects on voltage stability of the integration of a wind farm into the electricity grid. With the
large capacity of wind power installed in modern power system, traditional voltage state assessment
methods are hard to apply, and using these methods, it is especially hard to deal with the randomness
and correlation of wind power. Therefore, this paper proposes a vine-copula based voltage state
assessment method with large-scale wind power integration. This method uses the vine copula
function to first establish a wind speed joint distribution model of multiple regions, and calculates
probabilistic load flow to evaluate the voltage state. To resolve the problem that a semi-invariant
based probabilistic load flow method cannot deal with correlated random variables, this paper uses the
Rosenblatt transformation to transform the correlated wind speed variables to independent variables,
and proposes a voltage state assessment procedure.

3. Wind Speed Joint Distribution Model in Multiple Regions

In this section, the output power model of a wind farm is described. Then, a wind speed distribution
model of a region and wind speed joint distribution model of multiple regions are established.

3.1. Output Power Model of a Wind Farm

In power system stability analysis, a large-scale wind farm with multiple wind turbines is usually
equivalent to one equivalent machine [19]. For a single wind turbine, the wind speed determines its
active output. The corresponding relationship is as follows [19]:

0 0 < Ui, U 2 Ugo
_ V=0 .
Py(v) ={ Py oo Vi SV (1)
p, Uy S0 < Vg

where v is wind speed; P, (v) is the active output of wind farm under wind speeds v, v, vr; and v, is
the cut-in wind speed, rated wind speed and cut-out wind speed of the equivalent machine in a wind
farm, respectively. P is the rated output power of the equivalent machine in wind farm.

A large-scale wind farm with a coordinated control unit and reactive power compensation
capability is able to adjust its reactive power output within a certain range. Constant power factor
operation is the main mode of operation. Therefore, the reactive power of a wind farm is as follows,

Qu(v) = Py(v) - tang )

where Qy(v) is the reactive output of wind farm under wind speed v, ¢ is the power factor angle.
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3.2. Wind Speed Distribution Model of a Region

Wind energy is a clean and renewable energy. Wind speed is the main factor that determines
the output of wind farms. In this paper, we suppose that the wind speed in a region obeys the same
distribution, and different wind farms in a region use this wind speed as input. Nowadays, studies
mostly use the Weibull distribution to describe the wind speed of a region [20]. However, the shape
factor and scale factor of a Weibull distribution is hard to confirm accurately in different regions.
Therefore, the best description of wind speed distribution is to use its actual data for probability
statistics analysis. Non-parametric kernel density estimation makes no use of prior knowledge about
data distribution, nor attaches any assumptions to the data distribution. This is a method to study
the data distribution characteristics from data itself. Therefore, it is highly valued in statistical theory
and more applied fields. In this paper, non-parametric kernel density estimation is applied to fit wind
speed distribution using wind speed samples, and its expression is as follows:

N

fule) = 53 Ko - X) ®

i=1
where K}, is the kernel function, N is the sequence capacity, X; is the wind speed sample,i=1,2,... ,N.

3.3. Wind Speed Joint Distribution Model of Multiple Regions

This paper uses the vine copula function to establish a wind speed joint distribution model
of multiple regions. The core idea of vine copula is to decompose the joint distribution of
multi-dimensional random variables into two-dimensional copula functions including their original
and conditional variables.

Considering the wind speed random variables X = (Xj, X5, ..., Xy) in multiple regions, the
probability density functions f1 » ... n(x1, X2, ..., xN) can be decomposed as follows,

fip, NG, x2, . xn) = fi(xn) fon (X2lxr) fapn 2 (x3lx1, x2) - e, N-1 (enlxn, X2, .o an-1) (4)

where fi(xx) denotes the probability density function of X;, k=1,2,..., N, fy1,2, ..., k-1 (xklx1, x2, ...,
Xk—1) denotes the condition probability density function, k = 2, 3,..., N. Equation (4) can be decomposed
into many forms. Thesis [21] introduces the vine copula function to describe different decomposition
methods. Common vine models include C-vine and D-vine. The structure of C-vine is shown in
Figure 1, and this paper uses C-vine to decompose Equation (4). The decomposed expression is as
follows,

N N—1N—i
fio. NG, x,. . xN) = kH fr(xe) - ‘H1 Hl Ciiji1,...j-1(Fij1,2,..i-1 (Xilx1, -, Xic1), Fig ji1,2,..i-1 (i jlx, -, xim1)) - (B)
1=

=1 i
where Fi(xx) denotes the edge cumulative distribution function of X;, k =1, 2, ..., N, and
Fu1,2, ..., k=1(xxlx1, x2, ... , x¢—1) denotes conditional cumulative distribution function, k = 2, 3,..., N.

Vine copula is used to convert the joint probability density function of wind speed random
variables into the edge probability density function of a region and a number of two-dimensional
copula functions. Copula functions could be classified into an Ellipse function family (Ellipse-copula)
and Archimedean function family (Archimedean-copula). Among them, the Elliptic function family
includes the normal copula function and ¢ copula function, and the Archimedean function family
includes the gumbel copula function, clayton copula function and frank copula function [22]. Different
copula functions have different function structures, and their tail characteristics are suitable for
describing different dependent relationships. The probability density function and tail characteristics
of different copula types are shown in Table 1.
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Figure 1. The structure of C-vine.

Table 1. Probability density function and tail characteristics of different copula types.

Copula Probability Density Function Tail Characteristics
d (1) o1 (v)
Normal (1, 0lpn) f f 2m/1 2 ’ Symmetrical and progressively
exp(~ s2 2p,,sr+r2) dsdr independent tail
2 2 2

Cilu kolpr k) =7, [7C 27717

: 1+ Sz_zszp?rz ]—(k+2)/ e g Symmetrical tail
Gumbel Cq(u,vlpg) = exp{—[(— Inu)fs + (~In v)pg]l/[Jg} Asymmetrti}clzll’lc;irl)::iislensitive to
Clayton Ce(u,vlpc) = max|(uPe +v7Pe — 1)—1/ Pe,0] Asymmetr:flaellzaéi;ntiSensitive to
B Crluola) == Fnl1 = T aependent it

This five type of copula functions have different tail characteristics. It is of great significance to
find which type is more suitable to describe wind speed joint distribution. Before selecting the optimal
copula function, the correlation coefficient p of each copula function need to be determined based on
the initial sample. For the method of obtaining p, there are methods such as maximum likelihood
estimation, distribution estimation, semi-parametric estimation and non-parametric estimation. This
paper selects a widely used maximum likelihood estimation method, which is as follows:

Z Inc(f(x1), f(x2)) (6)

p = arg maxL(p) (7)

where f(x1) and f(x,) are edge distribution function of x; and x,, which could be calculated using
Equation (3), p is the estimated value of correlation coefficient p, and the copula model can be obtained
by bringing p and raw data into the copula function in Table 1.

For selecting the optimal copula function, this paper compares the Euclidean distance of the
empirical copula function and the evaluated copula function (including normal copula, ¢ copula,
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gumbel copula, clayton copula and frank copula). The method of calculating the Euclidean distance is
as follows,

T
deua = Y, Vlra() =50 + [va(®) = ya (O + 2a(8) - z5(6)) ®)
t=1

where A denotes the evaluated copula function, B denotes the empirical copula function, T denotes the
sample size, x, y and z denote three-dimensional coordinates.

4. Voltage State Assessment

In this section, probabilistic load flow based on the semi-invariant method and wind speed
independent transformation based on the Rosenblatt transformation are described. Then, a voltage
state assessment index is established, and a voltage state assessment procedure is proposed.

4.1. Probabilistic Load Flow Based on Semi-Invariant Method

In this paper, voltage state assessment is based on probabilistic load flow. Two main random
factors considered in probabilistic load flow calculation include load and wind turbine output. Among
them, the probabilistic model of load adopts the truncated normal distribution in [23], and we suppose
the loads in different nodes are independent. The vine-copula model is adopted to describe the
probabilistic characteristics of wind farm output.

The probabilistic load flow can be calculated using semi-invariant and Gram-Charlier series
expansion methods, which linearize the load flow equation at a reference operation point, and obtain
the sensitivity matrix of state vector (such as voltage) to random perturbation vector (such as power
input). The linearization method of load flow equation at the reference operation point is as follows:

V=Vy+ AV =Vy+S5y- AW 9)

where V denotes the node voltage vector, Vy denotes the node voltage vector at reference operation
point, AV denotes the node voltage change vector, Sy denotes the sensitivity matrix of voltage to power
input, AW denotes the random perturbation vector of power input in different nodes.

Equation (9) is a linear transformation of the random variables. The distribution of AV could
be obtained from the distribution of AW by convolution calculation. Assuming that the random
perturbation vector of power input (AW) in different nodes is independent (we have already suppose
the load in different nodes are independent, so random perturbation vector of load is in different nodes
are independent, although wind speed and wind farm output are correlated, we would transform them
to independent random variable in Section 3.2), convolution could be reduced to a few semi-invariant
algebra operations using the nature of the semi-invariant, and we will obtain the semi-invariants
of AV in different orders. After that, the probability density function of the state variables could be
calculated by using the Gram-Charlier series expansion. Let yg(‘)/
then the probability density function and distribution function could be expressed as follows using
Gram-Charlier series expansion,

denote k-order semi-invariant of AV,

A -dD(AV As - @ (AV A - M (AV
N 1<¢>1!( )+ z(PZ!( )+_”+ nqbn!( )

S o) e e
Fap(AV) = I ’ A9 W(AY) | AP (AV) A ™ (AV)

fav(AV) = ¢(AV)

(10)

. [H(AV) + T 5 b e ldAY (1)

where ¢(e) denotes probability density function of standard normal distribution, ¢ (AV) is the
n-order derivative of ¢(e), A1, Ay, ... , Ay denote the coefficients of the Gram-Charlier series, which
are expressed as follows (we only show the first eight orders and this could meet the engineering
accuracy requirements),
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Ay =0 As =)
A=2  As=1"% 11000
2 6 =7y T 107,y

(12)
As=-yay A7=-0my+3r)
Av=7Sy As =y +56 5+ 350/

4.2. Wind Speed Independent Transformation

The wind speed joint distribution model in Section 3.3 describes the correlation among the
wind speed in different regions. However, the probabilistic load flow calculation based on
semi-invariant method requires input variables to be independent. Therefore, the wind speed
with correlation needs to be transformed into independent variables. The commonly used methods are
Rackwitz-Fiessler transformation, Nataf transformation and Rosenblatt transformation [24]. Among
them, Rackwitz-Fiessler transformation assumes that the correlation between variables is unchangeable,
or ignores the change in correlation, which would result in large errors. Nataf transformation uses
a correlation coefficient matrix to describe the correlation relationship, which cannot capture the
nonlinear relationship between variables. When the variables do not obey the normal distribution, the
method may lead to a large error. The Rosenblatt transformation is a method to transform a set of
non-normal correlated/non-correlated random variables into a set of equivalent normal independent
random variables, and this method is not easily affected by the type of variable distribution and
whether the correlation is linear or not. This paper selects the Rosenblatt transformation to transform
the correlated wind speed into independent variables.

As for wind speed random variables X = (X1, X5, ... , Xy) in multiple regions, assuming that the
joint cumulative distribution functionis Fy » ... n(x1, X2, ..., Xn), Besides, another set of independent
standard normal variable Y = (Y1, Y>, ..., Yn). The relationship between X and Y is as follows:

¢(y1) = F1(x1)
f]b'('yz) = Fay1(xalx1) 13)
d(yn) = Fnpo,. N(xNIX1, X2, ..., XN)

Invert Equation (13), an independent standard normal variable Y can be obtained, which is
expressed as follows:
= CP_i [F1(x1)]
y2 = ¢ [Fop (x2lx1)] (14)

yn = ¢ ENpo,. -1 (xNIx1, X2, -, X))

Equation (14) is called the Rosenblatt transformation. Through this transformation, the correlated
wind speed random variables are transformed to independent standard normal random variables. The
Rosenblatt inverse transform of Equation (13) is as follows:

x1 = Ft (1))

x2 = Fyi[o(y2)l] (15)

xN == FX]‘lll,z,...,N—l [(P(yN)lxll x2/ cee /xN—l}
The expression of Fjj o _ i(xilx1,X2,...,%;) could be calculated using recursion, wherei=1,2, ...,
N. Using Equation (5) and Equation (6), let N = 2, we know that:
_ fplxe)  ap- i) folx)

fan{xabar) = A fi(x1) = a2 folx) (16)
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X2

F2|1(x2|x1):sz2|1(x2|x1)dx2=f c12 - fa(x2)dxo (17)

—00

Next, Using Equation (5), Equation (6) and Equation (16), let N = 3, we know that:

Bt ) = R~ w6 e () (19
F3|1,2(x3|x1,x2)—f f3|1,2(x3|x1,x2)dx2—f 1,3 Coan - f3(x3)dxz (19)

Using this method, we could deduce the expression of Fjy 5 i(xilx1,x2,...,x;) [24], where [ =1, 2,
.., N,
Fi(x1) = f_x; fi(x1)dxy
Fop(xalx1) = [ c1pfo(x2)dxa

x; (20)
Finp,..i(xilx1,x2,...,xi) = [[1 cvicoin - cicing,...ima fi(x:)dx;

’ X
Fnpo,. N (N1 X2, . xn) = [0 cineang - EN—1 N2, N—2fv (XN ) dx

The Rosenblatt transformation establishes the link relationship between correlated wind speed
random variables and independent standard normal variables. We could use some sampling method to
select some wind speed variables first, and transform them to independent standard normal variables
using Equation (14).

4.3. Voltage State Assessment Method

4.3.1. Voltage State Assessment Index

In order to evaluate the voltage state comprehensively and accurately, three indexes are defined,
including system voltage average beyond limits probability, node voltage confidence interval and node
voltage exponential entropy.

(1) System voltage average beyond limits probability.

In order to evaluate the voltage beyond limits situation with large-scale wind power integration,
we need to take the voltage beyond limits situation of all nodes in the system into account. Assuming
we have calculated power flow for K times, and we could know the times that the voltage of node i is
out of range through defining qualified voltage interval, let it be k;. and the voltage beyond limits
probability of node i can be expressed as follows:

beyond ki
P, =X (21)

Assuming there are Snodes in the system, and the system voltage average beyond limits probability

can be expressed as follows:
S Pbeyond

—beyond i
P = 21 S (22)
1=

(2) Node voltage exponential entropy.

In order to evaluate the complexity of node voltage, exponential entropy is introduced. Firstly, we
need to divide the voltage into L interval, which is [Vmin, Vl ), [V1, ?2), ., [?L_l, ?max]. As for node
i, count the number that V; lies in each interval, which is lil, ZIZ, e, ll.L (assuming we have calculated
power flow for K times). The node voltage exponential entropy could be expressed as follows:
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L
Ei=) bl-exp(1-1b)) (23)
j=1
b = i (24)
t K

4.3.2. Voltage State Assessment Procedure

The core of voltage state assessment with large-scale wind power integration is to establish
wind speed joint distribution model of multiple regions using the vine-copula function, and generate
independent samples which satisfy the correlated conditions. Then, the semi-invariants of node
voltage are obtained on the basis of the linear power flow equation and homogeneity/additivity of
semi-invariants, Finally, the probability density function and distribution function of node voltage is
calculated by the Gram-Charlier series expansion method. The calculation steps are as follows:

(1) Calculate the distribution function of wind speed of each region using non-parametric kernel
density estimation according to historical measurement data of wind speed.

(2) Select the appropriate copula function according to Section 3.3 according to the relationship
between wind speeds in different regions, and establish their wind speed joint distribution model
using vine copula.

(3) A sampling technique (such as Monte Carlo sampling, random sampling) is used to generate
correlation wind speed samples according to the vine copula function.

(4) Convert the correlated wind speed samples to independent wind speed samples using the
Rosenblatt transform.

(5) Calculate node voltage using probabilistic load flow based on semi-invariant method.

5. Simulation Results

In this section, the case study of IEEE 24 power system and the east Inner Mongolia power system
for voltage state assessment with large-scale wind power integration are provided. The proposed
method is achieved by programing in Matrix Laboratory (MATLAB, 2015b, The MathWorks, Inc.,
Natick, MA, USA).

5.1. Case Study of IEEE 24-Node Power System

5.1.1. Case Illustration and Wind Speed Samples

This paper uses a modified IEEE 24-node power system [25] for example analysis, which is shown
in Figure 2. To verify the effectiveness of the algorithm, two wind farms are added to node 7 and 8,
respectively. Supposing the wind speeds of node 7 and 8 obey normal distribution, the expectations of
which are 8 m/s and 9 m/s and variances are 2 m/s and 2.2 m/s. The correlation coefficient of wind speed
innode 7 and 8 is 0.99. Generally, the higher correlation coefficient of wind speed in different wind
farms is, the variation trend would be more similar in these wind farms, which is to say that if the wind
speed in node 7 is huge, then the wind speed in node 8 would be huge also. Therefore, if we choose the
correlation coefficient of wind speed in node 7 and 8 as 0.99, which is a strong correlation relationship,
then the voltage fluctuation of the power system is the most serious under this circumstance, as the
system voltage average beyond limits would be more likely to occur. According to the wind speed
joint distribution of nodes 7 and 8, 8000 wind speed samples are generated randomly in each wind
farm. The power factor of the wind turbine is 0.98, the rated, cut-in and cut-out wind speed of the
wind turbine is 15 m/s, 3 m/s and 25 m/s, respectively. Considering the rated, cut-in and cut-out wind
speeds, the active and reactive power of the wind turbine can be calculated using Equations (1) and (2)
according to wind speed. In reality, the uncertainty of the load is much less than that of wind speed, so
we did not take the uncertainty of the load into consideration, and regard them as determined values.
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% wind farm =R transformer

Figure 2. A modified IEEE 24-node power system.

5.1.2. Effectiveness Verification of the Proposed Method

According to the 8000 generated wind speeds in Section 5.1.1, non-parametric kernel density
estimation is used to obtain the probability density function of these wind speed samples, and their
joint probability density function is shown in Figure 3. In this figure, the x-z and y-z planes denote
the probability density function of wind speed in node 7, respectively. Apparently, the probability
density function of wind speed in nodes 7 and 8 obey normal distribution because the sample number
is huge, which verifies the effectiveness of using non-parametric kernel density estimation to obtain
the probability density function of wind speed. In this case, we suppose that the wind speeds in node
7 and 8 obey the normal distribution in Section 5.1.1. Therefore, we select the normal copula function
to establish their wind speed joint distribution model; the copula function and the joint probability
density function solved through this copula are shown in Figure 4.

In order to verify the validity of joint probability density function in Figure 4, we design a method
that calculates the similarity of joint probability density function between Figures 3 and 4. Extract R
x-axis and y-axis coordinates randomly in Figures 3 and 4, and let their z-axis coordinates are z;; and
Zij, wherei=1,2,...,R,j=1,2,...,R. Calculate the error using the formula in Equation (25), the
smaller error is, the more similar joint probability density function between Figures 3 and 4 is. Let
R =500, 1000, 1500, 2000, 2500, and the average error and maximum error of probability density in
Figures 3 and 4 are shown in Table 2. We can see the errors under different R values are small enough,
which verifies that the joint probability density function in Figure 4 is basically the same as that in
Figure 3, and this illustrates that vine-copula could effectively construct a joint probability density of
multi-dimensional random variables.

R

R
error = Z Z

i=1 j=1

2

Zi]‘ —Zl']‘

(25)

sz
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Figure 3. Joint probability density function of wind speed in node 7 and 8.
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Table 2. Average error and maximum error of probability density in Figures 3 and 4.

R Value 500 1000 1500 2000 2500
Average error (%) 0.68 0.59 0.74 0.73 0.85
Maximum error (%) 0.72 0.68 0.79 0.78 0.91

Monte Carlo sampling is used in the copula-based joint probability density function to generate
10,000 wind speed samples, and the Rosenblatt transform is used to convert the correlated wind speed
samples to independent wind speed samples. On this basis, we calculate node voltage using the
probabilistic load flow based on the semi-invariant method (shorthand as proposed method), and
the node voltage results are shown in Figure 5. In order to verify the effectiveness of this copula and
the semi-invariant based probabilistic load flow calculation in this paper, we use the Monte Carlo
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method to sample wind speed data in Section 5.1.1 for 10,000 times (simplified Monte Carlo method),
and uses these wind speed samples to calculate power load for 10,000 times (detailed Monte Carlo
method). The average error and maximum error of the proposed method and Monte Carlo method are
shown in Table 3. From this Table, the calculation results of the proposed and the Monte Carlo method
are basically consistent, and this illustrates that the proposed method is effective in the statistical
characteristics of the output variables.

projection on the XOY plane

1.05 ~
ok
% 1 Ly wmmn iy MM?»,,W
I U
= 0.9 l 3
> 5
N Y 0 5 10 15
N N
0.95 X
projection on the XOY plane
'/M‘MWM‘”"M"» Kl’ '&)H‘ WA,, ‘\-‘
et

Figure 5. Node voltage results.

Table 3. Average error and maximum error of simplified Monte Carlo method to detailed one.

T Average Error Maximum Error
ype
. 0 Standard . o Standard
Expectation (%) Deviation (%) Expectation (%) Deviation (%)

Voltage amplitude 0.09 0.73 0.25 1.56
Phase angle 0.07 0.15 0.32 2.44
Active power 0.11 0.94 0.45 3.21
Reactive power 0.09 0.67 0.43 1.89

In order to verify the accuracy of the proposed method in the probability distribution characteristics
of the output variables further. Taking the voltage amplitude of node 3 and node 4, the active power
of branches 21-15 and 3-1, and the reactive power of branch 19-16 and 23-20 as examples, this paper
calculates their distribution function using the proposed method and Monte Carlo method. The
distribution functions are shown in Figure 6. From this figure, the distribution curve of these two
methods are close to each other. Through verification, the distribution function of output variables in
other nodes or branches using these two methods are very similar, and the maximum relative error is
2.14%, which illustrates that the proposed method could accurately obtain probability distributions,
and further proves that the proposed method has higher precision.
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Figure 6. Distribution function of output variables.

In order to verify the novelty of the study compared with other studies, the traditional three
point estimate method taking no account of wind speed correlation in [26] (traditional three point
estimate method), and the three point estimate method considering wind speed correlation in [19]
(improved three point estimate method) are used to sample wind speed. Then, the expectation and
standard deviation of voltage amplitude and phase angle with Monte Carlo method are compared.
Together with the proposed method, the average error of these three methods and the Monte Carlo
method are shown in Table 4. In this table, the error of the traditional three point estimate method
is the largest among the three method. The reason lies in that this method take no account of wind
speed correlation, which has a significant influence on the calculation results. The improved three
point estimate method takes wind speed correlation into consideration, but the error is still larger than
the proposed method in this paper. The method only uses the correlation coefficient as the description
index of the correlation of wind speeds. In the actual situation, the correlation between wind speeds is
complex and variable. Therefore, it is difficult to fully describe the relationship between these wind
speeds. In fact, the linear correlation coefficient, Spearman correlation coefficient [27,28] etc. cannot
fully describe the correlation between random variables; copula-based joint probability distribution is
the best description.
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Table 4. Average error comparison of three methods.

Method Statistic Voltage Amplitude Phase Angle
Traditional three-point Expectation 1.58 2.43
estimate method Standard deviation 5.67 7.44
Improved three-point Expectation 0.18 0.32
estimate method Standard deviation 1.15 2.61
Expectation 0.09 0.07
Proposed method Standard deviation 0.73 0.15

5.2. Case Study of East Inner Mongolia Power System

5.2.1. Case Illustration and Wind Speed Data

The East Inner Mongolia region includes Chifeng region (region A), Tongliao region (region B),
Hulunbeier region (region C) and Xing’an League region (region D). The East Inner Mongolia Power
Grid has formed a network with 500 kV grid as the backbone network frame, 220 kV grid to achieve
full coverage of the county, 110 (66) kV grid in chain ring or radiation form. By the end of 2018, the
East Inner Mongolia Power Grid has 670 substations of 66 kV and above, and the transformer capacity
is 65.09 million kVA and the total length of line is 37,819 km [25]. The wind speed is taken from the
measured data of region A to region D. The power factor, rated wind speed, cut-in wind speed and
cut-out wind speed of the wind turbine are the same as those in Section 4.1. Supposing the wind speed
base value is 15 m/s, and standard the wind speed of region A to region D. Divide the standardized
wind speed 0-1 to 20 intervals, and the length of each interval is 0.05, calculate the frequency and
probability density the wind speed in region A to region D in each interval, which is shown as the blue
bar chart in Figure 7. On this basis, non-parametric kernel density estimation is used to obtain the
probability density function of wind speed in region A to region D, which is shown as the red line in

Figure 7.
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Figure 7. Wind speed distribution of region A to region D.
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5.2.2. Wind Speed Joint Distribution Model of Region A to Region D

This paper uses C-vine to decompose joint distribution, and region A is regarded as the root node.
The maximum likelihood estimation method is used in non-parametric kernel density estimation based
probability density function of the two regions to obtain the correlation coefficient. The correlation
coefficient of different copulas is shown in Table 5. On this basis, the probability density function of
different copula types are shown in Figure 8.

In order to select the optimal copula function, this paper compares the Euclidean distance of
empirical copula function and the evaluated copula function (including normal copula, f copula,
gumbel copula, clayton copula and frank copula). The calculation results are shown in Table 6. From
this table, we can see which Euclidean distance of the empirical copula function and gumbel copula in
two different regions is smallest, so we select the gumbel copula as the optimal copula function.

Table 5. Correlation coefficient of different copulas.

Copula Type Region A and B Region A and C Region A and D
Normal copula 1.00 0.38 1.00 0.40 1.00 0.39
0.38 1.00 0.40 1.00 0.39 1.00
t copula 1.00 0.49 1.00 0.47 1.00 0.47
0.49 1.00 0.47 1.00 0.47 1.00
Clayton copula 0.48 0.49 0.50
Frank copula 0.31 0.31 0.32
Gumbel copula 0.42 0.43 0.43
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Figure 8. Probability density function of different copula types.

Table 6. Euclidean distance of empirical copula function and the evaluated copula function.

Copula Type Normal t Gumbel Clayton Frank
Region A and B 2.511 2.006 1.572 5.899 2.916
Region A and C 2.489 1.717 1.500 6.251 2.920
Region A and D 2.679 1.862 1.616 6.526 3.104

5.2.3. Voltage State Assessment of East Inner Mongolia Power System

In this Section, a voltage state assessment of the East Inner Mongolia power system is evaluated.
The number of wind farms in the power system is 32. Monte Carlo sampling is used for 3000 times to
generate correlation wind speed samples according to the vine copula function, and the correlated
wind speed samples are converted to independent wind speed samples using the Rosenblatt transform.
On this basis, power flow is calculated using probabilistic load flow. The voltage amplitude results
are shown in Figure 9. In this figure, we could see there exists voltage beyond limits circumstance
when large-scale wind power integrated in the power system. Through verification, voltages beyond
limit occur when the wind speed is huge, especially at the nodes at which wind power accessed rises
more obviously as the wind speed increases; except for the nodes that wind power accessed, the nodes
with load accessed are subject to voltage beyond limit circumstance as the wind speed increases, this
is because the voltage adjustment ability of these nodes are weak. With the change of wind speed,
the power flow value and direction are easily to change, and the voltage of these load nodes varies
according to load regulation effect. The voltage of the nodes without wind power accessed, but with
large capacity thermal power units, do not rise obviously or remain constant, the reason lies in that
large capacity thermal power units bear the adjusting role in the power system; with a change of
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wind power or load, these node must adjust their output so as to meet the power supply and demand
balance, so the voltage adjusting ability is ascendant in this node, and the probability of voltage beyond
limits in these nodes is small.

1.2

1.15

—_
—_
T

voltage amplitude
=
— Q1

0.95

0‘9 1 1 1 1 1 ]
0 50 100 150 200 250 300

node

Figure 9. Voltage amplitude calculation results.

In order to evaluate the voltage state comprehensively and accurately, the power flow of wind
speed distribution in different wind seasons is calculated. The wind speed distribution in different
wind seasons generally includes breezy wind season, weak wind season, strong wind season and
gusty wind season. Among them, gusty wind season and breezy wind season cover the windiest
circumstances and constitute the weakest situation with respect to wind speed as the system will run
in an extreme state. Weak wind and strong wind seasons constitute the most common situations at
which the wind speed occurs, so the voltage average beyond limits problem must be studied in these
two wind seasons. Therefore, this paper focuses solely on these specific wind seasons. The definition
of these four wind seasons are shown in Table 7.

Table 7. Definition of different wind seasons.

Wind Season Definition

Breezy wind season Average wind speed is below the cut-in wind speed of the turbine
Average wind speed is between the cut-in wind speed and middle wind
speed (between cut-in and rated wind speed) of the turbine
Average wind speed is between the middle wind speed and cut-out
wind speed of the turbine

Gust wind season Average wind speed is beyond the cut-out wind speed of the turbine

Weak wind season

Strong wind season

Now, non-parametric kernel density estimation is applied to fit the wind speed distribution of
these four wind seasons using wind speed samples. The Gaussian kernel function is selected as the
kernel function, and the expression is shown in Equation (26), where X; is the wind speed samples.
If the window width of the Gaussian kernel function is 1, then the non-parametric kernel density
estimation of the wind speed in different wind seasons can be expressed as Equation (27). Using
Equations (26) and (27) to calculate the probability density function, region A is shown in Figure 10.

A YA
K() = = epl-E 26)
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Figure 10. Probability density function of region A in different wind seasons.

In order to obtain the typical system voltage beyond limits probability without reference to the
randomness of wind speed, we calculate the wind speed expectation of these four wind seasons, and
calculate the system voltage beyond limits probability, which is shown in Table 8. From this table,
the system voltage average beyond limits probability rises with wind speed, especially in the gusty
wind season. The reason lies in the increase of wind speed, when active power increases according to
Equation (1). At the same time, the constant power factor control is applied to the wind turbine in this
paper according to Equation (2). Therefore, the reactive power would increase with the increase of
active power, and the voltage, especially the nodes with wind power accessed, would occur in the
form of a voltage beyond limits circumstance.

Table 8. System voltage average beyond limits probability results.

Wind Season Breezy Weak Strong Gust
System voltage beyond limits probability 0.62% 3.79% 12.73% 13.97%

Using the same method to obtain a wind speed joint distribution model of region A to region D,
and the probabilistic load flow is calculated. On this basis, supposing system voltage beyond limits is
1.1. The system voltage average beyond limits probability is calculated, which is shown in Table 9.
From this table, system voltage average beyond limits probability rises with wind speed increases,
especially in gust wind season, the system voltage average beyond limits probability reaches 13.63%.
This result is the same as that we analyze in Figure 9, and this further indicates that the increase in
wind speed would bring a voltage average beyond limits.

Table 9. System voltage average beyond limits probability results.

Wind Season Breezy Weak Strong Gust

System voltage average beyond limits probability 0.84% 4.65% 12.55% 13.63%
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In order to calculate the node voltage exponential entropy in this power system, suppose L
in Equation (23) is 30. Considering the number of the nodes is too huge, we select some node to
display their node voltage exponential entropy, including the nodes containing wind power, the nodes
containing thermal power and nodes only containing load. The results are shown in Table 10. From
this table, the voltage exponential entropy of different nodes is smallest in the breezy wind season, and
largest in the weak wind season, which does not demonstrate sustained growth with an increase in
wind speed, the reason being that the wind speed in the weak wind season is from v,; to v1, which is
the widest range. Therefore, the voltage uncertainty in weak wind season is maximum. Besides, the
voltage exponential entropy of nodes containing wind power is largest in different wind seasons, and
nodes containing thermal power is smallest, nodes only containing load is between them. The reason
lies in that the voltage regulation capability of wind turbines is poor, and the fluctuation of wind speed
makes the voltage of this node fluctuate greatly. However, the voltage regulation capability of thermal
power turbines is excellent, which could keep the voltage of this node constant.

Table 10. Node voltage exponential entropy results.

Node Type Node Number Breezy Weak Strong Gust
Nodes containin 1 1.98 2.41 2.04 1.82
o 8 2 1.93 2.44 1.99 1.81

p 3 2.02 243 2.03 1.77

Nodes confainin 1 1.04 1.06 1.02 1.02
PR Owerg 2 1.04 1.07 1.03 1.04
P 3 1.05 1.06 1.03 1.02

1 127 1.62 1.53 1.39

Colli‘;?lffnor}ga q 2 1.22 1.65 1.48 1.34
& 3 1.8 1.58 1.56 135

6. Conclusions

This paper presents a vine-copula based voltage state assessment method with large-scale wind
power integration. A wind speed joint distribution model of multiple regions based on vine-copula is
established first, and a probabilistic load flow based on the semi-invariant method and wind speed
independent transformation based on the Rosenblatt transformation are described. On this basis, a
voltage state assessment index is established, and a voltage state assessment procedure is proposed.
Based on the Matrix Laboratory, the case study of IEEE 24 power system and the east Inner Mongolia
power system for voltage state assessment with large-scale wind power integration are provided.

(1) This paper selected the vine-copula function to describe joint probability density of wind speeds
with correlation and randomness, and the result is basically the same as that of an actual joint
probability density function, and the error is under 1%, which could illustrate vine-copula’s
effectiveness to construct a joint probability density of multi-dimensional random variables.

(2) The node voltage calculation method using probabilistic load flow based on the semi-invariant
method and the Monte Carlo method are basically consistent, where the expectation average
error is under 0.2% and the standard deviation average error is under 1%, and this could illustrate
that the proposed method is effective in the statistical characteristics of the output variables.

(3) This paper firstly selected the vine-copula function and probabilistic load flow to assess the
voltage state, and the precision of the voltage distribution function is very high compared with the
traditional and improved three point estimate methods, which further proves that the proposed
method has higher precision.
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