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Abstract: Calcium chloride brine-based drill-in fluid is commonly used within the reservoir section,
as it is specially formulated to maximize drilling experience, and to protect the reservoir from being
damaged. Monitoring the drilling fluid rheology including plastic viscosity, PV, apparent viscosity,
AV, yield point, Yp, flow behavior index, n, and flow consistency index, k, has great importance in
evaluating hole cleaning and optimizing drilling hydraulics. Therefore, it is very crucial for the mud
rheology to be checked periodically during drilling, in order to control its persistent change. Such
properties are often measured in the field twice a day, and in practice, this takes a long time (2–3 h for
taking measurements and cleaning the instruments). However, mud weight, MW, and Marsh funnel
viscosity, MF, are periodically measured every 15–20 min. The objective of this study is to develop new
models using artificial neural network, ANN, to predict the rheological properties of calcium chloride
brine-based mud using MW and MF measurements then extract empirical correlations in a white-box
mode to predict these properties based on MW and MF. Field measurements, 515 points, representing
actual mud samples, were collected to build the proposed ANN models. The optimized parameters of
these models resulted in highly accurate results indicated by a high correlation coefficient, R, between
the predicted and measured values, which exceeded 0.97, with an average absolute percentage error,
AAPE, that did not exceed 6.1%. Accordingly, the developed models are very useful for monitoring
the mud rheology to optimize the drilling operation and avoid many problems such as hole cleaning
issues, pipe sticking and loss of circulation.

Keywords: mud rheology; drill-in fluid; artificial neural network; Marsh funnel; plastic viscosity;
yield point

1. Introduction

Drilling Fluids are considered a key element in the drilling operation. Conventional drilling fluids
are water-based, oil-based or synthetic-based fluid systems, which are used in the drilling process
to give the best performance under certain temperatures and pressures experienced downhole [1].
Drilling the section from the sea-bed/land to the top of the reservoir is different, regarding the economic
value of the final project, compared to the reservoir section. As in the top sections, the concerns are to
seal the permeable formations, and help sustain the wellbore stability.

Special measures will be taken into consideration while drilling the reservoir section to avoid
damaging the reservoir and plugging the reservoir pores. For that target, special drilling fluids are used,
called reservoir drill-in fluids (RDFs), which are specially formulated to maximize drilling experience
and protect the reservoir from being damaged until the completion process is proceeded [2].

Energies 2019, 12, 1880; doi:10.3390/en12101880 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-7209-3715
https://orcid.org/0000-0002-1155-2420
http://www.mdpi.com/1996-1073/12/10/1880?type=check_update&version=1
http://dx.doi.org/10.3390/en12101880
http://www.mdpi.com/journal/energies


Energies 2019, 12, 1880 2 of 17

There are many types of RDFs with different chemical compositions, but the concern of this
study is about the clear brine-based mud which is often used within completions, as the presence
of solids is a major contributor to formation damage [3]. However, when used as drilling fluid,
the solids-free nature of brine operationally improves the rate of penetration (ROP), stabilization of
sensitive formations, density, and abrasion or friction [4]. Clear brine fluids properties are easier to
maintain than conventional solids-laden fluid systems, so that when properly run, clear systems require
very little maintenance, because many functional issues are inherently solved by the dissolved salts.
Clear brine fluids also allow for drill site cost reductions because of the ability to reuse the fluid [5].

Brine fluids can be prepared with one salt or a combination of salts. All salts provide unique
properties to the base fluid. Saturated brines fluids provide excellent inhibitive properties and lubricity,
as compared to conventional aqueous fluids. With optimal heat transference characteristics, they can
greatly improve bit life, and increase the rate of penetration in hard rock drilling. Among the different
salts used for clear-brine systems, calcium chloride has been selected, as it is considered one of the most
economic brine systems, with its broad range of densities (from 9.0 to 11.6 ppg), availability, low cost,
and its ability to reduce the water activity of the fluid [6].

1.1. Drilling Fluid Rheology

Drilling fluid rheology plays a key role in optimizing drilling performance [7]. These properties
significantly affect the efficiency of the hole cleaning and the drilling rate [8], which are critical factors
controlling the performance of drilling operation [9]. These rheological properties include mud density
to provide the control on the formation pressure, while PV, YP, AV, n and k are used for controlling
hole cleaning and optimizing the drilling performance [10]. Plastic viscosity of the drilling fluid is
crucial for optimizing the drilling operation [11]. It is an indication of the solid content in the drilling
fluid which may negatively affect the drilling performance when it exceeds critical limits, and can
cause many problems like pipe sticking and decreasing the rate of penetration [12]. Yield point can be
simply stated as the attractive forces among colloidal particles in drilling fluid [11]. The optimization of
yield point is central to controlling the efficiency of hole cleaning [10,13]. Moreover, apparent viscosity
is considered a key factor in the optimization of mud hydraulics while drilling [8]. In addition, the
parameters k and n can be used for evaluating hole cleaning during the drilling operation [14].

The rheological properties can be measured in the laboratory using mud balance and viscometer.
The mud balance is used to measure the mud weight while the rheometer is used to measure
(PV, YP, AV, n and k). However, this process takes a relatively long time (2–3 h for taking measurements
and cleaning the instruments) which makes it difficult to be performed periodically and practically in
the field. Therefore, it is taken as a common procedure that only density and Marsh funnel viscosity
are measured periodically every 15–20 min, using mud balance and Marsh funnel devices. On the
other hand, a complete mud test (including all the drilling fluid properties), using the mud balance
and viscometer, is performed twice a day. Marsh funnel viscosity provides an indication of the changes
in the rheology of the drilling fluid. This funnel was first introduced by Marsh [15]. This tool is cheap
and takes a short time, so it can be utilized to give field measurements frequently and estimate some
parameters like yield stress [16]. Based on the literature, there are two models developed to predict the
drilling fluid viscosity from mud density and Marsh funnel measurements. These two measurements
were used as inputs to calculate the effective viscosity of the drilling fluid as stated by Pitt [17] in
Equation (1). Then a modification on the previous model was introduced by Almahdawi et. al. [18],
who figured out that changing the value of the constant to 28 in Equation (2) instead of 25 presented by
Pitt [17], is more effective give more accurate results, as compared to Equation (1).

AV = D(T − 25) (1)

AV = D(T − 28) (2)
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where AV is the apparent viscosity in cP, D is the fluid density in g/cm3, T is the Marsh funnel time
in sec.

Several mathematical models have been mentioned in the literature for estimating the fluid
rheological properties using Marsh funnel devices. Some of them suggested using the temporal
variations in the fluid height in the funnel to determine different rheological parameters such as
PV, YP and AV [19–22]. They introduced a methodology to determine the shear rate and the shear
stress on the walls of the Marsh funnel from the measured discharged fluid volume of the Marsh
funnel at different points. Then several rheological parameters have been related to the obtained
shear rate and shear stress. Abdulrahman et al. [23] investigated different water-based drilling fluids
using the Marsh funnel and showed that PV and AV can be estimated using consistency plots and the
methodology described in [19]. However, these models showed considerable discrepancies between
the results obtained from the Marsh funnel and the standard viscometers. Other studies tried to model
the fluid volume flow in the Marsh funnel with higher order polynomial functions, rather than the
simplified functions used in the previously mentioned studies [24,25]. This attempt was to simulate
the fluid temporal height in the Marsh funnel more properly, and to get closer results of rheological
parameters to those obtained from the standard viscometers.

The objective of this work is to develop new models using artificial neural networks, ANN,
to predict the rheological properties of the CaCl2 brine-based drilling fluid depending on frequent
measurements of MW and MF. The real-time measurements of these parameters are very helpful for
identifying the efficiency of the hole cleaning, optimizing the drilling fluid hydraulics, equivalent
circulating density calculations and swab and surge pressure determination.

1.2. Artificial Neural Network (ANN)

Artificial intelligence, (AI), can be simply defined as the computer science branch for creating
intelligent machines [26] to exhibit human brains to make predictions and help take the right decisions
for the future scenarios [27]. Recently, different AI methods such as fuzzy logic, FL, support vector
machine, SVM, genetic algorithm and artificial neural network, ANN, have been applied in petroleum
engineering, and specifically in the field of drilling fluid engineering. Some of these applications
include fluid flow patterns prediction in wellbore annulus [28], stuck pipe prediction [29], drilling
hydraulics optimization [30], frictional pressure loss estimation [31], hole cleaning and prediction of
cutting concentration [32], estimation of the static Poisson’s ratio from log data [33].

ANN is one of the most common AI techniques which has the ability to deal with different
engineering problems with high complexity that exceed the computational capability of classical
mathematics and procedures [34]. It is based on analogy with biological neural networks to simulate
the performance of the human biological neural system [35]. The elementary units for ANN are
neurons [36]. The structure of the ANN consists of three main types of layers. The first one is for the
input parameters. The second one is called hidden layers, which include the neurons assigned with the
transfer functions between the inputs and the outputs. The third type is for the outputs. These layers,
with the suitable training algorithm, describe the nature of the problem [37]. The performance of the
network is controlled by key parameters including the number of neurons, weights and biases [38].
To optimize the weight and biases, the network is trained using different algorithms to achieve the
lowest possible error. Among these algorithms is Levenberg-Marquardt (LM), which is an iterative,
curve fitting algorithm. This algorithm proved its outstanding performance in solving non-linear
least-squares problems [39].

There are many ANN applications of ANN in the field of drilling fluid in the last few years. Some of
these researches are the prediction of filtration volume and mud cake permeability of water-based mud
(WBM) [40], drill cutting settling velocity prediction [41], prediction of differential pipe sticking [42],
lost circulation prediction [43], hole cleaning efficiency of foam fluid [44], rheological properties of
invert emulsion mud [45], invert emulsion mud rheology [46] and spud mud rheology prediction [47],
generating geomechanical well logs [48], prediction of oil PVT properties [49].
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Based on the literature, more than 50 percent of the applications in the drilling fluid area used
ANN for the predictions and got high accurate results. Accordingly, ANN has been selected for
building the proposed models in this study [26].

2. Methodology

2.1. Data Description

A typical sample of the data for CaCL2 brine-based drill-in fluid (515 field data for actual mud
samples) is listed in Table 1, including

(
MW, MF, PV, and Yp

)
. The drilling fluid samples are collected

after the mud was cleaned from the cuttings by using the shale shaker MW and MF are measured in
the field using a mud balance and Marsh funnel, respectively. The rheometer is used for measuring the
rheology of the mud, namely PV, and Yp at atmospheric pressure and 120oF. The collected data have a
wide range as follows: MW ranges from 43 to 119 Ib/ f t3, MF ranges from 26 to 135 s/quart, PV ranges
from 10 to 54 cP, and YP ranges from 8 to 41 Ib/100 f t2. Figure 1 shows that MW has R of 0.36 and 0.76
with YP and PV respectively while MF has R of 0.86 with YP and 0.36 with PV.

Table 1. A typical sample of the CaCl2 brine-based drilling fluid collected data.

MW, Ib/ft3 MF, s/quart PV, cP YP, Ib/100 ft2

78 62 8 21
80 45 8 22
88 62 12 18
73 50 11 20
65 48 11 21
75 44 12 20
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Figure 1. The relative importance of MW and MF with the rheological properties (YP and PV) of CaCL2

brine-based mud in terms of the correlation coefficient, R.

For better prediction using AI models, data should be analyzed and filtered [50]. Therefore,
the selected data have been cleaned from any noise and false values for higher representation quality.
The filtration process included eliminating all the values that cannot be representative, like negative
values. Finally removing the outliers that show significant deviation from the other values of a variable,
the outliers were removed using a box and whisker plot, in which top whisker represents the upper
limit of the data, and the bottom whisker represents the lower limit of the data, then any value beyond
these limits is considered an outlier and removed [51]. These limits are determined by dividing the
data into four equal divisions (quartiles) along with using the minimum, maximum, mean and median
parameters [52] obtained from the statistical analysis of the data listed in Table 2.
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Table 2. Statistical Analysis of the CaCl2 brine-based mud collected data.

Parameter MW, Ib/ft3 MF, s/quart PV, cP YP, Ib/100 ft2

Min. 43 26 10 8
Max. 119 135 54 41
Mean 85.45 56.33 22.59 25.88
Mode 76 109 44 33
Range 72 50 19 24

Skewness 0.50 1.43 1.29 0.83

2.2. Development of ANN Models

The collected data were used to calculate R600 and R300 (rheometer readings at 600 and 300 rpm,
respectively) using Equations (3) and (4). These two parameters are very crucial for identifying fluid
properties and flow regimes. Then, the apparent viscosity, AV, flow behavior index, n, and flow
consistency index, k, are calculated using Equations (5)–(7) respectively.

R600 = PV + R300 (3)

R300 = PV + Yp (4)

AV =
R600

2
(5)

n = 3.32× log
(

R600

R300

)
(6)

k =
R600

1022n (7)

For all the upcoming developed models, different scenarios have been performed to optimize the
ANN variables to reach the highest accuracy with the lowest possible error for prediction using different
combinations of the available options of the ANN variables. The optimized parameters obtained from
the tuning process of these parameters are summarized in Table 3. The chosen architecture for the
developed models includes three layers:

– Input layer: It contains input features which are MW and MF.
– (One) Hidden layer: It contains the optimized number of neurons which was found to be

20 neurons.
– Output layer: It contains the output parameters, which are (PV, YP, AV, n and k individually).

The network was trained using the Levenberg-Marquardt (LM) algorithm to get the optimized
weights and biases. The neurons are arranged to be trained using a learning rate of 0.12. Activation
function of the tan-sigmoidal type (tansig) was assigned between the input and hidden layers while
the pure-linear function was assigned between the hidden and output layers. Figure 2 shows a typical
schematic of the architecture of the developed ANN model.

Table 3. Summary of the optimized parameters for the developed ANN models.

Neural Network Parameter Types and Range

Training Algorithm Levenberg Marquardt
Number of neurons 20

Number of hidden layer(s) 1
Learning rate 0.12

The hidden layer transfer function Tan-sigmoidal
The outer layer transfer function Pure-linear

Training ratio 70%
Testing ratio 30%
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3. Results and Discussion

3.1. Yield Point (YP) Model

An ANN-Based model was developed using MW and MF as inputs to predict the YP values.
The obtained data were divided into ratios 70:30 for training and testing the model, respectively.
Figure 3 shows the high match between the measured and the predicted YP values from the developed
ANN model in terms of R of 0.97 and AAPE of 3.9%. Thereafter, a new correlation has been developed
using the ANN model to predict YP based on MW and MF. First, the inputs should be normalized
using Equations (8) and (9) to substitute the values MWn and MFn in Equation (10); where MWn refers
to the first normalized input, and MFn refers to the second normalized input.

MWn = 0.036(MF− 64) + 1 (8)

MFn = 0.133(MF− 26) + 1 (9)
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Then, the normalized value YPn is calculated using Equation (9) with its optimized coefficients
listed in Table 4.

YPn =

 N∑
i=1

w2,i

 2

1 + exp
(
−2

(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1


+ b2 (10)

where i is the index of the neuron in the hidden layer, N is the optimized number of neurons for only
one hidden layer, which is found to be 20, w1 is the weight vector linking the input and the hidden
layer, w2 is the weight vector linking the hidden and output layer, b1 is the biases vector for the input
layer, and b2 for the output layer.

Finally, the required YP value can be obtained by denormalizing YPn using Equation (11).

Yp = 16.5(Ypn + 1) + 8 (11)

Table 4. The optimized coefficients for estimating the normalized YPn in Equation (10).

Neuron
Index Input Layer Weights Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 −4.251 5.585 −0.950 5.530 −0.508
2 −0.709 −6.857 −0.155 4.936 -
3 2.631 5.539 0.168 −4.752 -
4 −0.743 6.411 1.005 3.899 -
5 −4.986 5.903 −0.932 3.661 -
6 −5.203 −0.250 −1.022 3.135 -
7 4.859 4.645 −0.410 −2.792 -
8 −1.185 −6.192 0.721 2.879 -
9 4.188 −3.646 −1.697 −3.015 -

10 3.238 −5.080 0.297 −0.585 -
11 0.708 −7.849 −0.380 0.213 -
12 −4.893 −9.220 −0.428 −1.489 -
13 2.227 −6.971 −1.173 2.051 -
14 3.101 5.504 −1.046 1.840 -
15 −6.059 −1.558 −0.030 −3.063 -
16 −5.020 3.702 −0.902 −3.873 -
17 2.892 5.503 −0.260 4.287 -
18 −0.736 −5.668 0.190 −5.818 -
19 4.290 −4.592 0.639 5.571 -
20 −4.290 4.570 −0.686 −6.252 -
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3.2. Apparent Viscosity (AV) Model

Similarly, AV was predicted using ANN, based on MW and MF. The model was trained using
70% of the available data, while 30% of the data were used for testing the model. Figure 4 shows
the high R between the predicted and the measured AV values, which is 0.99 with AAPE of 3.2%.
Afterward, a new correlation for predicting AV was extracted from the developed ANN model. To use
this correlation, the inputs should be normalized at first using Equations (12) and (13) to substitute
the values MWn and MFn in Equation (14); where MWn refers to the first normalized input, and MFn

refers to the second normalized input.

MWn = 0.036(MF− 64) + 1 (12)

MFn = 0.053(MF− 35) + 1 (13)

Then, the normalized value AVn is calculated using Equation (14) with its optimized coefficients
listed in Table 5.

AVn =

 N∑
i=1

w2,i

 2

1 + exp
(
−2

(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1


+ b2 (14)

Finally, AV can be predicted by denormalizing AVn using Equation (15).

AV = 27(AVn + 1) + 19 (15)

Table 5. The optimized coefficients for estimating the normalized AVn in Equation (14).

Neuron
Index Input Layer Weights Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 2.960 7.136 −0.950 −5.667 1.535
2 −5.586 −7.703 −0.155 2.751 -
3 4.037 5.355 0.168 −1.886 -
4 −3.362 3.743 1.005 2.292 -
5 6.295 −5.066 −0.932 −8.110 -
6 0.406 7.091 −1.022 6.492 -
7 −10.26 −8.654 −0.410 −0.995 -
8 −0.572 −9.022 0.721 −0.909 -
9 −7.565 4.329 −1.697 4.884 -

10 −4.256 3.855 0.297 2.094 -
11 6.458 1.765 −0.380 1.786 -
12 4.537 −4.152 −0.428 1.324 -
13 −5.410 3.103 −1.173 −2.553 -
14 −4.859 −2.202 −1.046 −1.924 -
15 −7.190 1.704 −0.030 −4.783 -
16 2.196 −5.993 −0.902 2.408 -
17 −0.576 6.113 −0.260 −4.569 -
18 −2.889 −4.782 0.190 −4.645 -
19 −3.799 −7.588 0.639 −2.337 -
20 −3.877 4.861 −0.686 −6.301 -
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Figure 4. Measured AV vs. Predicted AV from the ANN model.

3.3. Plastic Viscosity (PV) Model

For PV, another ANN model was developed based on MW and MF. For building the model, the
ratio of the training to testing points is 70:30. The model gave high accurate results indicated by a high
R of 0.98 between the predicted and the measured PV values and maximum AAPE of 6.1% as shown in
Figure 5. A new correlation has been extracted from the model to predict PV without the need to run
the ANN model.
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First, the inputs should be normalized using Equations (16) and (17) to substitute the values
MWn and MFn in Equation (18); where MWn refers to the first normalized input, and MFn refers to the
second normalized input.

MWn = 0.037(MF− 64) + 1 (16)

MFn = 0.105(MF− 35) + 1 (17)

Then, the normalized value PVn is calculated using Equation (18) with its optimized coefficients
listed in Table 6.

PVn =

 N∑
i=1

w2,i

 2

1 + exp
(
−2

(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1


+ b2 (18)

Finally, PV can be predicted by denormalizing PVn using Equation (19).

PV = 22(PVn + 1) + 10 (19)
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Table 6. The optimized coefficients for estimating the normalized PVn in Equation (18).

Neuron
Index Input Layer Weights Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 −3.740 4.001 1.983 9.616 −1.831
2 −3.304 −5.296 −1.243 −5.482 -
3 −11.57 −3.788 3.380 7.537 -
4 −6.403 −2.376 −4.833 4.301 -
5 1.308 7.156 −0.307 2.069 -
6 0.457 −12.03 1.182 1.413 -
7 −3.684 10.384 −0.141 3.236 -
8 1.511 −3.887 1.414 −3.601 -
9 −7.490 −1.848 1.788 6.460 -

10 −5.945 −6.028 −0.985 5.412 -
11 2.211 −1.365 −1.087 −1.030 -
12 6.136 −3.409 1.093 3.100 -
13 −0.450 −2.759 0.560 1.993 -
14 15.104 15.336 0.612 1.763 -
15 8.423 2.774 0.501 7.032 -
16 −6.361 −2.459 −0.544 −1.495 -
17 −5.252 5.003 1.075 −1.282 -
18 −4.470 −4.547 1.533 −5.938 -
19 −3.457 6.210 1.761 −2.930 -
20 3.769 −5.543 1.014 5.828 -

3.4. Prediction Power Law Model Parameters (n and k)

Following the same procedure, another two models have been developed using ANN to predict n
and k based on MW and MF. For the prediction of n, the R between the measured and the predicted
values was 0.98 with AAPE of 2.4% as shown in Figure 6. While for the prediction of k, the R was
0.99 with AAPE of 3.6%, as indicated in Figure 7. Then new correlations for estimating n and k were
extracted from the developed ANN models.
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In the beginning, the inputs should be normalized using Equations (20) and (21) for the correlation
of n and Equations (22) and (23) for the correlation of k in order to substitute the values MWn and
MFn in Equations (24) and (25); where MWn refers to the first normalized input and MFn refers to the
second normalized input.

For the Correlation of Parameter n:

MWn = 0.026(MF− 43) + 1 (20)

MFn = 0.018(MF− 26) + 1 (21)

For the Correlation of Parameter k:

MWn = 0.036(MF− 64) + 1 (22)

MFn = 0.022(MF− 30) + 1 (23)

Subsequently, the normalized values nn and kn can be estimated using Equations (24) and (25),
respectively, with their optimized coefficients listed in Tables 7 and 8, respectively.

nn =

 N∑
i=1

w2,i

 2

1 + exp
(
−2

(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1


+ b2 (24)

kn =

 N∑
i=1

w2,i

 2

1 + exp
(
−2

(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1


+ b2 (25)

Eventually, the predicted values of n and k can be estimated using Equations (26) and
(27), respectively.

n = 0.244(nn + 1) + 0.263 (26)

k = 2.78(kn + 1) + 0.731 (27)
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Table 7. The optimized coefficients for estimating the normalized nn in Equation (24).

Neuron
Index Input Layer Weights Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 11.343 −1.862 −0.798 −9.530 −0.867
2 2.093 −7.313 −1.517 −7.827 -
3 −0.197 7.842 −0.937 5.778 -
4 6.518 −3.319 2.163 −5.132 -
5 4.967 1.743 −1.977 −3.641 -
6 −5.643 −4.788 0.789 2.501 -
7 7.452 −2.491 1.194 −1.205 -
8 −8.873 1.168 1.495 0.426 -
9 −3.821 0.042 −8.516 2.781 -

10 −4.896 1.759 6.460 3.734 -
11 −6.355 −8.089 0.160 −0.850 -
12 −12.05 3.917 −1.539 −1.785 -
13 9.180 −0.935 −2.199 2.377 -
14 2.500 −6.815 −2.203 3.462 -
15 −3.105 4.973 −0.752 −3.526 -
16 −4.068 4.687 −1.196 −3.731 -
17 8.037 9.291 0.592 9.212 -
18 6.726 5.979 0.963 3.974 -
19 4.042 −5.058 1.376 5.431 -
20 4.585 −3.606 −0.777 6.701 -

Table 8. The optimized coefficients for estimating the normalized kn in Equation (25).

Neuron
Index Input Layer Weights Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 −6.753 −1.103 1.041 −9.530 −0.106
2 8.434 3.590 −2.501 −7.827 -
3 −5.541 2.870 0.111 5.778 -
4 −2.502 −4.938 −0.160 −5.132 -
5 1.257 −4.551 0.671 −3.641 -
6 −6.886 0.157 0.523 2.501 -
7 2.427 −3.904 1.129 −1.205 -
8 3.711 −4.231 −0.680 0.426 -
9 −4.383 −2.456 −4.228 2.781 -

10 3.781 2.628 0.781 3.734 -
11 4.197 −0.920 −0.658 −0.850 -
12 −5.986 7.171 −0.378 −1.785 -
13 5.429 4.213 −2.285 2.377 -
14 3.700 −7.289 −1.825 3.462 -
15 4.037 3.723 2.991 −3.526 -
16 5.432 2.211 −1.677 −3.731 -
17 7.672 −3.691 5.346 9.212 -
18 −1.757 6.114 2.971 3.974 -
19 2.719 2.906 2.767 5.431 -
20 −7.991 −2.637 1.733 6.701 -

3.5. Validation of the Apparent Viscosity (AV) Model vs the Models in the Literature

As mentioned in the introduction, Pitt [17] introduced a numerical model to calculate the apparent
viscosity using Equation (1). After using the collected data, the results obtained using Equation (1)
showed a coefficient of determination R2 of 0.5 and AAPE of 32.2%. Also, Almahdawi et al. [18]
concluded that Equation (2) using the constant 28 is more appropriate than 25 in Equation (1), and the
results obtained by applying Equation (2) to estimate AV using MF readings give R2 of 0.5 and AAPE
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of 23.6%, as shown in Figure 8. However, the developed correlation for the ANN model gives highly
accurate results, as shown in Figure 9 with R2 of 0.98, and AAPE does not exceed 3.2%.Energies 2019, 12, x FOR PEER REVIEW 13 of 17 
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4. The Value of Predicting the Drilling Fluid Rheology in Real-Time

For drilling optimization, it is very important to have periodic monitoring of the parameters
affecting the drilling process. Mud system design and hole cleaning processes are affected by the
pressure losses within the system which rely on the properties of the drilling fluid used, and the
efficiency of the cuttings removal from the hole. Pressure losses can be obtained once the parameters
of the Bingham model YP and AV and power low model (n and k) are obtained. Annular pressure
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losses can be calculated by Equation (28) based on the real-time values of (YP and AV), which can be
obtained from the developed ANN model.

Also, equivalent circulating density, ECD, can be calculated from Equation (29) [53] using the
obtained pressure loss value, so that surge and swab pressures can be determined to help predict
critical drilling problems such as pipe sticking and well control issues [54].

∆p =

 PV × v

1000(d2 − d1)
2 +

Yp

200(d2 − d1)

L (28)

ECD = MW +
∆p

0.052× h
(29)

where ∆p is the annular pressure loss (in psi), PV is the predicted plastic viscosity (in cP), YP is the
predicted yield point (in Ib/100 f t2), v is the average annular velocity (in ft/s), d1 is the inside diameter
of the hole or casing, (in inches), d2 is the outside diameter of the drill pipe, (inches), L is the drill pipe,
or drill collar length (in ft), MW is the mud density (in ppg), h is the hole depth (in ft), and ECD is the
equivalent circulation density (in ppg).

Accordingly, the ability of the prediction of the rheological properties in real-time can help avoid
many problems during drilling with early detection of these problems by identifying the anomaly in
normal behavior trends. This will optimize the drilling operation and save money by minimizing the
drilling time.

5. Conclusions

In this work, new models have been developed using ANN to predict the rheological properties of
CaCL2 brine-based drill-in fluid in a real-time (15–20 min) including (PV, YP, AV, n and k) using 515
field data measurements of MW and MF in ratios 70:30 for training and validating the ANN models
respectively. Accordingly, the following conclusions can be drawn:

(1) The new ANN models can predict the rheological parameters
(
PV, Yp, AV, n, and k

)
in real time

based on MW and MF with high accuracy (R was greater than 0.97 and AAPE was less than 6.1%).
(2) The optimization process for the ANN models showed that the optimized parameters yielding

the highest accuracy and the lowest error were 20 neurons for only one hidden layer,
the Levenberg-Marquardt algorithm of learning rate 0.12. The activation function linking
the input and hidden layers was the tan-sigmoidal function, while a linear function was used for
linking the hidden and output layers.

(3) The extracted correlations from the developed ANN models provide the ability to estimate the
rheological properties of CaCL2 brine-based mud directly without the need to run the models.

(4) These models are very helpful in the calculations of rig hydraulics, surge and swab pressures,
and ECD.

(5) The developed correlations can help in predicting several drilling problems by providing the
ability for real-time monitoring of the hole cleaning performance, and detecting any abnormal
changes in the normal trends to avoid interrupting problems like sticking. As a result, this will
save on the drilling cost, and it optimizes the drilling operation.
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