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Abstract: Hybrid electric vehicles (HEVs) require supervisory controllers to distribute the propulsion
power from sources like an engine and motors. Control concepts based on optimal control theories
such as dynamic programming (DP) and Pontryagin’s minimum principle (PMP) have been studied
to maximize fuel efficiencies. These concepts are, however, not practical for real-world applications
because they guarantee optimality only if future driving information is given prior to the actual
driving. Instead, heuristic rule-based control concepts are widely used in real-world applications.
Those concepts are not only simple enough to be designed based on existing vehicle control concepts,
but also allow developers to easily intervene in the control to enhance other vital aspects of real-world
vehicle performances, such as safety and drivability. In this study, a rule-based control for parallel
type-2 HEVs is developed based on representative control concepts of real-world HEVs, and optimal
control parameters are determined by optimization processes. The performance of the optimized
rule-based control is evaluated by comparing it with the optimal results obtained by PMP, and it
shows that the rule-based concepts can achieve high fuel efficiencies, which are close, typically within
4%, to the maximum values obtained by PMP.

Keywords: optimization; P2 HEV; rule-based control; large-scale simulation

1. Introduction

The depletion of fossil fuels is a global energy issue that is becoming more serious even as
industrial demand for oil increases [1]. To make matters worse, CO2 emissions from fossil fuels and
industry are dramatically growing [2]. Thus, efforts are intensifying to save energy across all sectors.
Particularly in the transportation sector, energy-saving efforts have accelerated, with many countries
having strengthened CO2 regulations for vehicles [3–5]. As alternatives to conventional vehicles,
hybrid electric vehicles (HEVs) are a promising solution to save fuel and meet regulations. To improve
the fuel efficiencies of HEVs, various types of powertrain configurations have been developed in the
last two decades, varying in the layout of the transmission and the power sources; these include the
series hybrid, parallel hybrid, power split hybrid, and multi-mode hybrid [6,7]. The power split hybrid
system [8], represented by the Toyota Prius [9] which was introduced in 1997, has been considered to
be a promising solution for vehicle hybridization [10,11], but a parallel hybrid system, applied in other
vehicles like the Hyundai Ioniq, has recently shown outstanding performance in fuel efficiency that is
close to or outperforms the power split hybrid system [12].

On the other hand, the fuel efficiencies of HEVs can differ significantly according to the performance
of the supervisory control, and especially the energy management strategy. In essence, an HEV will
not be able to fully utilize its electric power if its controllers fail to balance the state of charge (SOC)
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of the battery, which would result in low fuel efficiencies. Therefore, control concepts are vitally
important to maximize HEV fuel efficiencies. There has been a great deal of previous research on
control concepts using fuzzy logic [13], battery on/off [14], and equivalent consumption minimization
strategy (ECMS) [15]. Among them, an adoptive ECMS strategy shows a great deal of progress [16,17].
Several studies have shown that control concepts based on optimal control theories such as dynamic
programming (DP) [18,19] or Pontryagin’s minimum principle (PMP) [20,21] can produce excellent
results in minimizing HEV fuel consumption. These control concepts, however, are not preferred
solutions for real-world applications [22]. The optimal control theories are computationally intensive
and are not straightforward for engineers to understand; thus, they are also difficult to modify to include
other commercially important requirements such as safety, drivability, robustness, and stability [23].
For instance, when control developers attempt to minimize the round-trip energy in the battery to
improve its durability, it is not easy to manipulate the control solution obtained by using DP or PMP
because these theories generally provide only the final control solutions. Therefore, real-world HEVs
have employed heuristic rule-based control concepts to distribute the power between the engine and
motors and to balance the SOC [24]. The control concepts used in real-world HEVs pursue high fuel
efficiency by improving the operational efficiency of the engine or reducing the round-trip loss of the
battery [25,26].

Numerous direct methods for parametric optimization have been proposed. The election,
crossover, and mutation processes through a memetic algorithm (MA), which has a great performance
in searching the locally optimal value, was used to determine the optimal parameters for parallel type-2
HEVs (P2 HEVs) [27]. Research has also been conducted to solve the same problem through simulated
annealing particle swarm optimization (SA-PSO) [28]. A grey wolf optimizer (GWO) which was made
by imitating the hunting method of wolves was proposed to find the optimal variables for the battery
control [29]. One of the global direct methods, called the dividing rectangle (DIRECT) algorithm, was
applied to find the optimal set of control parameters for P2 HEVs [30]. A fast non-dominated sorting
genetic algorithm-II (NSGA-II) was proposed to solve the multi-objective optimization problem for
HEVs considering fuel economy, drivability, and emission [31]. The parametric optimization problem
for HEVs is difficult to search the globally optimal value due to the coupled terms and nonlinearity
of the system. Thus, the main topic was how to find the optimal parameters of rule-based control
for HEVs by using a new optimization method which had not been used before, as we have seen in
previous research.

The purpose of this study was to propose a methodology for deriving the maximum performance
and the possibility of the potential improvement of the rule-based controller. A generic rule-based
control for parallel type-2 HEVs (P2 HEVs) was developed based on the ideas used in real-world
HEVs, and an optimization process to determine the optimal control parameters was introduced. First,
this study provides evaluation results of the rule-based control, including a comparison of simulation
results of the rule-based control with optimal fuel consumption results of the PMP control. This is
meaningful because it demonstrates the maximum performance of the real-world control concept
and how close its performance is to optimal results. Second, this study also provides an optimization
process and an evaluation methodology for the controller. To determine the best key parameters, two
optimization processes were used in this study. One was a large-scale simulation (LSS) to study the
impact of SOC on the fuel consumption, and the other was a pattern search (PS), one of the direct
methods of optimization, to reduce the processing time required for finding the optimal parameters [32].
These two processes and their comparative results will provide insights for other engineers in selecting
appropriate optimization processes as they design controllers. Finally, simulation results obtained from
the rule-based control with optimized control parameters were evaluated based on the performance of
the PMP control, which is the evaluation reference.
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2. Rule-Based Control for P2 HEVs

The P2 HEV has a simple powertrain configuration in which a single motor is mounted between
the engine clutch and the transmission. The powertrain system can utilize electric vehicle (EV) mode
by turning off the engine, and the motor assists the engine if the clutch is engaged and the engine
is turned on (Figure 1) [6,33]. Compared to the power split hybrid system, the P2 HEV achieves
higher fuel efficiency in highway driving by avoiding the power recirculation loss in the electronic
continuously variable transmission (e-CVT) at high speed [34–36]. The P2 HEV is, however, not able to
optimize the engine operating point because its engine speed is constrained by the transmission gear
ratio. According to United States Environmental Protection Agency’s (US EPA’s) 2018 fuel economy
test results, the Hyundai Ioniq, which implements the P2 configuration, shows better fuel economy in
a highway driving cycle but lower fuel economy in an urban driving cycle compared to the Toyota
Prius, a representative power split hybrid system [25].
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Figure 1. Powertrain configuration of a parallel type-2 hybrid electric vehicle (P2 HEV) with power
flow in (a) electric vehicle (EV) mode and (b) HEV mode.

Regarding P2 HEV control, the torque generated by the motor can be added to the engine torque
while the speed of the engine and the motor can be optimized by controlling the gear shift of the
transmission, which enables the engine torque to be optimal. The vehicle model in Autonomie, a
powertrain analysis tool developed by Argonne National Laboratory, was used herein to evaluate
the performance of the control (Figure 2) [24]. The vehicle model was built in a Matlab Simulink
environment, and the controller was also developed as a Simulink model. Vehicle specifications are
listed in Table 1.

Table 1. Vehicle specifications.

Engine Max. Power/Torque 76 kW/156 Nm

Motor Max. Power/Torque 34 kW/260 Nm

Battery Max. Power/Capacity 63 kW/7.04 Ah

Gear Ratio #1) 2.563 #2) 1.552 #3) 1.022 #4) 0.727 #5) 0.520

Total Mass 1700 kg

The control strategy for P2 HEVs can be divided into two main phases. The first phase determines
whether the engine should be turned on. If it is not, the motor must provide all the required power. In
the second phase, if the engine is turned on, the controller should determine how to distribute the
power between the engine and the motor to satisfy the power demand. All details on the control
concept used in the rule-based control are introduced in this section.
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Figure 2. Vehicle model of a P2 HEV in Autonomie.

2.1. Engine On/Off Control

If the engine does not achieve high operational efficiency, the P2 HEV operates in EV mode, using
the motor as the sole source of the propulsion power. The vehicle turns on the engine and switches from
EV mode to HEV mode when it encounters a certain condition. There are several factors involved in
this decision, but three primary control parameters are considered in our controller—torque threshold,
speed threshold, and power threshold. The wheel torque demand is calculated using the accelerator
pedal signal (APS) and the wheel speed is calculated from the vehicle speed. The control concept for
the engine on/off decision is defined using the three control parameters as illustrated in Figure 3.
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2.2. Power Distribution Control

Once the engine has started, the controller should distribute the engine power and the motor
power to improve the system efficiency. There are two preferred control strategies for the power
distribution. The first strategy is to prioritize the maximization of engine efficiency. In this strategy, the
engine tries to operate along its optimal operating line (OOL) whenever possible, and the motor (Tmot)

assists the engine to meet the driver’s torque demand (Tdmd), which can be expressed as Equations (1)
and (2):

TOOL
eng = f

(
ωeng

)
, (1)

Tmot = Tdmd − TOOL
eng . (2)

Figure 4 shows the concept of this control—the engine torque is determined first, and the motor
torque is then determined as the difference between the torque demand and the engine torque [26,37,38].
This strategy is hereinafter termed the engine OOL strategy.
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line (OOL).

The second strategy focuses on the management of the SOC of the battery. In this strategy, the
battery power demand is determined to maintain the SOC at a desired level, which is generally the
initial SOC of HEVs [37]. Based on the electric power demand (Pmot), the motor torque is determined
according to its speed, and the engine provides an appropriate torque to satisfy the driver’s torque
demand, as shown in Equations (3)–(5). In Equation (3), s+ and s− are arbitrary positive values
representing the slope to determine the rate of charging and discharging, respectively.

pmot =


pmax, if SOC ∈ SOChigh

s+ × (SOC− SOCre f ), if SOC ≥ SOCre f and SOC ∈ SOCnormal
s− × (SOC− SOCre f ), if SOC < SOCre f and SOC ∈ SOCnormal

Pmin, if SOC ∈ SOClow

, (3)

Tmot =
Pmot

ωmot
, (4)
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Teng = Tdmd − Tmot. (5)

Figure 5 shows the concept of this control graphically. This strategy is hereinafter termed the SOC
balancing strategy.
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In this control concept, the charging and discharging rates can be used as the control parameters,
and the motor is used aggressively to return the SOC to its initial level. The engine OOL strategy is
preferred in HEVs that utilize fixed gear ratios. The Hyundai Sonata HEV and the Hyundai Ioniq have
implemented this control concept to maximize their engine efficiencies. It is known that the fixed ratio
modes employed in the GM Voltec 1st gen. and the Honda Accord Hybrid also use engine torque
manipulation to utilize high operational efficiencies [26,38]. On the other hand, the SOC balancing
strategy is preferred for HEVs using e-CVT because those systems are able to follow the engine’s OOL
with the transmission’s control. The Toyota Prius generally uses the motors to restore the SOC to its
initial level if the engine is turned on [9–11]. In fact, this control reduces the round-trip loss caused by
energy conversions between mechanical and electrochemical energy. In summary, the engine OOL
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strategy tries to increase the engine efficiency whereas the SOC balancing strategy tries to reduce the
energy conversion loss (Figure 6).
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To develop a generic control model, these two strategies can be combined with the use of a
weighting factor w to determine the final power distribution between the engine and the motor
(Figure 7). The value of w is between zero and one; one corresponds to full use of the engine OOL
strategy and zero corresponds to full use of the SOC balancing strategy. The optimal engine torque
is determined using the two engine torques calculated according to the two strategies as shown in
Equations (6)–(9). The motor assists in making up the rest of the torque. Figure 8 shows the flow chart
of the proposed supervisory control algorithm for P2 HEVs.

T1
eng = TOOL

eng = f
(
ωeng

)
, (6)

T2
eng = Tdmd −

Pmot

ωmot
, (7)

T f inal
eng = wT1

eng + (1−w)T2
eng, 0 ≤ w ≤ 1, (8)

T f inal
mot = Tdmd − T f inal

eng . (9)
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2.3. Primary Control Parameters

Although there could be many control parameters in a rule-based control, six key parameters that
significantly affect the control aspects were selected to be optimized—three for the engine on/off control,
two for the SOC balancing control, and one weighting factor w for mixing the power distribution
strategy. Table 2 shows information about the selected control parameters.

Table 2. Key parameters used for control.

Strategy Parameter Upper and Lower Boundary Unit

Engine OOL
(#1) APS threshold 0.1 0.9 Normalized
(#2) Speed threshold 18 131 km/h
(#3) Power threshold 3 34 kW

SOC Balancing (#4) Power slope (discharge) 25 150 kW/%
(#5) Power slope (charge) 37 150 kW/%

Mixed (#6) Weighting factor 0 1 Normalized

3. Control Optimization

In the control problems of HEVs, the objective of the control is to minimize the fuel consumption,
which can be expressed as Equation (10). Meanwhile, the final SOC should be the same as the initial
SOC, as shown in Equation (11), because there can be no fair comparison of the fuel consumption if
zero net electrical energy is used. In Equation (11), SOCinitial is the SOC at the beginning of running
the simulation, and SOC f inal is the SOC at the end of running the simulation. The final supervisory
control algorithm uses Equations (8) and (9), which determine the engine torque demand and the
motor torque demand. The relationship between Equations (8) and (11) gives us the intuition to select
the key parameters. Although all parameters are linked together, the objective function, that is the
total fuel consumption, directly depends on the engine torque and speed. Thus, three thresholds used
for engine on/off control are selected as key parameters. Likewise, the constraint of SOC depends on
the motor torque and speed. Thus, the parameters which determine the charge and discharge rate
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of battery are selected as key parameters. Finally, the parameter to determine the weight of the two
strategies is naturally picked.

minJ =
∫ t f

0

.
m f uel

(
T f inal

eng ,ωeng
)
dt, (10)

SOCinitial = SOC f inal = 60. (11)

The rule-based controller is optimized by determining the best value for each of the six control
parameters listed in Table 2 that maximize the fuel economy in the standard driving cycles HWFET, SC03,
UDDS, US06, and WLTC. To determine the optimal parameters, two processes are proposed in this study,
the large-scale simulation and the pattern search. Simply, LSS evaluates all available combinations
of the parameters whereas PS searches for optimal parameter values using a numerical optimization
process. To evaluate the performance of each rule-based control, we used the optimal control results
obtained by applying Pontryagin’s minimum principle to establish reference performances.

3.1. Large-Scale Simulation (LSS)

The LSS for the parametric optimization was conducted in a cloud-based computational
environment, in which 20 node PCs with 80 cores for individual simulations were connected to
cloud storage (Figure 9). The purpose of LSS was to examine all fuel consumption values for every
possible combination of the control parameters.
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In this study, six parameters are selected to be optimized as shown in Table 2, and about six to
20 candidates within the upper and lower boundaries are used according to the selected parameters,
resulting in over a million runs to investigate all combinations of the parameters. Further, the total
number of simulations is multiplied by the number of the cycles, causing the complexity of the
optimization to increase exponentially. Therefore, distributed computing is necessary to obtain the
fuel consumption values from all combinations. By using the model compilation with Matlab rsim
target, the computation time for each simulation was reduced to 3 s. Thus, LSS for over about a million
iterations was completed in about 10 h. All simulation results obtained from LSS are shown in Figure 10,
in which each grey point indicates the final fuel consumption value with respect to the final SOC from
a single simulation. Based on the results, a blue frontier line can be obtained by connecting the points
of the lowest fuel consumption for each final SOC. According to Equations (10) and (11), the optimal
solution of the control problem, represented by a blue dot, is obtained on the frontier line when the
final SOC is the same as the initial SOC, which is 60% in the problem. LSS, however, does not always
guarantee satisfaction of the constraint, despite the increasing number of combinations. Therefore, the
SOC tolerance is set based on two decimal places and the lowest point within the designated SOC
range is the best point, which is expressed as shown in Equation (12).

minm f uel
(
t f

)
, 59.995 ≤ SOC f inal < 60.005. (12)
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The LSS method introduced in this study is useful because it not only provides near absolute
solutions, but also other analyses can be made possible from the simulation results. For instance, the
results in Figure 10 show the impact of the electrical energy use on the fuel consumption; in addition,
it is possible to analyze the impact of the control parameters on the fuel consumption based on the
results obtained from LSS.

3.2. Pattern Search (PS)

The PS is a numerical optimization method that directly searches for the best parameter set by
minimizing an objective function such that given constraints are satisfied. In each step, a process
called polling is used to find the best points out of available points in a pre-defined mesh consisting
of a pattern vector. The procedure continues to the next iteration when either the best points are
found, or all cases are computed. The mesh size, s, is a scalar value and is expanded or contracted
depending on whether the polling succeeded in the previous iteration. In particular, the PS method
offered by Matlab uses the Augmented Lagrangian Pattern Search (ALPS) algorithm to solve nonlinear
constraint as shown in Equation (16) [32]. The flow chart for the PS algorithm in Figure 11 shows how
Equations (13)–(16) are solved using polling.

min
x

f (x) = min
x

m f c
(
t f

)
, (13)

c(x) = SOC f inal(x) − 60 ≥ 0, (14)

lower bounds ≤ x ≤ upper bounds, (15)

l(x,λ) = f (x) −
m∑

i=1

λic(x). (16)
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The algorithm, however, works slightly differently depending on the initial conditions, because
the process may produce solutions that are only locally optimal. However, Matlab provides an
optimization toolbox to investigate a wide range of parameter sets, so as to decrease the chances of
finding an only locally optimal solution instead of taking more time to find the optimal parameters.
The number of the pattern vector v is two times greater than that of the control variables. The total
number of simulations run in PS was about 4500, as shown in Figure 12, which was much smaller
than the simulations run in LSS, even though it takes into account that PS has a higher computation
time per simulation than LSS. Based on the pattern search algorithm, optimal results were obtained
as shown in Figure 12. In the pattern search process shown, several points do not follow the overall
converging tendency, but the results eventually converge to an optimal value.Energies 2019, 12, x FOR PEER REVIEW 11 of 17 
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The advantage of the pattern search is that it is possible to obtain optimal control parameters
within a reasonable calculation time. The solution, however, does not provide additional information to
understand the control problem. Therefore, comparing the performances of the two different processes,
LSS and PS, could provide hints to other engineers that would aid them in selecting an appropriate
approach for developing a rule-based controller.

3.3. Pontryagin’s Minimum Principle

A PMP-based control has been considered as an optimal solution to the HEV control problem. The
control concept utilizes optimal control maps that minimize a Hamiltonian, which can be interpreted
as an equivalent fuel consumption [20,21]. The optimal maps such as engine on/off map, operating
mode map, engine torque map, and gear shifting map are obtained by minimizing the Hamiltonian
according to the optimal costate, where the costate has the physical meaning of the equivalent factor
between gas fuel consumption and electrical energy consumption. The sum of the two consumptions
is defined as the Hamiltonian, which can be expressed as follows:

minH =
.

m f c(Pbat, t) + λ·S
.

OC(SOC, Pbat). (17)

The absolute value of λ represents the relative price of the electrical energy to the fuel energy.
Thus, the usage pattern of the electrical energy depends on λ. The main problem in the PMP-based
control is to find out an appropriate λ to ensure that the final SOC is the same as the initial SOC [20,21].
However, multiple SOC trajectories generated by using different λ, as shown in Figure 13a, are used in
this study because they are the best fuel consumption values for the final achieved SOC. Therefore,
they can be reference fuel consumptions. The final fuel consumption for each trajectory is plotted with
respect to the final SOC, and the best fuel consumption line is obtained as shown in Figure 13b.Energies 2019, 12, x FOR PEER REVIEW 12 of 17 
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consumption line against SOC obtained from the Pontryagin’s minimum principle (PMP) (UDDS cycle).
The fuel consumption highly increases if the SOC is over 90% because the vehicle cannot recuperate the
braking energy.

As has been stated, every single SOC trajectory in Figure 13a is the optimal trajectory for each
final SOC. Therefore, the line obtained in Figure 13b can be considered the minimum fuel consumption
line and be used to evaluate the performance of the rule-based control. The advantage of obtaining the
line is that it is possible to evaluate another controller’s performance by investing the margin to the
reference line even if its final SOC is not the same as the initial SOC.
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4. Comparative Results

In order to see the performance of the proposed rule-based control and the two parametric
optimization processes, the fuel consumption values obtained from LSS and PS are shown in Figure 14.
In the figure, the final fuel consumption value obtained by PS is added, where the results from LSS in
Figure 10 and the results from the PMP in Figure 13b are copied to the figure.
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Based on the results, it is possible to understand the performance limitation of the rule-based
control. A rule-based control is very robust, but it is not possible to design the controller to always
produce the best operating behaviors. Although the best control parameters are selected, the rule-based
control cannot outperform the PMP-based control, which is quite natural, but the results in Figure 14
shows how close the rule-based control can be to the optimal results. Further, the results also show
that the performance can be different if a different optimization process is used to find the control
parameters. In the results, the control parameters obtained by PS consumes additional fuel by 4%
in UDDS, as compared to the control parameters obtained by LSS (see Table 3). In addition, the
performances of the control parameters according to different optimization processes are compared in
UDDS, and the comparative study is conducted for other representative cycles. The fuel consumption
obtained when the final SOC is the same as the initial SOC, or 60%, is used to compare the performances
of the controls, as shown in Figure 14, and the results are summarized in Table 3. Equation (18) is used
to analyze the results and to find out the potential improvement degree of the rule-based control. The
potential improvement degree represents the possibility to achieve an improved performance in the
case of modifying the rule-based controller.

Potential Improvement Degree(%) =
mLSS,PS

f c

(
t f

)
−mPMP

f c

(
t f

)
mPMP

f c

(
t f

) × 100. (18)
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Table 3. Fuel consumption results according to different methods for parametric optimization.

Driving Cycle PMP (Reference) LSS PS

HWFET 0.542 kg 0.543 kg (+0.18%) 0.551 kg (+1.66%)
SC03 0.194 kg 0.197 kg (+1.55%) 0.201 kg (+3.61%)

UDDS 0.385 kg 0.399 kg (+3.64%) 0.415 kg (+7.79%)
US06 0.599 kg 0.600 kg (+0.17%) 0.612 kg (+2.17%)

WLTC 0.827 kg 0.849 kg (+2.66%) 0.862 kg (+4.23%)
Average Difference - +1.63% +3.89%

The results in Figure 15 show that the rule-based controls with optimized parameters have a quite
good performance, close to that of the PMP-based control. The average performance differences for LSS
and PS are 1.63% and 3.89%, respectively, and LSS outperforms PS for all cycles in Table 3. Figure 16
shows both the maximum performance and the potential improvement of the rule-based controller for
all driving cycles. Setting the initial or the starting points for PS is important because the final results
may be significantly affected by the initial points in nonlinear problems, which may produce local
optimal solutions. Thus, the results obtained by PS have lower performances than the results obtained
by LSS, even though we tried to avoid finding locally optimal results. The rule-based control, whatever
the method used for the parametric optimization, showed deficient performance especially in UDDS
and WLTC, compared to other driving cycles, which implies that the rule-based control has limitations
for maximizing fuel efficiency when the vehicle engages in urban driving cycles where accelerating
events occur frequently. The results obtained in this study can provide good references to select an
appropriate control organization and a process to find optimal control parameters in that the results
show the differences of the performances among the control processes. However, additional studies
are necessary to develop a realistic controller using the rule-based control concept because the optimal
control parameters can be very different in a specific driving condition. Therefore, extensive studies
about the impact of the driving conditions on the control parameters should follow this study, and we
are working on a sensitivity analysis of the control parameters based on a large number of simulation
results obtained by LSS.Energies 2019, 12, x FOR PEER REVIEW 14 of 17 
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5. Conclusions

HEV controllers based on optimal control theories like DP and PMP produce optimal fuel
efficiencies but have unsolved technical matters; thus, rule-based controls have been used in most
HEVs in the real-world vehicle market. One main problem with the PMP-based control is that it
guarantees optimality only when future information is available. Thus, although the PMP-based
control provides outstanding performances in fuel efficiency, it is not likely to supplant the rule-based
control method. In this study, a control organization using control parameters was proposed for a
rule-based concept. Two methods, large-scale simulation (LSS) and pattern search (PS), were applied to
find the optimal parameters that maximize fuel efficiency. LSS exhaustively examines a large number
of combinations for the control parameters, whereas PS directly searches the best parameters based
on an optimization process. Therefore, LSS produces a better control parameter set than PS, but PS
saves the computational time to find the parameter set. This study provides insight into three things
that could be very useful as a general reference in designing rule-based controls. First, a control
organization of the rule-based concept for engine on/off and power distribution is provided. Second,
key control parameters that significantly affect the control aspects are defined, and two processes to
optimize the parameters are proposed. Third, the performance of the rule-based control is evaluated by
comparing its results with the optimal results obtained by the PMP. Based on the comparative results,
the rule-based control with optimized parameters can achieve a feasible performance close to that of
the PMP-based control, which demands additional fuel consumptions by 1.63% in LSS and 3.89% in
PS. While it is still considered that designing supervisory controllers based on heuristic rules with
optimized parameters is a feasible approach for real-world HEVs, this study provides the marginal
boundary of the performance of the rule-based control and the impact of the optimization process.
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