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Abstract: This paper describes a hierarchy of increasingly complex statistical models for wind power
generation in Alberta applied to wind power production data that are publicly available. The models
are based on combining spatial and temporal correlations. We apply the method of Gaussian random
fields to analyze the wind power time series of the 19 existing wind farms in Alberta. Following the
work of Gneiting et al., three space-time models are used: Stationary, Separability, and Full Symmetry.
We build several spatio-temporal covariance function estimates with increasing complexity: separable,
non-separable and symmetric, and non-separable and non-symmetric. We compare the performance
of the models using kriging predictions and prediction intervals for both the existing wind farms and a
new farm in Alberta. It is shown that the spatial correlation in the models captures the predominantly
westerly prevailing wind direction. We use the selected model to forecast the mean and the standard
deviation of the future aggregate wind power generation of Alberta and investigate new wind farm
siting on the basis of reducing aggregate variability.

Keywords: wind power modeling; statistical models; spatio-temporal modeling; Gaussian random
fields; kriging; power forecast; aggregate power; variability

1. Introduction

This study focuses on the wind power system of Alberta, Canada. Wind plays an increasingly
important role in the energy system of Alberta. Since the first commercial wind farm was built in
southern Alberta in 1993, the government of Alberta has continued to support the development of wind
power. Currently, the wind energy capacity in Alberta is 1479 MW, ranking third in Canada, but the
government expects to at least triple the current wind power capacity by 2030 [1]. This motivates
us to find an efficient model to forecast the future performance of the current wind energy grid and
the potential generation of new wind farms in Alberta. Our goal is to predict the aggregate wind
power generation in Alberta in the future with the further goals of analyzing congestion of the power
grid, the best locations of future wind farms, and the relationship between wind and solar power.
In particular, our study could help to better understand the smoothing effect of [2,3] hybrid wind and
solar energy systems on the future overall renewable production patterns in Alberta.

We aim to explore the quantitative and qualitative insights regarding wind energy production
in a geographical region using publicly available data. Wind resource estimation by wind power

Energies 2019, 12, 1998; doi:10.3390/en12101998 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-0693-351X
http://www.mdpi.com/1996-1073/12/10/1998?type=check_update&version=1
http://dx.doi.org/10.3390/en12101998
http://www.mdpi.com/journal/energies


Energies 2019, 12, 1998 2 of 29

developers and others involved in the wind power system is an expensive undertaking. It is helpful
for the stakeholders to know what can be done with public data and open software so that they can
use wind resource estimation more strategically, for example, for high-level critical analysis of a few
selected sites.

Wind speed is the most relevant factor related to wind power. In particular, the wind power curves
for different types of wind turbines have roughly the same shape [4], hence one approach to modeling
wind power is to model the wind speed and associate it to the wind power. Wind speed can be modeled
as a spatio-temporal process as it evolves randomly in time and space. Second order models are one
of the most basic types of spatio-temporal processes used in the modeling of wind. They use the
spatio-temporal covariance as a basis for estimation and are most suitable when the underlying process
can be modeled as a Gaussian spatio-temporal field. Gneiting et al. [5] applied this approach to model
Irish wind data. In particular, under the assumption of stationarity, they consider various parametric
covariance function models with increasing complexity: separable, non-separable but symmetric,
and finally non-symmetric and non-separable. Non-separable and non-symmetric covariance function
models have proved useful for the modeling of wind. For example, Gneiting et al. [5] incorporate
well-known wind patterns of Ireland using such covariance functions.

In this paper, we apply the covariance function models used in [5] to a new data set, namely
the wind power generation data of Alberta, Canada. We enhance their methodology by obtaining
kriging prediction intervals, in addition to kriging point predictions. We use the mean percentage of
observations outside the kriging prediction intervals as a performance measure additional to the mean
square error (MSE) and the mean absolute error (MAE) used in [5]. Moreover, we perform kriging
predictions after excluding one wind farm. That is, we leave out the historical data of one site in the
estimation of the models. Thereafter, we use the estimated models and the information of the other sites
to predict the observations at the excluded site. We use the error of these predictions as a performance
measure for the models to predict the wind power outputs at future sites. Finally, we derive the
distribution of the future aggregate power production using the planned site and capacity information
of the future wind farms in Alberta. The main incentive for this is that increasing renewable energy
generation tends to depress the wholesale price of electricity. Thus, a new farm that reduces the
variability of aggregate wind power may well be financially attractive even if its capacity factor is
relatively low.

1.1. Other Modeling Methodologies

There are many studies in the literature on wind power forecasting, but few of them consider
both spatial and temporal dimensions.

Chen et al. [6] predict the wind speed data at a single wind farm by correcting the numerical
weather prediction (NWP) using a Gaussian process (GP); they then model the relationship between
the corrected wind speed and power output using a censored Gaussian process.Ma et al. [7] model
the power output of a single farm at multiple time lags as a multivariate normal distribution after a
non-parametric transformation of the wind power data using the inverse of the empirical distribution
function of wind power. Yang et al. [8] use support vector machines (SVM) to predict the wind power
time series at the individual sites and use a Gaussian copula to model the forecast error at the multiple
sites; they then apply the methodology to three adjacent wind farms. Li et al. [9] combines NWP
with a wind power curve model to predict the wind power at an individual site and use a Gaussian
copula to model the prediction error at multiple sites. Gneiting et al. [10] and Hering and Genton [11]
build a more complex model of the interaction of the wind speeds at multiple sites by expressing
the parameters of the conditional distribution of the wind speed at a future time point as a linear
function of current or past observations of other sites. This linear function is altered according to a
regime switching process which mimics the alternating wind patterns observed in the geographical
region. Cavalcante et al. [12] use vector autoregression (VAR) to model the time series of wind speeds
of multiple farms and apply the least absolute shrinkage and selection operator (LASSO) for variable
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selection. Browell et al. [13] combine VAR with a regime switching process, where the regimes are
determined by NWP. There are many other studies of a similar nature to the ones just described,
e.g., Damousis et al. [14,15]; however, none of these methodologies model the wind speed/power in a
geographical region as a spatio-temporal process, hence the forecasts can only be obtained for the sites
for which the historical data are available. In addition, while all these studies model the correlation
between different sites, they do not build a unifying covariance structure for the entire region as a
function of spatio-temporal separation.

Malvaldi et al. [16] studied the relationship between correlation of the power output of European
countries and distance and time lag, which can be viewed as a step towards a spatio-temporal modeling
of wind power. Gneiting et al. [5] describe the first use of a second order spatio-temporal process
to model the wind speed, incorporating a non-separable covariance function to capture the effect of
prevalent wind directions in wind speed. The effect of the prevailing wind direction shows itself
through an asymmetry in correlation with respect to positive and negative distances and times, which
necessitates the use of non-separable covariance functions, Gneiting [17]. If the wind speed has
multiple prevailing directions, the asymmetry is harder to measure; Ezzat et al. [18] develop a more
accurate way of measuring the effect of prevailing wind directions by detecting change points in the
asymmetry patterns.

1.2. Applications

There is also a large amount of literature on the effects of geographic dispersion on aggregate
wind power. Reichenberg et al. [19] considered Europe as whole with an assumed rather than
actual arrangement of wind farms. They showed that it was possible to optimize the layout to
minimize, for example, occurrences of low aggregate power. Tejeda et al. [20] used the reduction in
variation of aggregate power to determine ideal sites for further expansion of wind energy in Europe.
Malvaldi et al. [16] also considered Europe as a whole with emphasis on the role of interconnections,
which are not significant in Alberta whose future scenarios were modeled by MacCormack et al. [21]
using simple autocorrelation models. Miettinen and Holttinen [22] considered the errors in day-ahead
forecasting for aggregate wind power in another large region, the Nordic countries. Correlations of
forecast errors decrease to zero at separations of around 500 km. The errors eventually “saturate”,
implying that there is an essential minimum error for any modeling methodology. Most wind farms in
Alberta are in the high wind regimes downwind of the Rocky Mountains (the area below the slanted
straight line in Figure 1). This clustering influences the variability in aggregate power, which has
market and system operation consequences. For example, the wind farms in close proximity produce
highly correlated wind power, which usually reduces the wholesale price of electricity during high
winds, so that wind farm profits are reduced. On the other hand, a wind farm that is remote from
other wind farms may produce power when the other farms do not, and may benefit from selling
power at a higher price even if its capacity factor is not as high as the clustered farms. Hence, there are
diminishing returns in building a farm near others in high wind regimes. Modeling the joint power
production of wind farm clusters is a first step to analyzing the trade off between the wind production
potential of a site and the proximity of the site to the other wind farms. To our knowledge, this has not
been attempted previously.

2. Wind Energy Generation Data

This study is based on data obtained from the Alberta Electric System Operator (AESO), consisting
of wind power production values in megawatts (MW) averaged over one hour periods from January
2016 to December 2017 for 19 wind farms in Alberta. The number of farms was constant over those
two years.

The following modifications were made to the data: Two wind farms were very close in distance
and belong to the same company, so we combined these two farms as one, labeled as BUL. The next
correction is removing the observations on 29 February in 2016 which is a leap year, to avert its
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influence in seasonality. Additionally, the data of the second hour in 13 March in both 2016 and 2017
were missing. We assumed that there is no dramatic change in an hour in wind power, so we used
the average of the wind production in the first and the third hour to estimate the missing value in the
second hour.

The farms are identified in Table 1 along with their capacities and shown on the map of Alberta
in Figure 1. The horizontal and the vertical black lines represent the x and y axes of our co-ordinate
system of the wind farms with the origin at the geographical centre of the farms. The slanted black
line separates two distinct regions. The region below the line is subject to strong winds associated
with Rocky Mountains which extend from just west of farm number 17 to the Banff National Park.
The remainder of the region in Figure 1 is flat. There is a significant cluster of wind farms in this area,
and the variability of the wind power generation of these farms is higher than the farms on the right of
the line, as shown by the specific variances in the third row of Table 1. The variance for each farm is
calculated as the variance of the time series corresponding to that farm after the preprocessing.

Table 1. Alberta wind farms, their capacity in Megawatts (second row), and specific variances in daily
production (third row).

BUL BSR1 CRR1 AKE1 TAB1 NEP1 HAL1 KHW1 OWF1 SCR3
1 2 3 4 5 6 7 8 9 10

29 300 77 73 81 82 150 63 46 30
0.046 0.055 0.072 0.074 0.048 0.041 0.048 0.079 0.084 0.053

SCR2 GWW1 SCR4 ARD1 BTR1 CR1 CRE3 IEW1 IEW2
11 12 13 14 15 16 17 18 19

30 71 88 68 66 39 20 66 66
0.053 0.064 0.042 0.067 0.066 0.08 0.055 0.082 0.072

Figure 1. Locations of the 19 wind farms in Alberta. North is vertically upwards. The width and height
of map are ≈500 kms. The Rocky Mountains start just to the west of wind farm no. 17 and follow the
direction of the slanted line to Banff National park. The remainder of the area in the figure is flat..
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Data Preprocessing

To evaluate the out-of-sample prediction performance used in modeling, we separate the data
into two sets: the data in 2016 as the training set and the data in 2017 as the testing set.

The histogram of hourly wind power generation in megawatts of each of the 19 wind farms
over the training period is given in Figure 2. These histograms indicate that for every wind farm
except farm CRE3, the probability distribution function of hourly wind generation shows two visible
modes, the biggest one is at zero power, and the other is near maximum capacity. The mode at
maximum capacity occurs when all turbines are operating at their rated power. Similarly, the mode at 0
indicates that the wind speed is below the cut-in speed for all turbines. The shape of the histograms is
similar to that obtained from the power curve of a single turbine combined with a Weibull or Rayleigh
distribution for the wind speed. More precisely, it can be argued that the wind power approximately
follows a truncated three-parameter Weibull distribution, since wind speed can be modeled using a
two-parameter Weibull distribution, and a simple representation of the power curve P(U) as a function
of wind speed, U, has the form

P(U) =


0 if U ≤ Ucut−in
−BU3

cut−in + BU3 if Ucut−in < U < Urated
BU3

rated if U ≥ Urated

, (1)

where Ucut−in and Urated are the cut-in and rated wind speeds, respectively. Even this simple form
implies that a Gaussian model is difficult to justify. In particular, the truncation at cut-in and rated
power results in a mixed distribution for power with non-zero probabilities at those conditions.
Truncation can be addressed effectively in a Bayesian framework. For example, truncation arises in the
modeling of precipitation and several authors model precipitation data as censored observations of a
latent Gaussian random field such as Baxevani and Lennartson [23], Glaseby et al. [24], and Allcroft
and Glaseby [25] who use the Bayesian methodology to estimate their models. This is also a promising
methodology for the wind power data. However, as a result of the computational complexity of the
Bayesian approach, we use a simpler alternative in this work. Namely, we transform our data to
daily averages which softens the effects of truncation. Thereafter, we divide each data point by the
corresponding capacity to obtain a uniform scale across the farms. The resulting data are skewed to
the right; we fix that by applying a power transform. We found that a square root transform gave
reasonably symmetric histograms overall. Another possibility is to use a transformation based on
the quantile function of the three-parameter Weibull distribution; however, we prefer the square-root
transform due to its simplicity, enabling us to find explicit formulas for the mean and the variance of
aggregate power, see Section 5.

Next, we subtract the seasonal component to obtain a stationary time series for each wind farm.
To estimate the seasonal component, we use the locally weighted smoothing estimator (LOWESS,
see e.g., Cleveland [26]), a common technique used to discover the trend of variables in a time plot or
scatter plot by creating a smooth line. After adjusting for seasonality, we subtract the location-specific
mean for each wind farm to get a time series with mean zero. The histograms of preprocessed hourly
wind power production values of 19 farms in the training set are plotted in Figure 3, and the flow
chart used for the preprocessing is given in Figure 4. Compared with the hourly data histograms,
the proportion of observations with no power are significantly reduced in the histograms of the
preprocessed data.
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Figure 2. Histograms of hourly wind power production in 19 wind farms in the training test. The hourly
wind power production values in MW are shown in the x-axis.
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Figure 3. Histograms of daily wind power production in 19 wind farms after preprocessing in the
training set.
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Figure 4. The flow chart of data preprocessing.

3. Modeling

We assume that the preprocessed data correspond to discrete measurements of a Gaussian
spatio-temporal process {Y(x, t), x ∈ S, t ∈ [0, ∞)}. S is a subset of R2 corresponding to the
geographical region containing the 20 wind farms and possible locations for future farms. We assume
that E[Y(x, t)] = 0, Var[Y(x, t)] = σ2(x) for some function σ : S 7→ (0, ∞). We also assume that there
exists a function C : S× T 7→ R, called the correlation function, such that Cov [Y(x1, t1), Y(x2, t2)] =

σ(x1)σ(x2)C(x2 − x1, t2 − t1). Our goal is to uncover σ and C from the data.
To estimate σ, we use the station specific variances given in Table 1. We group the farms into two

groups according to the similarity in their variance. The farms below the split line in Figure 1 have an
average station specific variance of 0.07, and the farms above the split line have an average station
specific variance of 0.05. Hence, we assume that σ is of the form:

σ(x) =

{
0.05 if x is above the split line,
0.07 if x is below the split line.

(2)

Because C must be positive definite, an effective strategy is to use a parametric family known to
be positive definite. We follow the approach of Gneiting et al. [5] and use three parametric families,
where each one is embedded in the next, thus allowing us to introduce increasing complexity at each
step. We start with a separable parametric family, then consider a larger symmetric family which
is non-separable in general but includes the separable family as a special case. Finally, we consider
a convex combination of the second family and a Lagrangian family which is antisymmetric and
non-separable in general. As in [5], we estimate the parameters in the models by the method of
weighted least squares (WLS), that is,

θ̂WLS = argmin ∑
h

∑
u

(
Ĉor(h; u)−Cor(h; u|θ)

1−Cor(h; u|θ)

)2

. (3)

In Equation (3), the sum is over all observed pairwise spatial separation vectors h in the data and
time lags u = −3,−2,−1, 0, 1, 2, 3 measured in days. The correlations for time lags |u| > 4 are not
significant and were ignored. We find that the spatial separation vectors h of distinct pairs are also
distinct, hence for each h in the above sum there is a unique pair (x1, x2), such that h = x2 − x1.
Ĉor(h; u) is simply the empirical correlation between the vectors Y(x2, t) and Y(x1, t + u). Cor(h; u|θ)
is a candidate space–time correlation function with parameter θ. We use the notation θ̂ to denote the
estimate of θ obtained by WLS. The same notation is used for other variables below.
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3.1. Separable Model

The most important simplifying assumptions are separability, full symmetry, and stationarity.
Under these assumptions, we can simply multiply the pure spatial correlation and pure temporal
correlation functions to build the space-time correlation function Cor(h; u|θ).

3.1.1. Pure Spatial Correlation Function

We choose the basic exponential form with a nugget effect for the spatial correlation function:

CS(h) = (1− ν) exp(−c||h||) + νδh=0. (4)

The parameters estimated by WLS for the Alberta wind farm data are ν̂ = 0.0025 and ĉ = 0.0037.
The data and the fitted pure spatial correlation function are plotted in Figure 5.

0 100 200 300 400

0.0
0.2

0.4
0.6

0.8
1.0

distance (km.)

cor
rela

tion

Figure 5. Empirical correlations against distance with fitted pure spatial correlation.

3.1.2. Pure Temporal Correlation Function

To build the temporal correlation function, we compute the empirical auto-correlations at time lag
|u| ≤ 3 days for each wind farm and take an average. The Cauchy version of the temporal correlation
function that we use is specified as

CT(u) = (1 + a|u|2α)−1, (5)

where the two parameters are estimated as â = 1.1472 and α̂ = 0.8635. The fitted pure temporal
correlation function from Equation (5) is drawn with the means of auto-correlation at time lag |u| ≤ 3
days in Figure 6.

Then, the separable correlation function is

C(h; u) = ((1− ν) exp(−c||h||) + νδh=0) (1 + a|u|2α)−1. (6)
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Figure 6. Empirical auto-correlations against time lags with fitted pure temporal correlation.

3.2. Fully Symmetric Model

To relax the separability assumption, we consider a fully symmetric model which introduces the
interaction parameter β, where β = 0 is the separable model in Formula (6):

CFS(h; u) =
1− ν

1 + a|u|2α

(
exp

(
−c||h||

(1 + a|u|2α)
β
2

)
+

ν

1− ν
δh=0

)
. (7)

In order to estimate the parameters in this model, we need the cross-correlation between each
pair of wind farms at time lag |u| ≤ 3 days during the training period.

The estimated β̂ = 0.0034, and the difference between the separable and fully symmetric
correlation function estimates is insignificant. This result indicates that the separability assumption is
satisfied and the interaction component is not necessary in our model. The empirical correlation with
the fitted correlation function at time lag u = 1, 2, 3, and 4 days is plotted in Figure 7. There is no need
for time lags greater than three days, because at u = 4 days, the cross-correlations are approximately
zero for all separations.

3.3. General Stationary Model

Figure 8 shows that the differences in correlation, Ĉor(h; u)− Ĉor(h;−u), at time lags u = 1, 2,
and 3 days are not close to 0, which means that the assumption of full symmetry is violated, most
visibly for u = 1. Moreover, the two plots in Figure 8 imply that the symmetry is violated in both the
west-east direction and the south-north direction. More precisely, for most pairs x1, x2 such that x1 is
to the west of x2

Ĉor(Y(x1, t), Y(x2, t + u))− Ĉor(Y(x1, t), Y(x2, t− u)) > 0. (8)

This is also true for most pairs x1, x2 such that x1 is to the south of x2. We assume that the asymmetry
is due to the prevailing winds in southern Alberta. To account for the lack of symmetry, we add the
prevailing wind influence in the model by using a Lagrangian correlation function

CLGR(h; u) = (1− 1
2||v|| ||h− vu||)+, (9)



Energies 2019, 12, 1998 10 of 29

where we take v as a two dimensional vector.

Figure 7. Empirical spatial-temporal correlation plots with fitted correlation function at time lag one
day (upper left), two days (upper right), three days (lower left), four days (lower right).

0 50 100 150 200 250 300 350

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

west−−>east (km)

di
ffe

re
nc

e 
of

 c
or

re
la

tio
n

0 50 100 150 200 250 300 350

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

south−−> north (km)

di
ffe

re
nc

e 
of

 c
or

re
la

tio
n

Figure 8. The left plot indicates the difference between the empirical west-to-east and east-to-west
cross-correlations for the 171 distinct pairs of wind farms at temporal lags one day (red), two days
(green), and three days (blue) against the east-west distance between the farms. The right plot indicates
the difference between the empirical south-to-north and north-to-south cross-correlations against the
north-south distance between the farms.
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We build a general stationary correlation function by taking a convex combination based on a
fully symmetric model and Lagrangian correlation function:

CSTAT(h; u) = (1− λ)CFS(h; u) + λCLGR(h; u). (10)

We use the previously found values for the parameters of CFS, and using WLS we obtain the estimates
of λ and v as λ̂ = 0.256, v̂1 = 143.52 km/day, and v̂2 = 74.57 km/day where the subscript “1” refers to
to west-east and “2” to north-south.

The model identifies the prevailing wind direction as southwesterly, which is consistent with
the findings of Sherry and Rival [27] on the wind patterns near the Rocky mountains, see Figure 9.
Because a large number of wind farms are clustered in this region, it is not surprising that the wind
power outputs are influenced by this prevalent wind pattern.

Figure 9. Wind rose plot taken from Sherry and Rival [27]. The measurements were made at a height
of 50 m using a wind mast on the northern outskirts of Calgary.

However, the data in Figure 9 were obtained in northern Calgary which is closer to the Rocky
Mountains than many of the wind farms and the southwesterly wind may not be prevalent in the
entire region that we are considering. To shed light on this, we look at wind speed data pooled from
8 randomly selected weather stations in Alberta, [28]. Figure 10 shows the wind rose plot for this
data set. We see that the prevailing wind direction has a westerly component equal to 142.2 km/day
or 1.64 m/s. The southerly component is only 15.0 km/day, hence is negligible. We note that these
are wind speed measurements at 10 m height, whereas Figure 9 shows measurements at 50 m. Fifty
meters is a more appropriate height for the majority of wind turbines in Alberta which have towers
of around 80 m, hence measurements at this height are likely to be more appropriate than those at
10 m, for forecasting wind power production. In particular, 10 m measurements are subject to random
local effects not relevant to wind power. However, there may be a correlation between the two types
of measurements. Indeed, we find that the wind patterns from a weather station near wind farms 5
and 10, at Vauxhal, AB gives a wind rose, Figure 11, similar to in Figure 9, in that the prevailing wind
direction is southwesterly.
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Figure 10. Wind rose plot from eight randomly selected weather stations in the region defined in
Figure 1.
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Figure 11. Wind rose from the weather station at Vauxhall, AB, midway between farms 5 and 10.

Since the three wind roses indicate a significant westerly component to the prevailing wind
direction over the entire region, we also consider a Lagrangian covariance function where the wind
direction is assumed to be westerly:

CSTAT,w(h; u) = (1− λw)CFS(h; u) + λwCLGR(h; u) (11)

CLGR,w(h; u) = (1− 1
2|vw|

||h1 − vwu, h2||)+, (12)

where we take vw, the subscript “w” indicates a westerly value, as a scalar.
The previous estimates of the parameters of CFS are kept. The estimates of λw and vw are 0.2356

and 130.4985 km/day, respectively.

4. Comparison of the Models

We now assess the performance of the three models:
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• Model 1

CSEP(h; u) = CS(h)CT(u) (13)

with

CS(h) = 0.998 exp(−0.0037||h||) + 0.0025δh=0,

CT(u) =
(

1 + 1.1472|u|2(0.8635)
)−1

;

• Model 2

CSTAT(h; u) = 0.744CSEP + 0.256CLGR(h; u) (14)

with

CLGR(h; u) = (1− 1
2||v|| ||h− vu||)+

and v = (143.52, 74.57) km/day and CSEP as in Model 1;

• Model 3

CSTAT,w(h; u) = 0.764CSEP + 0.236CLGR,w(h; u) (15)

with

CLGR,w(h; u) = (1− 1
2|vw|

||(h1 − vwu, h2)||)+

and vw = 130.50 km/day and CSEP as in Model 1.

4.1. Goodness of Fit

In this section, we compare the goodness of fit of the correlation matrix of each model to the
empirical correlations in Figure 12. The three models are very similar for the black and blue points
showing the cross correlations at time lags 0 and 3. However, there are some differences in the green
and red points, the cross correlations at time lags 1 and 2. There is a larger cluster of red and green
points near the line y = x for Model 2, and also the distribution of these points are more symmetrical
relative to the line y = x for Model 2 as compared to the other two models. We conclude that Model 2
gives the best fit to the empirical covariances.
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Figure 12. Goodness of fit of the three models: black, red, green, and blue colors correspond to cross
correlations of any two locations at time lags 0, 1, 2, and 3 days, respectively.

4.2. Kriging Predictions

Kriging is a common tool for prediction in the second order modeling framework. The goal is to
build a linear estimator of a component of Y(x, t) from the observations of some other components
Y(x1, t1), Y(x2, t2), . . . , Y(xn, tn). Kriging can also be used as a model evaluation tool as in [5]. The goal
is to identify the model with the smallest prediction error. The prediction error can be measured in
different ways, such as the root mean square error (RMSE) and the MAE as a function of the site. Since
both of these measures scale with the variability of observations, we also use

R2(x) = 1− MSE(x)
TSE(x)

,

where MSE(x) = 1
n ∑n

i=1
(
Y(x, ti)− Ŷ(x, ti)

)2 and TSE(x) = 1
n ∑n

i=1 (Y(x, ti)− Ȳ(x))2, where Ȳ(x) is
the long time mean of Y(x, t). A larger R2 value indicates a better prediction performance. We also
construct 95% prediction intervals (PI) as detailed in Appendix A, and calculate the realized percentage
of observations falling outside the 95% PI (POPI). Ideally, this percentage should be close to 5%: a value
higher than this indicates that the model is less reliable than it should be, and a lower value indicates
that the model is more conservative than it should be.

We focus on two prediction scenarios. In scenario 1, we predict the power output of a given
wind farm on a given day based on the observations from all the wind farms (including the same
farm) in the past three days. For this scenario, we reproduce the procedure of [5] and compare the
three covariance models and the empirical covariance with respect to MSE, RMSE, R2, and POPI.
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In scenario 2, we predict the wind power in a given wind farm on a given day based on the observations
of all the other wind farms in the past three days. Moreover, the prediction for each farm is based
on the parameters estimated by removing all the historical information of the particular farm in the
training data. This scenario is important because the selected farm can be viewed as a future site, hence
we get an evaluation of the performance of the models in their ability to predict the wind power in
future sites.

4.3. Scenario 1: Prediction for an Existing Wind Farm

To forecast the future output of an existing wind farm, we suppose that the historical data for all
19 wind farms are available and the formula of kriging (see e.g., Gaeton and Guyon [29]) for the point
prediction at time t, µt is specified as:

µt = c′0C−1zt, (16)

where C is the estimated covariance matrix of Yp
t := (Y(t − 3, x1), . . . , Y(t − 3, x19), Y(t −

2, x1), . . . , Y(t − 2, x19), Y(t − 1, x1), . . . , Y(t − 1, x19). c0 is the cross covariance matrix of Yc
t :=

Y(t, x1), . . . , , Y(t, x19) with Yp(t). c′0 indicates the transpose of the matrix c0. zt is the vector of
observations of Yp

t . We obtain predictions of every day in 2017 for every wind farm using three models
given in Formulas (13)–(15). In addition, we make kriging predictions using the empirical covariance
matrix of Yp

t and Yc
t to provide a baseline case.

The predicted versus actual power for the first 100 days of 2017 for two farms (BUL and BTR1)
are shown in Figures 13 and 14, respectively. These two farms were chosen because BUL is well away
from the Rocky Mountains and there are no other wind farms nearby. On the other hand, BTR1 is
located close to many other farms near the Rocky Mountains. We expect our predictions to be better
for BTR1 than BUL which is confirmed in Figures 13 and 14. Models 1, 2, and 3 perform better than
the empirical kriging. Moreover, for both farms, the performance of Model 2 is noticeably better than
the others.

For all farms, the mean prediction errors are given in Table 2. On average, Model 2 performs the
best in terms of RMSE and MAE, but not R2, although the difference between Model 1 and Model 2 is
small. In POPI, we see that both Models 1 and 2 are performing very close to 5%, whereas Model 1 is
more conservative than Model 2.

Table 2. Mean prediction errors for all wind farms.

Model RMSE MAE R2 POPI

Empirical 0.2379 0.1920 0.1484 0.1234
Model 1 0.2242 0.1886 0.2440 0.0429
Model 2 0.2238 0.1869 0.2446 0.0584
Model 3 0.2255 0.1873 0.2326 0.0608
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Figure 13. Actual daily power production (black) versus predicted values when BUL is treated as an
existing wind farm. The x-axis is in days. Prediction intervals are in color gray.
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Figure 14. Actual daily power production (black) versus predicted values when CR1 is treated as an
existing wind farm. The x-axis is in days. Prediction intervals are in color gray.

Figure 15 shows RMSE, MAE, R2, and POPI values for the four models for the farms identified
by the number in Figure 1 and Table 1. In these plots, we observe that Model 2 performs consistently
better than Model 3 with the exception of BUL for which Model 3 is the best out of three models.
Model 2 also performs better than Model 1 for most sites except sites for 6, 7, and 11 for which Model 1
is the best. Overall, we see a pattern that Model 2 performs better on average for sites left of the slanted
line in Figure 1 than the sites to the right of the slanted line. It is also interesting to observe that the
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predictive power of all the models is higher in the region close to the Rocky Mountains, as measured
by R2. This is intuitively correct because there are more farms clustered near the mountains, and the
information obtained from nearby farms increases the prediction accuracy for these farms.

After combining all our observations, we conclude that Model 2 is the best model overall.
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Figure 15. Root mean square error (RMSE), mean absolute error (MAE), coefficient of determination
(R2), and percent of observations out of prediction intervals (POPI) for predicting power output from
all wind farms. Empirical: red. Model 1: red. Model 2: green. Model 3: blue.
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4.4. Prediction for a New Wind Farm

We select a wind farm to be treated as a new site and perform the estimation procedure by
removing all its historical data, and then compare the estimated parameters with the parameters
estimated from the actual historical data. For Model 2, we treat the the prevalent wind direction as
242 degrees (measured clockwise, origin north)—the calibrated value of the wind direction for Model
2 using the entire training set—but recalibrate the wind speed and the coefficient of the Lagrangian
function with the data of the “new” site removed. Note that we cannot use empirical kriging any more.
Thus, we need to re-estimate the parameters in correlation models and acquire 19 sets of values for the
parameters in total, where in each iteration we treat a different farm site as the new site. We find that
the parameter β is zero in all iterations. Thus, we only consider Models 1, 2, and 3.

For each iteration, we predict the observation at the selected site on a given day using the past
three days of data for all other sites. Since we are treating the given site as a new site, we do not
use observations from that location, so the vector c0 does not include the cross-covariance of the
location itself at any time lag, and the dimension of variance-covariance matrix is decreased to 54× 54.
In addition, the modified zt does not have the historical data from this location.

We give a snapshot of the kriging performances during the first 100 days for sites BUL and BTR1
based on models 1, 2, and 3 in Figures 16 and 17). The prediction accuracy of all three models is very
close to that for the existing sites, showing that the models work as effectively for new sites as the
existing ones. As in scenario 1, for BUL, it is hard to differentiate the three models, whereas for BTR1,
Model 2 performs better than the other two models. In terms of mean prediction errors (Table 3),
Models 1 and 2 have similar RMSE and R2, and both are better than Model 3, while with respect
to MAE, Model 2 is the best followed by Model 3. Additionally, POPI for Model 2 is the desirable
5%, whereas Model 1 is less than 4% and Model 3 is more than 6%. Finally, in Figure 18, we see the
prediction errors of the models as a function of the farm site. Model 2 is still more accurate for farms
close to the mountains, but it does worse (most noticeably in R2) for farms sites above the slanted line.

Combining all these observations, we conclude that Model 2 is also the best model for predictions
for a new site.

Table 3. Mean prediction errors for a new wind farm.

Model RMSE MAE R2 POPI

Model 1 0.2245 0.1892 0.2432 0.0366
Model 2 0.2246 0.1878 0.2397 0.0538
Model 3 0.2260 0.1880 0.2306 0.0621
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Figure 16. Actual daily power production (black) versus predicted values when BUL is treated as a
new wind farm. The x-axis is in days. Prediction intervals are in color gray.
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Figure 17. Actual daily power production (black) versus predicted values when BTR1 is treated as a
new wind farm. The x-axis is in days. Prediction intervals are in color gray.
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Figure 18. RMSE, MAE, R2, and POPI for predicting a new wind farm as a function of the farm site.
Model 1: black. Model 2: red. Model 3: green.
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5. The Aggregate Wind Power Generation and the Effect of New Farms

Let W(x, t) represent the wind power output at location x and time t, normalized by the maximum
capacity at location x. We apply the same transformations used in preprocessing our data to W(x, t) to
arrive at a Gaussian process (Y(x, t))x∈D,t∈T . More precisely,

Y(x, t) =
√

W(x, t)− S(t) + m(x), (17)

or equivalenty,
W(x, t) = (Y(x, t) + S(t) + m(x))2, (18)

where Y(x, t) is a second order stationary Gaussian process with mean 0, variance σ2(x) and correlation
function C(s2 − s1, t2 − t1) = C(h, u). Xc = {xc

1, xc
2, · · · , xc

k} is the vector of locations of current wind
farms with corresponding maximum capacities Cc = {cc

1, cc
2, · · · , cc

k}. We also consider p new wind

farms with locations X f = {x f
1 , x f

2 , · · · , x f
p} and capacities C f = {c f

1 , c f
2 , · · · , c f

p}. Let t∗ be a time point
in the future, then S(t∗) is a constant in this case. Thus, the aggregate wind power generation at time
t∗ is

Gagg(t∗) =
k

∑
i=1

cc
i W(xc

i , t∗) +
p

∑
j=1

c f
j W(x f

j , t∗). (19)

When x, t are fixed, S(t) and m(x) are constant. In Appendix B, we derive the formula for the mean
of Gagg(t∗):

E[Gagg(t∗)] =
k

∑
i=1

cc
i (σ

2(xi) + (S(t∗) + m(xi))
2) +

p

∑
j=1

c f
j (σ

2(xj) + (S(t∗) + m(xj))
2). (20)

Variance of the Aggregate Wind Power Generation

The variance of Gagg(t∗) is

Var(Gagg(t∗)) = Var(
k

∑
i=1

cc
i W(xc

i , t∗)) + Var(
p

∑
j=1

c f
j W(x f

j , t∗))

+ 2Cov(
k

∑
i=1

cc
i W(xc

i , t∗),
p

∑
j=1

c f
j W(x f

j , t∗))

=
k

∑
i=1

(cc
i )

2Var(W(xc
i , t∗)) +

k

∑
j=1

(c f
j )

2Var(W(x f
j , t∗))

+ 2
k

∑
i,j=1

k

∑
,i 6=j

cc
i cc

j Cov(W(xc
i , t∗), W(xc

j , t∗))

+ 2
p

∑
i,j=1

p

∑
,i 6=j

c f
i c f

j Cov(W(x f
i , t∗), W(x f

j , t∗))

+ 2
k

∑
i=1

p

∑
j=1

cc
i c f

j Cov(W(xc
i , t∗), W(x f

j , t∗)).

(21)

In Appendix B, we derive the following formulas for Var(W(x, t)) and Cov(W(xi, t), W(xj, t)):

Var(W(x, t)) = 2σ4(x) + 4(S(t) + m(x))2σ2(x), (22)

and
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Cov(W(xi, t), W(xj, t)) =

2σ(xi)
2σ(xj)

2C2(hij, 0) + 4σ(xi)σ(xj)C(hji, 0)(S(t) + m(xi))(S(t) + m(xj)),

where hji = xj − xi.
We apply these formulas to find the mean and variance of the aggregate daily average power

production of Alberta. Table 4 lists the coordinates and capacities of the new sites that are planned
to be built in Alberta. For the new farms, we take σ(x) as given by Formula (2). Furthermore,
the estimated m(x) values for the existing farms range between−0.09 and 0.07 with a mean value close
to 0. Because m(x) values do not exhibit a geographical pattern similar to σ(x), we take m(x) values as
0 for the new farms. It would be interesting to study the relationship of m(x) with farm specific factors,
such as technology, wind turbine types, etc., which may be used to obtain more accurate estimates of
m(x) for the new farms; however, this is beyond the scope of the current work. In the estimates below,
we take t∗ = 1, corresponding to the first day of the year.

Table 5 gives the mean and the variance of the future and current aggregate daily power
production. The future production includes the new sites in Table 4 whereas the current production is
based on the existing sites listed in Table 1 and Figure 1. We find that with the new wind farms the
total power generation will increase by 40.8%, whereas the variability as measured by the standard
deviation, of the aggregate generation will increase by 31.5%.

Table 4. Future wind farms.

Sites Capacity (MW) Coordinates

Sharp Hills, Oyen 248.4 (51.74,−110.66)
Riverview, Pincher Creek 115 (49.53,−113.92)

CRR2 Pincher Creek 30.6 (49.55,−113.89)
Whitla Wind, Medicine Hat 201.6 (49.76,−110.77)

Table 5. Current and future aggregate daily production.

Farms Total Capacity (MW) Mean Production (MW) Standard Deviation (MW)

Current (Farms 1–19) 1445 737.23 381.34
Future (Farms 1–23) 2040.6 1037.93 502.34

If wind farm power output is independent of the other farms, and if the farms have equal capacity
and equal variability in their power generation, a 40.8% increase in the total capacity shown in Table 5
would cause only a [

√
1.408− 1]× 100 = 18.6% increase in the standard deviation of the aggregate

power generation. On the other hand, if all the power was generated by single farm and its capacity
increased by 40.8%, the standard deviation of its power would also increase by 40.8%. The increase
in the standard deviation of the aggregate power in Table 5 is between these two extreme values,
indicating that the system will benefit from geographic dispersion; however, there is still room for
improvement in terms of reducing the variability of the system. Indeed, a closer look at the locations
of the new farms reveals that two of the new sites, Riverview and CRR2, are in the Pincher Creek
cluster, see Figure 19, the left panel. For comparison, we consider a hypothetical scenario where we
relocate these two sites to new locations to increase geographic dispersion as in Figure 19, the right
panel. In this hypothetical scenario, we find that the mean wind power generation would increase by
40.4%, whereas the variability of the wind power generation would increase by 25.47%. This suggests
that a reduction in the variability of the aggregate power can be achieved with almost no loss in the
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mean aggregate power. In the Alberta system, the owners of the new wind farms should also benefit
from the reduction in variability.

Figure 19. The left figure shows the relative locations of the planned sites in Table 4. The right figure
shows a hypothetical relocation of the planned sites. The straight lines in the figures are the same as in
Figure 1.

6. Conclusions and Future Work

Many authorities, including the Alberta government, desire to increase the penetration of
renewable energy such as wind power. A reliable forecast of a single wind farm in any particular site
and the aggregate wind power in the whole area are helpful to achieve this goal in an efficient and
cost-effective manner. In addition, the variability of aggregate wind power and the siting of new wind
farms are issues that will be increasingly important as the penetration of renewable energy increases.
It is possible to consider wind power output as a second order stochastic process with spatial and
temporal dimensions. The most important and difficult step is finding a suitable covariance function
for the process. This covariance function not only can describe the correlation in space and time,
but also can capture the impact of the atmospheric factors such as the wind speed and direction.

In this study, we assume the transformed daily wind power generation in Alberta is a second-order
stationary Gaussian process and estimate several correlation function models proposed by [5]. First, we
estimate the simplest correlation function called the separable correlation function. Next, we estimate
the space–time interaction parameter in a non-separable but fully symmetric correlation model and
find that the space–time interaction is insignificant. With the evidence of asymmetry in our data,
we use the Lagrangian correlation function to capture the impact of the prevailing wind. A more
complicated asymmetric stationary correlation function is obtained by combining the Lagrangian
correlation function with a fully symmetric correlation function. Comparing the goodness of fit for
estimations of different models, we observe that the more complicated models fit the data better, that
is, the general stationary correlation function model with two parametric partial winds (Model 2) fits
the empirical correlations best, and gives the best predictions of the power output of the existing farms.

We use Model 2 to formulate the mean and the variance of the aggregate wind power generation
of all wind farms in Alberta. We apply the formulas to calculate the mean of the variance of the
aggregate wind power generation including information of the planned new wind farm sites. We find
that with the new wind farms, the mean wind power generation will increase by 40.8%, whereas
the variability of the wind power generation will increase by 31.5%. Hypothetically, placing the four
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projected farms away from the clustered region near the Rocky Mountains shows a small decrease in
aggregate power output but a significant decrease in its variability.

There are a few challenges which need to be addressed in future work. Gaussian processes are
simple and widely used for spatio-temporal data; however, the data of the wind power generation in
Alberta is not well suited for the Gaussian assumption. As a result, we have to convert hourly data to
daily average data. In our future work, a non-Gaussian spatial-temporal process, such as a hierarchical
model, e.g., Bannerjee et al. [30], will be considered to model data with higher time resolution such as
hourly or 15-minute data. In addition, Alberta is a large enough region which experiences different
prevailing wind speeds and directions. Furthermore, if prevailing wind patterns have a stochastic
nature, they may be better captured as stochastic processes (as regime switching processes) but not
constants or single-valued parameters, which can also be incorporated in a hierarchical framework.
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Abbreviations

The following abbreviations are used in this manuscript:

AESO Alberta Electric System Operator
Cov(X,Y) Covariance of the random variables X and Y
Cor(X,Y) Correlation of the random variables X and Y
E(X) Expectation of the random variable X
LOWESS Locally Weighted Scatterplot Smoothing
MAE Mean Absolute Error
MSE Mean Square Error
Nk(µ, Σ) k-dimensional normal distribution with mean vector µ and covariance matrix Σ
PI Prediction Interval
POPI Percent of Observations out of Prediction Intervals
RMSE Root mean Square Error
R2 Coefficient of Determination
Var(X) Variance of the random variable X
WLS Weighted least Squares

Appendix A. The Prediction Interval

By assumption,

(Yc
t , Yp

t )
T ∼ N76

(
0,

[
Σ cT

0
c0 C

] )
, (A1)

where Σ is the estimated covariance matrix of Yc
t . We note that there are in total four time lags for each

farm, hence the dimension of the vector (Yc
t , Yp

t ) is 4× 19 = 76. The conditional distribution of Yc
t

given known value zt for Yp
t is a multivariate normal Yc

t |Y
p
t = zt ∼ N19(ut, Σt), where

mean: ut = cT
0 C−1zt (A2)

covariance matrix: Σt = Σ− cT
0 C−1c0. (A3)
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We then use the diagonal elements of Σt to construct the prediction intervals for the new predicted
values ut. The 95% prediction interval for i-th wind farm predicted at time t is

ut(i) ± 1.95996Σt(i,i), (A4)

where ut(i) is the i-th element of vector ut and Σt(i,i) is the i-th diagonal element of Σt.

Appendix B. Mean and Variance of the Aggregate Wind Power

The expression for Var(W(x, t)) is

Var(W(x, t)) = Var((Y(x, t) + S(t) + m(x))2)

= Var(Y2(x, t)) + 4Var(Y(x, t)(S(t) + m(x)))

+ 4Cov(Y2(x, t), Y(x, t)(S(t) + m(x)))

= E[Y4(x, t)]− E2[Y2(x, t)] + 4(S(t) + m(x))2Var(Y(x, t))

= 3E2[Y2(x, t)]− E2[Y2(x, t)] + 4(S(t) + m(x))2σ2(x)

= 2σ4(x) + 4(S(t) + m(x))2σ2(x).

(A5)

The covariance, Cov(W(xi, t), W(xj, t)), is given by

Cov(W(xi, t), W(xj, t)) = E[W(xi, t)W(xj, t)]− E[W(xi, t))E(W(xj, t)] − E[W(xi, t))E(W(xj, t)]. (A6)

It is straightforward to obtain

E[W(xi, t)]E[W(xj, t)] = (σ2(xi) + (S(t) + m(xi))
2)(σ2(xj) + (S(t) + m(xj))

2). (A7)

However, calculating E[W(xi, t)W(xj, t)] is more complicated. Since t, xi and xj are fixed and letting
hji = xj − xi,

E[W(xi, t)W(xj, t)]

= E[(Y(xi, t) + S(t) + m(xi))
2(Y(xj, t) + S(t) + m(xj))

2]

= E[Y2(xi, t)Y2(xj, t)] + 2(S(t) + m(xj))E[Y2(xi, t)Y(xj, t)]

+ 2(S(t) + m(xi))E[Y(xi, t)Y2(xj, t)] + σ2(xi)(S(t) + m(xj))
2

+ σ2(xj)(S(t) + m(xi))
2 + 4σ(xi)σ(xj)C(hji, 0)(S(t) + m(xi))(S(t) + m(xj))

+ (S(t) + m(xi))
2(S(t) + m(xj))

2.

(A8)

We note that Y(xi, t) and Y(xj, t) have a bivariate normal distribution with mean µ = 0 and
variance-covariance matrix

Σ =

(
σ2(xi) σ(xi)σ(xj)C(hji, 0)

σ(xi)σ(xj)C(hji, 0)C(hji, 0) σ2(xj)

)
.

Thus, the moment generating function of Y at u = (u1, u2) is

MY(u) = E[euTY] = euTµ+ 1
2 uTΣu = e

1
2 (u

2
1σ2(xi)+2u1u2σ(xi)σ(xj)C(hji ,0)+u2

2σ2(xj)). (A9)

We have

E[Y(xi, t)2Y(xj, t)2] = E

[
∂4g(u1,u2)

∂u2
1∂u2

2

∣∣∣∣
u1,u2=0

]
= ∂4 MY(u)

∂u2
1∂u2

2

∣∣∣∣
u1,u2=0

= σ2(xi)σ
2(xj) + 2σ2(xi)σ

2(xj)C2(hij, 0). (A10)
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Similarly, we can obtain E[Y(xi, t)2Y(xj, t)] = E[Y(xi, t)Y(xj, t)2] = 0. Then,

E[W(xi, t)W(xj, t)] = (σ2(xi) + (S(t) + m(xi))
2)(σ2(xj) + (S(t) + m(xj))

2)

+ 2σ2(xi)σ
2(xj)C2(hij, 0) + 4σ(xi)σ(xj)C(hji, 0)(S(t) + m(xi))(S(t) + m(xj)).

(A11)

Thus,

Cov(W(xi, t), W(xj, t)) = 2σ2(xi)σ
2(xj)C2(hij, 0) + 4σ(xi)σ(xj)C(hji, 0)(S(t) + m(xi))(S(t) + m(xj)). (A12)
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